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Abstract

A study of the effect of an externally imposed magnetic field on the axisymmetry-breaking instability of an
axisymmetric convective flow, associated with crystal growth from bulk of melt, is presented. Convection in a vertical

cylinder with a parabolic temperature profile on the sidewall is considered as a representative model. A parametric
study of the dependence of the critical Grashof number Grcr on the Hartmann number Ha for fixed values of the
Prandtl number (Pr=0.015) and the aspect ratio of the cylinder (A=height/radius=1, 2 and 3) is carried out. The

stability diagram Grcr(Ha) corresponding to the axisymmetric}three-dimensional transition for increasing values of
the axial magnetic field is obtained. The calculations are done using the spectral Galerkin method allowing an effective
and accurate three-dimensional stability analysis. It is shown that at relatively small values of Ha the axisymmetric flow

tends to be oscillatory unstable. After the magnitude of the magnetic field (Ha) exceeds a certain value the instability
switches to a steady bifurcation caused by the Rayleigh–B!enard mechanism. # 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The present study is focused on a particular
problem of the electromagnetic control of con-
vective melt flow [1] in Bridgman and related
crystal growth technologies [2]. We study the
possibility to stabilize an axisymmetric convective
flow by an external axial magnetic field. Several

previous studies considered mainly electromag-
netic damping of the flow and its effect on the
heat/mass transfer and dopant segregation [3–7].
Recent analysis of stability of steady state con-
vective flows in a simplified Bridgman configura-
tion [8] showed that, as a rule, the instability sets in
with the breaking of axial symmetry of the flow.
Therefore, analysis of stability and calculation of
supercritical (steady or oscillatory) states should
be done on the basis of three-dimensional models
(see for example three-dimensional calculation in
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Ref. [9]). The effect of the magnetic field on the
three-dimensional axisymmetry-breaking instabil-
ity of initially axisymmetric steady convective
flows was studied recently in Refs. [10,11]. The
temperature boundary conditions considered in
these studies corresponded to the Rayleigh–
B!enard configuration, i.e. isothermal top and
bottom and thermally insulated side boundary of
a vertical cylinder. Electromagnetic stabilization of
axisymmetric convective flows for more compli-
cated thermal conditions was not studied.

In the present paper, we continue our previous
study [8] and consider the effect of an axial
magnetic field on the axisymmetry-breaking in-
stability of convective flow in a vertical cylinder
with parabolic temperature profile on the sidewall.
The parabolic temperature profile is taken as an
example of arbitrary heating/cooling conditions
which have to be imposed in specific practical
cases. A parametric study of stability of the flow
for increasing values of magnetic field strength (the
Hartmann number Ha) is performed for a fixed
value of the Prandtl number (Pr=0.015) and three
fixed values of the aspect ratio (A=height/radius)
of the cylinder, equal to 1, 2 and 3. The
corresponding stability diagram, showing the
dependence of the critical Grashof number (Grcr)
on Ha, is presented. It is shown that for the axial
magnetic field the electromagnetic stabilization is
stronger in lower cylinders. It is found also that
after the magnetic field exceeds a certain value the
type of instability changes, such that the oscilla-
tory instability of the flow (Hopf bifurcation) is
replaced by a bifurcation from steady axisym-
metric to steady asymmetric flow state. The
patterns of flows and the most dangerous pertur-
bations presented allow us to derive some addi-
tional conclusions about the nature of the
instability observed.

2. Formulation of the problem and numerical

technique

We consider convection of an incompressible
Boussinesq fluid in a vertical cylindrical container
of radius R and height H, subject to a constant
external vertical and homogeneous magnetic field

B ¼ f0; 0; B0g. Interaction of the magnetic field
with the convective flow induces the electric
current

j ¼ s �rfþ v�B½ 	; ð1Þ

where v ¼ fvr; vj; vzg is velocity, f is electric
potential and s is electric conductivity of the fluid.
Conservation of the induced electric current,
r � j ¼ 0, yields the equation for the electric
potential

