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The present study is devoted to the problem of onset of oscillatory instability in convective flow of
an electrically conducting fluid under an externally imposed time-independent uniform magnetic
field. Convection of a low-Prandtl-number fluid in a laterally heated two-dimensional horizontal
cavity is considered. Fixed values of the aspect ratemgth/height4) and Prandtl number
(Pr=0.0159, which are associated with the horizontal Bridgman crystal growth process and are
commonly used for benchmarking purposes, are considered. The effect of a uniform magnetic field
with different magnitudes and orientations on the stability of the two distinct brangtigs a
single-cell or a two-cell pattejrof the steady state flows is investigated. Stability diagrams showing
the dependence of the critical Grashof number on the Hartmann number are presented. It is shown
that a vertical magnetic field provides the strongest stabilization effect, and also that multiplicity of
steady states is suppressed by the electromagnetic effect, so that at a certain field level only the
single-cell flows remain stable. An analysis of the most dangerous flow perturbations shows that
starting with a certain value of the Hartmann number, single-cell flows are destabilized inside thin
Hartmann boundary layers. This can lead to destabilization of the flow with an increase of the field
magnitude, as is seen from the stability diagrams obtained. Contrary to the expected monotonicity
of the stabilization process with an increase of the field strength, the marginal stability curves show
nonmonotonic behavior and may contain hysteresis loops20@1 American Institute of Physics.
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I. INTRODUCTION and therefore are relevant to the technological processes
mentioned above. Thus, the electromagnetic force changes
The externally imposed magnetic field is a widely usedthe flow pattern so that the convective circulation and the
tool for control of melt flow in bulk crystal growth of semi- largest values of the temperature gradient are located in thin
conductors. One of the main purposes of the electromagnetigartmann layers which are boundary layers adjacent to the
control is stabilization of the flow and suppression of thewalls normal to the magnetic field. Consequently, the insta-
oscillatory instabilities arising at certain values of the controlpility sets in inside the boundary layers where the convective
parameters. Such suppression was used in the pioneer expétbw is most intensive. It is shown that contrary to the ex-
ments of Hurle};*and since then has been widely used in thepected monotonic increase of the critical Grashof number
processing of bulk semiconductor monocrystaisd other  with the magnetic field strength, the corresponding marginal
technological processes involving metal melting and solidi-stability curves show nonmonotonic behavior and may con-
fication. There exist numerous studies devoted to numericahin hysteresis loops. In particular, we show that in spite of
modeling of the electromagnetic stabilization of convectivethe strong damping of the flow a stronger magnetic field does
flows in several different configurations and at some fixedhot always provide better stabilization of a steady flow. It
values of the governing parametésee Refs. 3—13 and ref- was quite unexpectedly found that the critical Grashof num-
erences therejn However, to the best of our knowledge, ber can be almost halved as the field strength increases. This
there are no numerical studies reporting a validated deperieads to the problem of determining the optimal stabilizing
dence of the critical Grashof number on the magnitude anfield magnitude, which has not hitherto been considered or
orientation of the magnetic field over a relatively wide rangeformulated. Furthermore, we show that the electromagnetic
of parameters. Such a dependence is obtained in the presesffect suppresses the multiplicity of possible steady state
study for a particular geometry of the flow region and for flows'* so that only single-cell flows remain stable under a
Pr=0.015, where Pr is the Prandtl number. The model consufficiently strong electromagnetic force.
sidered(convection in a horizontally elongated rectangular  Following the configuration of an experimental setum,
cavity) is usually associated with the horizontal Bridgmanwidely used computational model represents convection of a
crystal growth process. An investigation of the electromagdow-Prandtl-number fluid in a laterally heated rectangular
netic stabilization of convection in a rather simple numericalcavity. The whole system is subjected to an externally im-
model leads to several important qualitative conclusionsposed constant and uniform magnetic field whose orientation
which will be valid also for more complicated configurations and magnitude can be varied. The considered problem is
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v4 heightH is considered. The problem is shown schematically
in Fig. 1. The vertical boundaries of the cavity have uniform
0 temperature®d,,; and 6.4, respectively, while the horizon-
v=0, 5:0 tal boundaries are thermally insulated. The cavity is sub-
1 jected to a uniform magnetic fieBl=B,e + Bye, (whereB,
v=0 ﬁm v=0 and B, are space independenof constant magnitude,
- g G y 60 = \/BX2_+ Byz, ande, ande, are unit_ vectors for a Cart_esia_n
- coordinate system. The orientation of the magnetic field
veo, P_, A x forms an anglex with the horizontal axig tan(a)=B,/B,].
& The electric currend and the electromagnetic forég,, are
FIG. 1. Sketch of the problem. defined by
J=0(—Ve+VvXB), (13
shown schematically in Fig. 1. Several experiméhtaand V.J=0, (1b)
numericat’~* studies considered the influence of the mag-
netic field on the damping of steady convection and heat Fem=JXB, (19

