SUPPRESSION OF FORCED AND CONVECTIVE FLOWS OF A STABLY
STRATIFIED FLUID IN VERTICAL CHANNELS
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In order to improve certain technological processes, for example, single-
crystal growing, it is desirable to be able to control the flow rate in
order to influence the heat and mass transfer processes. For this purpose
it is usual to employ rotation, an electromagnetic field or reduced
gravity [1]. Here, with reference to simple solutions of the system of
equations of free convection in infinite vertical channels, it is shown
that the problem of reducing the intensity of the flow can be solved
given a suitable relation between the degree of stable stratification
(with respect to density) and the factors responsible for the flow.

The possibility of using temperature stratification is considered, but
all the conclusions are also fully applicable to concentration stratific-
ation. o

We will consider nonisothermal flow in a plane layer bounded by planes x = *d, at
whose edges the linear temperature distribution: T = kz (x = —d), T = kz + To (x = d)
is given; here k > 0 is the stratification parameter and T, > 0 is the horizontal tem-
perature difference. - .

In the Boussinesq approximation free convection is described by the following di-
mensionless equations and boundary conditions:
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Here, Pr = v/x is the Prandtl number, Ra = gBkd“/vx is the Rayleigh number, v is
the kinematic viscosity, x is the thermal diffusivity, g is the acceleration of free
fall, and B is the coefficient of volume expansion.

If the motion of the fluid is caused by constant external forces parallel to the
z axis, then the solution has the form v = (0, 0, va(x)), T =z + £(x).

Natural convection (v,(x = *1) = 0) in such a system was thoroughly investigated
in (2, 3]. 1In (2] it was shown that as k increases the flow velocity v, decreases as
k™2 and there is a change in the nature of the instability of the free-convection flow.
The effect of stable temperature stratification on fluid motion due to other causes
has not yet been examined.

We will consider convective flow caused by the thermocapillary force. Let Ty =0

and
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where p is the density, ¢ is the surface tension, and Ma is the Marangoni number. Then
the solution of problem (1)-(4) has the form:
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We will analyze the effect of temperature stratification on the flow obtained. In-
stead of an increase in the stratification parameter we will consider the more general

case of an increase in the Rayleigh number Ra. In this case the quantities_Gl(x) and
G,(x) remain bounded, and v, and f(x) tend to zero as MaRa~Y* and MaRa~¥*, respectively.

In Fig. la we have plotted u = v,/Ma and in Fig. 1b & = f(x)/Ma for Rayleigh num-
bers Ra = 0, 100, 103, and 10* (curves 1-4). Starting from Ra = 10* the flow is dis-
placed towards the edge of the layer, while in the central part of the layer the ve-
locity fluctuates about the value v, = 0, the number of roots of the function vz(x)
increasing as Ra‘*. The mean-square value of the velocity :
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decreases as MaRa~%¥8.
We will consider the case where the planes x = fl1 move at the constant velocity
W, i.e., at x = ¥1 v, = —W, but the vertical temperature gradient remains unchanged

and the flow closure condition (3) is satisfied. Then when T, = 0 we have
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Here, an increase in the Rayleigh number does not affect the maximum value of the
velocity, since at the boundaries the fluid velocity is fixed. However, the mean-square
valueugf the velocity decreases as WRa"Y®, As before, the function f(x) decreases as
WRa™ Y4,

In Fig. 2 we have shown that the quantities u = v,/W and 6 = £f(x)/W vary with in-
crease in the Rayleigh number Ra = 10“, 103, 100, and 0 (curves 1-4). As Ra increases,
the flow is displaced towards the edge. In this case, as follows from Fig. 2, the ve-
locity in the central part of the layer falls more rapidly than in the previous example.
Thus, here too, there is a flow suppression effect.

Similar results can also be obtained for a right circular vertical cylinder of
radius d on whose lateral surface the temperature T = kz is given, at (r = d). In this
case the solution of system of equations (1) takes the form v = (0, 0, vy(r)), T=2 +

- £(x).



For thermocapillary convection we obtain
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If the velocity is given on the surface of the cylinder, we have
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where B = V—Ra and J, and J, are Bessel functions.

The values of (8)-(9) and (10)-(11) can also be depressed by imposing stable tem-
perature stratification. . In this case the conclusions reached above continue to hold:
£f(r) (9), (11) decreases in proportion to Ra"%¥*; for thermocapillary (8) convection
v,(r) decreases as MaRa~**; in both cases the number of roots of the function increases
as Ra'®. The mean-square value of the velocity decreases as MaRa™%* and WRa~Y* for
(8) and (11), respectively.

Similar results can also be obtained by considering a vertical cylindrical layer
with a radial temperature difference, moving surfaces and a thermocapillary force on
one or both surfaces.

We note that from (5), (7), (9), and (11) there follows: f£f'(1) = 0.

This means that the conclusions also remain valid when Newton’s heat transfer con-
dition or the Stefan—Boltzmann condition is imposed on the lateral surface.

The above examples show that stable (with respect to density) strat1f1catlon leads
to suppression not .only of natural thermoconvect1ve flows but also of flows caused by
any other factor
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