Df ¼ B0ez � r�v ¼ �
B0

r

qvr
qj

�
qðrvjÞ
qr

� �
: ð2Þ

The flow is described by the dimensionless three-
dimensional Navier–Stokes, continuity and energy
equations

qv
qt

þ v � rð Þv ¼ �rpþ DvþGrTez

�Ha2 �
qf
qr

ej

�
þ

1

r

qf
qj

er

þ vrer þ vjej

�
; ð3Þ

r � v ¼ 0; ð4Þ

qT
qt

þ ðv � rÞT ¼
1

Pr
DT ð5Þ

in the domain 04r41, 04z4A, 04j42p. Here
v, T, p, and B are non-dimensional velocity,
temperature, pressure, and magnetic field,
respectively. The dimensional scales of the time,
the velocity and the pressure are R2=n,
n=R and rðn=RÞ2, respectively. The temperature
is non-dimensionalized as T ¼ ðT
 � TmeltÞ=
ðTmax � TmeltÞ. The magnetic field is scaled by
B0. Other parameters are: Gr ¼ gbDTH3=n2

Grashof number, Pr ¼ n=w Prandtl number, Ha ¼
B0l

ffiffiffiffiffiffiffiffiffiffi
s=rn

p
Hartmann number, g gravity accelera-

tion in the z-direction, b thermal expansion
coefficient, n viscosity; w heat diffusivity, and r
density. T* is the dimensional temperature, Tmax is
the maximal temperature at the sidewall and Tmelt

is the melting temperature imposed at the top and
the bottom.

Similarly to our previous study [8], we consider
no-slip boundary conditions for velocity, a para-
bolic temperature profile at the sidewall of the
cylinder and equal constant temperatures at the
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top and bottom. Additionally, we assume that all
the boundaries are electric insulators. These read

at z ¼ 0 and A : T ¼ 0; v ¼ 0;
qf
qz

¼ 0; ð6Þ

at r ¼ 1 : T ¼ zð1� z=AÞ; v ¼ 0;
qf
qr

¼ 0:

ð7Þ

The boundary conditions at the axis should be
added for the axisymmetric basic state flow

at r ¼ 0 :
qT
qr

¼ 0; vr ¼ 0;

vj ¼ 0;
qvz
qr

¼ 0;
qf
qr

¼ 0: ð8Þ

These boundary conditions allow the existence of
an axisymmetric steady solution of Eqs. (1)–(8).
As it is noticed in Ref. [8], the shape of the
temperature profile at the sidewall is arbitrary and
can be replaced by a more complicated boundary
condition.

The effect of the induced electric currents on the
external magnetic field and the Joule heating are
neglected in the formulation (1)–(8). This is justified
by the estimation of non-dimensional parameters
characteristic for liquid metals and semiconductors
(some details are given in Ref. [12]).

The numerical technique applied is the same as
was used in Ref. [8]. The 2p-periodicity of the
solution of Eqs. (2)–(8) allows its representation as
a Fourier series

fv; p;T ;fg ¼
Xk¼1

k¼�1

fvk; pk;Tk;fkgexpðikjÞ: ð9Þ

Then, we are looking for values of Gr number
for which the steady axisymmetric solution
v0 r; zð Þ; p0 r; zð Þ;T0 r; zð Þ;f0 r; zð Þ

� �
becomes un-

stable with respect to the axisymmetric (k=0) or
non-axisymmetric (k 6¼ 0) perturbations. The linear
stability problem separates for each value of the
azimuthal wavenumber k [13]. Therefore, for
each k one has to consider a quasi-axisymmetric
problem that yields the critical Grashof number
Grcr(Ha, Pr,A, k). Finally, the critical Grashof
number is defined as Grcr Ha; Pr; Að Þ ¼
mink Grcr Ha; Pr;A; kð Þ, and the value k ¼ kcr
which yields the minimum of Grcr(Ha, Pr,A, k) is

the critical wavenumber. In the case of oscillatory
instability the critical frequency of oscillations ocr

(the oscillation frequency at Gr=Grcr) should be
added to the set of critical parameters. The
dimensional scale for ocr is v/R

2. The calculations
were carried out using the global Galerkin method
described in Ref. [13]. To ensure the correctness of
results an additional convergence study was
performed for Pr=0.015 and Ha varying from 0
to 100. Similarly to the results of Ref. [8], it
showed that truncation of the Galerkin series to
30� 30 basis functions in the r- and z-directions
yields 3–4 correct digits in the critical Grcr and the
critical frequency. It was found also that the
instability sets in before the Hartmann boundary
layers develop. For that reason the slowdown of
the numerical convergence for increasing Ha,
reported in [12], was not observed.