transfer in a.rectangular cavity. Hovyever, ip spite_.of the NUyyhere ¢ is the electric potential and=v,6,+v,8, is the
merous studies devoted to the oscillatory instability of low-g ,iq velocity. Here Eq(1a) is Ohm's law and Eq(1b) is the

. . . . — 8 .
Prandtl-number fluid convection in rectangular cavii€s?  onservation of electric current. With electrically insulated

there is a marked shortage of numerical studies regarding thg, \ngaries in the present two-dimensional flow, the electric
electromagnetic effect on the onset of instability. Most of thepotentialcp is constant and

numerical studiés’ **deal with changes in steady state flow
patterns. To the best of our knowledge, Gelfganade the J=o0[VXB], (23
only attempt to obtain a relationship between the critical
Grashof number and the strength of the magnetic field by Fen=olvXB]XB. (2b)
low-mode modeling. However, as is shown here, numerical  The flow is described by the momentum, continuity and
models with poor spatial resolution, such as those with a&nergy equations in a Cartesian coordinate system. Using the
small number of spectral modes or coarse grids, are incascalesH, H?/v, v/H, p(v/H)?, and B, for length, time,
pable of resolving the Hartmann layers and therefore fail tovelocity, pressure and magnetic field, respectively, @nd
yield the correct perturbation pattern. = (60— 0co1d)(bhor— b:0i) for nondimensionalization of the

In the present paper the effect of an externally imposedemperature, the dimensionless equations governing the ve-
magnetic field on the stability of a steady convective flow islocity v, temperatured and pressur@ in the rectangular do-
studied by linear stability analysis. The completed studymain O<x<A, O<y<1 are
yielded stability diagrams showing the dependence of the
critical Grashof number(corresponding to the steady— %ﬂ) X
oscillatory transitionand critical circular frequency of oscil- 9t~ *dx ¥ gy
lations (frequency of the oscillatory flow at the critical value op o, PP,

Juy vy

of Grashof numbegron the Hartmann number for the consid- =——+—>+—
ered problem. To simplify all additional effects and follow- gx  oX %y
ing our previous studie¥, " a simple model of convection +Hal[v, cog a)sin(a) — vy sirf(a) ], &)

in a laterally heated cavity is considered. We use an aspect
(length-to-heightratio of 4 and P+0.015, which correspond dvy vy vy
to the widely used benchmark probléfhA convergence 4t UXWJFUYW
study involving different values of the Hartmann number and 5 )
different orientations of the magnetic field shows that accu-  _ _ a_p M M
rate modeling of the electromagnetic effect requires better ay x> ay?
numerical resolution than the one that suffices for different .
cases of pure buoyancy convectfdn’ This contradicts the + Gro+Haf[vy cog a)sin(a) —vy cos(a)], @
common expectation that electromagnetic damping of they,, v

. ) ) ! y_
convective flow makes numerical modeling easier. The re=-~+ W_O' ()
sults obtained lead to the already mentioned conclusions
about the behavior of the multiple solutions, marginal stabil-96 a0 a0 1 ((920 926

ity curves, and the most dangerous perturbations patterns. 3¢ *Vxgx ¥ Vyy T Byl g2 T gy2 /-

(6

Here A=L/H is the aspect ratio of the cavity, Gr
=0B(0hor— Oeoi) H3/v? the Grashof number, Pr/y the

Convective flow of a Boussinesq fluid with kinematic Prandtl number, HaBgyH Jo/pv the Hartmann numbeg
viscosity v, density p, thermal diffusivity y, and electrical gravitational acceleration, arglthe thermal expansion coef-
conductivity o in a two-dimensional cavity of length and ficient.

Il. GOVERNING EQUATIONS
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No-slip boundary conditions are imposed at all bound-thex- andy-directions, respectively. All terms of EqR), (4)
aries, and (6) are evaluated as Galerkin projections on the bases
v=0, atx=0, A andy=0, 1 @ (11). The Correspon_dlng_ inner products_are_ evaluated analyti-
cally. The pressure is eliminated by projection of the pressure

constant temperatures are imposed at the vertical boundariegadient on the divergence-free velocity baéi¥’ The

=1 atx=0 (8a) stream functiony, defined byv,=—adyldy, vy=adylix, is
' ' calculated as the integral of the velocity seri$) and used
0=0, atx=A, (8b) for evaluation of the streamlines.

d- According to the linear stability approach, the calculated
steady state flow is subjected to all possible infinitesimally
small perturbations, characterized by a complex time growth

d0lgy=0, aty=0, 1. (9)  rate\ (each unknown function being supposed to behave in

The effect of the induced electric currents on the im-ime as~e) and a spatially distributed amplitude. This
posed field and the Joulean heating are neglected. This [€SUltS in an eigenvalue problem whares considered as the
justified by an estimation of the nondimensional parameter§/9envalue and the perturbation amplitude as the eigenvector.
characteristic for liquid metals and semiconductors. In fact,] € instability onset is associated with values of the govern-
the ratio of the induced and imposed magnetic fields is deiNd Parameterscalledcritical values for which the real part
fined by the magnetic Prandtl numbef Pruov, wherep is qf N exceed; zero, anq the imaginary par'g characterizes the
the magnetic permeability. For liquid metals and time behavior of the instability. Namely, if Re =0 and

semiconducto”d Pr.~10"7. The Joulean heating is de- we=IM(N), thenw,=0 corresponds to a transition from one
scribed by the dimensionless source term steady state to another, white,#0 indicates a transition

from a steady to an oscillatory state. In the latter case the

and zero heat fluxes are imposed at the horizontal boun
aries,

_ H? 3_2 value of w., represents the circular frequency of oscillation
a= CppV( Onot— bcoid) O and is called thecritical frequency The eigenvector corre-
) sponding to the eigenvalue=iw, is called themost dan-
ovBy Ha? erous perturbationin case of a supercritical Hopf bifurca-
=% [vXBJ?=D —[VXB]?, 9 P Ce : SUP P
CpP( Onot— Ocold) Gr tion, a slightly supercritical oscillatory state can be approx-
imated as
D= ﬁ (10)
T c, {v(x,y,1),6(x,y,t)}
For liquid metals and semiconductors the heat capaxitg ~{Vvo(X,y),00(X,y)} + e{V(x,y),E(x,y)}eXQiwC,t),
of order 1@ J/kg K, and the thermal expansion coefficight (12)

of order 103K ™%, so that forH of order 1 m the dimen- ~

sionless parametd is of order 10°4. Furthermore, we con- Where {vq, 6} is the steady flow at GrGr, {v(x,y),
sider cases with Hal0? and Ge>10°. Therefore, the coef-  6(x,y)} the most dangerous perturbation,.Ghe critical
ficient D Ha®/Gr is of order 10° or smaller, and the term in Grashof numberg the amplitude of the perturbation calcu-
question can be neglected. lated as a function of the supercriticality (6Gr,)/Gr, via

the weakly nonlinear analysté Note that the perturbation is

1. NUMERICAL METHOD AND TEST CALCULATIONS a complex function and its absolute value, to within multi-
plication by a constant, coincides with the amplitude of flow

Fol_lowmg our previous stud_|é§, we use the global . oscillations corresponding to a slightly supercritical oscilla-
Galerkin method for the calculation of steady flows, anaIyS|story state, as follows from Eq12).147

of their'stability and weakly npnlinear analysis of slightly The complete numerical process consistsiptalcula-
supercritical flows. The velocity and temperature are aPiion of the steady state solution of Eq8)—(9), (ii) calcula-

proximated by the truncated series tion of the critical Grashof number Grdepending on all
Ny other governing parameters, afid) calculation of the de-
V=2, > cij(hu(xy), (118  pendence of the amplitude of the most dangerous perturba-
i=1j=1 . L7 .
tion on the supercriticality’ To validate the results we solve
Nx Ny the full unsteady problem, using another solver formulated in
0=(1—x)+ >, > dij(1)a;(xy), (11b  primitive variables and based on second-order finite volume
=1)=t discretization in space and second-order three-time-level dis-
wherec;;(t) andd;;(t) are time-dependent coefficients to be cretization in time. Time-stepping is done using the SIMPLE
found, andN, andN, the number of basis functions used for algorithm. A solution obtained by the Galerkin method was
approximation in thex- andy-directions, respectively. Here taken as an initial state.
ui;(x,y) anddg;j(x,y) are vector and scalar basis functions, A previous stud}* on the stability of convective flows
respectively, defined as linear superpositions of Chebyshewithout an electromagnetic effect fé&x=4 and Pr0.015
polynomials satisfying priori the boundary conditions and showed that there are two distinct steady-state flow patterns.
the continuity equation. The subscriptandj represent the In that study Gelfgaet al. showed that among a steady flow
order of the first polynomial in the linear superpositions inwith a single convective circulation, another steady-state

N
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e ‘ T ) ‘ T TABLE I. Convergence of the Nusselt numkat Gr=1.32x 10°) and criti-
‘ / /,// //ﬁa/////// ‘ cal parameters for Ha0.
/ [ !