3. Results

The calculations were performed for a fixed
value of the Prandtl number, Pr=0.015, and three
fixed values of the aspect ratio A=1, 2 and 3. For
each value of the aspect ratio a family of curves
Grcr(Ha, k) was calculated for k varying from 0 to
20. Examples for three fixed pairs of Ha and A are
shown in Table 1. The final marginal stability
curve was obtained as the lower envelope of all
curves Grcr(Ha, k) (for details see Ref. [8]). The
final result is shown in Fig. 1 as a dependence of
Grcr on Ha for different aspect ratios. The critical
azimuthal wavenumbers are indicated on each
continuous branch of the curves.

The stabilization of convective flow by the
external magnetic field, i.e., the growth of Grcr
with the increase of Ha, is clearly seen in Fig. 1.
The growth is monotonic except a short interval
20.55Ha522 at A=3, where a tiny decrease of
the Grcr number is connected with the switch of
the dominant perturbation mode (see below). At
the same time, one can see that in lower cavities
(A=1) the stabilization is considerably stronger
than in taller ones (A=3). We explain this by the
interaction of the vertically directed magnetic field
with the convective roll. The electromagnetic force
in Eq. (3) is generated by the interaction of the

A.Yu. Gelfgat et al. / Journal of Crystal Growth 230 (2001) 63–72 65



magnetic field with radial and azimuthal compo-
nent of the velocity (the latter appears only as a
part of three-dimensional perturbation), but not

with the axial velocity. The axial velocity is affected
only via continuity. Therefore, in taller cylinders,
where the axial velocity of the convective roll is
larger than the radial and the azimuthal ones (see
flow patterns described below) the electromagnetic
suppression of the base flow is weaker. Conse-
quently, stronger magnetic field is required to reach
a certain stabilization. Thus, to increase the Grcr to
5� 106 one needs Ha� 25 for A=1, Ha� 41 for
A=2, and Ha� 58 for A=3. We expect an
opposite trend for a transverse magnetic field.

For all values of the aspect ratio considered the
instability sets in as a Hopf bifurcation (oscillatory
instability) at low values of Ha, while at larger Ha
the instability appears as a transition from steady
axisymmetric to steady non-axisymmetric flow.
The switch from Hopf to steady bifurcation takes
place at Ha� 10 at A=1, Ha� 31 at A=2, and
Ha� 20.5 at A=3. The circular frequencies of the
oscillations (defined as imaginary part of the
dominant eigenvalue [13]) for Hartmann numbers
corresponding to the Hopf bifurcation are shown
in Fig. 2.

Another effect of the increasing magnetic field is
the growth of the critical azimuthal wavenumber
kcr, which is seen in Fig. 1 for A=1 starting from
Ha=12.5, and 2 starting from Ha� 32. For A=3

Fig. 1. Critical Grashof number versus Hartmann number.

Table 1

Critical Grashof numbers (Grcr� 10�6) for different azimuthal

number k. Values, close to the critical one, are shown in bold

k A=1, Ha=20 A=2, Ha=40 A=3, Ha=60

0 13.627 6.865 6.561

1 6.030 23.974 14.331

2 13.013 5.728 5.410

3 9.211 6.282 6.700

4 6.369 5.582 6.167

5 4.726 5.112 5.737

6 3.946 4.885 5.509

7 3.586 4.830 5.447

8 3.374 4.898 5.516

9 3.266 5.063 5.698

10 3.237 5.317 5.988

11 3.269 5.661 6.406

12 3.351 6.107 7.070

13 3.476 6.682 7.856

14 3.641 7.428 9.148

15 3.848 8.423 10.538

16 4.095 9.750 11.617

17 4.328 11.215 12.655

18 4.712 12.492 13.895

19 5.085 13.693 15.547

20 5.503 14.999 17.756
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the growth of kcr takes place for values of Ha larger
than 60. An important property of the instability at
relatively large Hartmann numbers is the existence
of several perturbation modes with different
azimuthal wavenumbers k, but with Grashof
numbers very close to the critical one. This is
illustrated in Table 1, where the values of Grcr,
which are less than 2% different from
minkGrcrðHa; Pr; A; kÞ, are shown in bold. This
means that already at small supercriticalities one
can expect multiplicity of supercritical states, such
that the final asymptotic state is defined not only by
the governing parameters, but also by the initial
conditions. Another possibility is the non-linear
interaction between different modes, which can lead
to very complicated patterns of supercritical flows.