/ i
Sh——— ol ]
N, Ny max Nu Gryx 1075 .
o TR
m. W2 2 Ol l 40 10  79.73818  1.136835 1.31176 122.420
© ‘ ©) @ (CUHW ml(\f‘i\ A 40 20 79.66010 1.136620 1.32078 123.510
E— 50 20 79.66111  1.136619 1.31981 123.456
FIG. 2. Single-cellflow without a magnetic field at the critical Grashof ~ 60 20 79.66118  1.136619 1.31972 123.446
number Gg=1.32<10° [point F, in Fig. 6@]. All contours are equally 60 30 79.66116 1.136619 1.31983 123.454
spaced(a) Streamlinesmin=0, Ymax=79.625; (b) isotherms, &6<1; (c) 70 30 79.66112
amplitude of the most dangerous perturbation of the stream fundiibn; 70 40 79.66112 No further change
amplitude of the most dangerous perturbation of the temperature. 80 30 79.66113

branch with two main circulations appears when the Grashof 190
number exceeds Gr1.20x10° and remains stable up to Nu=f Ix dy, (13
Gr~1.48x10°. This phenomenon is demonstrated in Figs. 0 =0

2(a) and 3a) which show a single convective circulation for calculated at the hot wall for the critical value of the Grashof
Gry,=1.32x10° and two circulations for Gf=1.48<10°,  number, Gg,.
respectively, the critical values for two solutions. The iso-  As Table | shows, convergence for HA is fast, such
therms for the circulations in the above figures are presenteghat four correct digits of Gy and w,, are already obtainable
in Figs. 2b) and 3b), respectively. The amplitudes of the with 50 and 20 basis functions in the and y-directions,
most dangerous perturbation of the stream function and theespectively. AtN,=60 and N,=30 six correct digits are
temperature are presented in Fige)22(d), 3(c), and 3d),  obtainable. Convergence of the steady state is even faster,
respectively. As was mentioned above, the perturbations arguch that seven correct digits of the Nusselt number and six
defined to within multiplication by a constant; thus the mag-correct digits of ¢, are obtainable already with 5®0
nitudes of the maximal absolute values have no meaningasis functions.
The amplitude of the oscillating perturbations can be derived  The imposed magnetic field damps the flow, which leads
from the weakly nonlinear analysis of the Hopf bifurcatfdn, to an increase of the critical Grashof number. A horizontal
which is used here for an asymptotic approximation offield with Ha=20 increases the value of Gy approxi-
slightly supercritical oscillatory flows. mately a factor of 4, as shown in Table Il. Damping of the
For the considered problem of convection in rectangulasteady-state flow is still weak, as is seen from the values of
cavities, convergence of the global Galerkin method wasy,, ., and Nu, which are significantly highéfollowing the
studied in detait*~'"Here we focus mainly on the influence increase of Gy) compared with the Ha0 case. This means
of the magnetic field on the convergence of computed criticathat the electromagnetic force suppresses perturbations of the
parameters, and on the steady states calculated at the critid@dw before significant electromagnetic damping of the
points forA=4 and Pr~0.015. To compare the convergence steady state has taken place. Therefore, numerical modeling
with and without a magnetic field, we report the results forof stability requires an accurate calculation of the steady
Ha=0, for Ha=20 with o=0°, and for Ha=10 with =90°,  state together with the corresponding most dangerous pertur-
in Tables I, Il and Ill, respectively, which correspond to the bation. Table Il shows that 6030 basis functions yield only
steady-state flows and perturbations shown in Figs. 2, 4 anfdur correct digits of both the critical parameters and the
5, respectively. The tables show the critical Grashof numbesgtream function, and five correct digits of the Nusselt num-
Gr,, and the corresponding critical oscillation frequengy  ber.
calculated for different numbers of basis functions in the  This slowdown of convergence of the critical parameters
Galerkin serieg11). To characterize the steady-state flows asis even more pronounced for a vertical magnetic field, as is
well, we report the maximal value of the stream functionshown in Table Ill. Here, even a smaller value of the Hart-
¥max @nd the Nusselt number, mann number, Ha10, increases Grby two orders of mag-