A better understanding of the mechanisms that
cause the switch from Hopf to steady bifurcation
and the growth of the azimuthal wavenumber, can
be drawn from the patterns of the flow and the
most dangerous perturbation. The latter grows
exponentially after the instability sets in. Figs. 3–9
illustrate streamlines and isotherms of the axisym-
metric flow at critical parameters together with
patterns of the most dangerous perturbations.
All isolines and isosurfaces in Figs. 3–9 are equally
distanced. The maximal values of stream function

are shown in each figure. The dimensionless
temperature varies between 0 and 1. The perturba-
tions (which are the eigenvectors of linear stability
problem) are defined to within multiplication
by a constant and therefore, their numerical values
are arbitrary.

The physical meaning of the perturbation
patterns differs for different bifurcation types.
Thus, for an axisymmetric Hopf bifurcation
(observed for A=2, 185Ha531) we plot the
modulus of perturbation, which coincides, to
within multiplication by a constant, with the
amplitude of oscillations of the supercritical flow.
In the case of an axisymmetry-breaking Hopf
bifurcation the isosurfaces of perturbation de-
scribe (also to within multiplication by a constant)
the amplitude of a traveling wave propagating in
the azimuthal direction with the group angular
velocity ocr/k (see Ref. [13] for details). In the case
of a steady axisymmetry-breaking bifurcation the
perturbation depicts a pattern of the supercritical
flow itself, rather than its deviation from
the unstable axisymmetric state (see, for example,
Ref. [14]).

An example of the flow and perturbation
patterns corresponding to the axisymmetric Hopf
bifurcation is shown in Fig. 3. It is seen that the

Fig. 2. Circular frequency of oscillations at the critical value of Gr versus Hartmann number.
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perturbation (amplitude of oscillations) is spread
over all the bulk of the flow with the maximum of
temperature pulsations on the axis. Such a bulk
distribution of the perturbation is characteristic
also for the axisymmetry-breaking Hopf bifurca-
tion. The corresponding illustrations are given in
Figs. 4 and 5. To illustrate the three-dimension-
ality of the perturbation better, we also show the
isolines of the temperature perturbation in the

cross section z=3A/4 (Fig. 6). The patterns shown
in Fig. 6 rotate with the angular velocity ocr=kcr.
The direction of rotation is arbitrary because the
azimuthal velocity of the base flow is zero.

Note, that the perturbation of the temperature
in Fig. 5b has a global maximum and minimum in
the upper part of the cylinder where the isotherms
of the base flow (Fig. 5a) form an unstably
stratified layer. This unstable stratification

Fig. 3. Patterns of the flow and the most dangerous perturba-

tion for the axisymmetric Hopf bifurcation. A=2, Pr=0.015,

Ha=30, Grcr=3.02� 106: (a) streamlines, |c|max=132.83; (b)

isotherms; (c) amplitude of the most dangerous perturbation of

the stream function; (d) amplitude of the most dangerous

perturbation of the temperature.

Fig. 4. Patterns of the flow and the most dangerous perturba-

tion of the temperature for the axisymmetry-breaking Hopf

bifurcation. A=1, Pr=0.015, Ha=10, kcr=4, Grcr=1.06� 106:

(a) streamlines and isotherms of the axisymmetric base state;

(b) isosurfaces of the temperature perturbations.
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switches on the Rayleigh-B!enard instability
mechanism, which usually leads to a steady
bifurcation. The effect of the Rayleigh–B!enard
mechanism is seen in the dependence ocr(Ha) for
A=3 (Fig. 2), where the critical frequency rapidly
decreases to zero in the interval 205Ha521.

It was already shown in Ref. [8] that in tall
cylinders in the absence of the magnetic field the
Rayleigh–B!enard mechanism is responsible for the
axisymmetry-breaking instability. A similar me-
chanism was observed in a short cylinder in
Ref. [14], where an unstably stratified thermal
layer developed. Under the electromagnetic
effect considered here this mechanism becomes
dominant at relatively large Ha even in
short cylinders and results in a steady symmetry-
breaking bifurcation. This is illustrated in Figs. 7
and 8.

Fig. 5. As Fig. 4. A=3, Pr=0.015, Ha=10, kcr=2,

Grcr=3.96� 105.

Fig. 6. Isolines of the temperature perturbation at the cross-

section z=3A/4 for the axisymmetry-breaking Hopf bifurca-

tion. (a) A=1, Pr=0.015, Ha=10, kcr=4, Grcr=1.06� 106;

(b) A=3, Pr=0.015, Ha=10, kcr=2, Grcr=3.96� 105.
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Fig. 7 shows the flow and perturbation patterns
in the case A=2 and Ha=40. The perturbations
patterns can be interpreted as two convective rolls
located in the upper part of the cylinder where the
fluid is unstably stratified. The motion along these
rolls takes place mainly in j–z planes. This type of
instability becomes dominant when the magnetic

field exceeds a certain value such that the
previously observed oscillatory instability is
damped. A similar situation takes place also in
lower cylinders, which is illustrated in Fig. 8 for
A=1. For better illustration of the azimuthal
structure of perturbations the isolines of tempera-
ture perturbation in the cross section z=0.95A
(just below the upper boundary) are shown in
Fig. 9. Note that in these cases (steady bifurcation)
all the patterns are stationary. The perturbation
patterns shown in Figs.7–9 are similar to those
observed in Ref. [14] for another problem of
convection in a circular cylinder. As was noticed in

Fig. 7. Patterns of the flow and the most dangerous perturba-

tion of the temperature for the axisymmetry-breaking steady

bifurcation A=2, Pr=0.015, Ha=40, kcr=7, Grcr=4.83� 106:

(a) streamlines and isotherms of the axisymmetric base state;

(b) isosurfaces of the temperature perturbations.

Fig. 8. As Fig. 7. A=1, Pr=0.015, Ha=20, kcr=10,

Grcr=3.24� 106.
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Ref. [8] these structures seem to be rather common
and can be expected whenever an unstably
stratified thermal layer develops in the bulk of
the flow. The rolls developing due to the Rayleigh–
B!enard instability have almost square cross
section, such that their size is defined by the depth
of the unstably stratified layer. Smaller rolls
develop in thinner layers and consequently have
larger critical azimuthal wavenumber kcr [14]. In
the problem considered here we observe a certain

decrease of the depth of the unstably stratified
layer with the increase of the Hartmann number
for A=1 and 2. Together with that, at large
Hartmann numbers we observe a growth of kcr
with the increasing Ha (Fig. 1).

4. Concluding remarks

As was stated in Ref. [8], the simplified model
presented here should be considered as an illustra-
tion of the effect of electromagnetic stabilization of
an axisymmetric flow. Our experience shows (see
Refs. [8,12–14] and references therein) that the
dependence of stability properties on geometry,
boundary conditions and governing parameters
can be very strong, such that no extrapolation of
quantitative results to other problems is possible.
However, some general qualitative conclusions on
the effect of axial magnetic field on the stability of
axisymmetric convective flows can be drawn from
the results presented.

It was shown that the electromagnetic stabiliza-
tion is weaker for taller cylinders, which is
explained by the elongation of the convective roll
along the magnetic field and consequent weaker
electromagnetic damping. A similar effect was
observed also for rectangular configurations [12].
A rather unexpected result is the replacement of
the oscillatory instability by steady bifurcations,
which was observed for relatively large Hartmann
numbers and is caused by the Rayleigh–B!enard
instability mechanism. This effect can lead to a
situation where no thermal oscillations are ob-
served, but the distribution of dopants (or
impurities) is azimuthally non-uniform due to a
steady three-dimensional flow pattern. It was
found also that the critical azimuthal wavenum-
ber, corresponding to these bifurcations, grows
with the increase of magnetic field, which can lead
to stronger azimuthal inhomogeneities under
stronger electromagnetic effect.
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