TABLE II. Convergence of the Nusselt numb@t Gr=5.4x 1) and criti-

//’%@[/5//31@/f}1 cal parameters for Ha20, a=0°.

oy L A/ N, N, Pmax Nu Gr,x10°° Wer

: . 40 10 362.667 3.4110 5.918 2037

/@/@ 15//&/(@\\ 40 20 365.963 3.4374 5.372 1926

O = @ F//m%m @Q(( 50 20 365975  3.4375 5.367 1925

60 20 365.978 3.4377 5.366 1924

FIG. 3. Two-cell flow withoutr magnetic field at the critical Grashof number 60 30 365.939 3.4377 5.373 1925
Gry,=1.48x 10° [point F; in Fig. ¥a)]. All contours are equally space) 70 30 365.946

Streamlinesymin=—0.5499, .= 233.45; (b) isotherms, &6<1; (c) am- 70 40 365.946 No further change
plitude of the most dangerous perturbation of the stream funct@yram- 80 30 365.948

plitude of the most dangerous perturbation of the temperature.
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TABLE IlI. Convergence of the Nusselt numb@t Gr=1.6x 10") and criti-
cal parameters for Hal0, «=90°.

Ny Ny max Nu Gryx 1077 W

40 10 542315  8.2628 0.9769 4994 s oW

40 20 548.328 8.4661 1.446 5995 @) <\—Q o

50 20 547.874 8.4712 1.473 6054

60 20 547.792 8.4708 1.477 6063  FIG. 5. Single-cellflow under thevertical magnetic field at the critical

60 30 547.636 8.4692 1.594 6313 Grashof number. Ha10, @=90°, G,= 1.59x 10’. All contours are equally

60 40 547.610 8.4688 1.593 6310  spaced. (@) Streamlines, ¢pin=—0.563, nx=546.91; (b) isotherms,

70 30 547.620 No 1.594 6313  0=¢<1; (c) amplitude of the most dangerous perturbation of the stream
70 40 547.619 further 1.593 6310  function; (d) amplitude of the most dangerous perturbation of the tempera-
80 30 547.619 change 1.594 6313  ture.

intensive near the vertical boundaries, where the electromag-
nitude, but 6630 basis functions yield only three correct netic damping is strongest and the convective circulation is
digits of the critical parameters. Convergence of the Nusself,eakened. The slowed convergence of the critical param-
number and the stream function also slows down, while theipters is reflected in the need for correct resolution of the
values corresponding to the critical state, increase rapidly. perturbation pattericontaining sharp maxima near the ver-

Since a 6630 basis suffices for three or more correct tjca| houndariel while at the same time resolving accurately
digits in the critical parameters, we can accurately calculatgne steady-state flow at larger values of the Grashof number.
the dependences (Ha) andw(Ha) for a horizontal mag- The effect of a vertical magnetic field is quite different
netic field with Ha<20 and a vertical magnetic field with 55 js shown in Fig. 5. The vertical field generates a horizontal
Ha=<10. In view of the slowed convergence, the Stabi"tyelectromagnetic forcézy=—Hal v,e,, which counteracts
analysis cannot be extended to larger Hartmann numbergse horizontal velocity. Since the cavity is elongated horizon-
However, recent experimental observations of convectivggly, for a single convective circulation the maximum hori-
flow in a cylindrical ceff* showed that convective oscilla- zontal velocity exceeds its vertical counterpart. Therefore,
tions are already damped at the relatively low value of Hagr 5 given Ha, the electromagnetic damping and stabiliza-
=10. tion will be stronger for a vertical magnetic field. Thus, for a

The reason for the convergence slowdown follows frompgrizontal field with Ha=10 the critical Grashof number is
the flow patterns of flow and the most dangerous perturbagmaller than the one with Ha20 (Table 1l), and accordingly
tion. The critical steady state of the flow, under the horizontalsigniﬁcanﬂy smaller than its counterpart for a vertical field
magnetic field, and the corresponding most dangerous pefgith Ha=10 (Table IlI). In the case illustrated in Fig. 5, the
turbation are shown in Fig. 4. The horizontal field generate,grizontal velocity, counteracted by the opposing force,
a vertical electromagnetic force which counteracts any vertiforms Hartmann boundary layers near the horizontal bound-
cal velocity. The strongest damping takes place near the vegyies and, via the continuity, near the vertical boundaries as
tical boundaries where the vertical velocity is highést-  \ve| (the depth of the Hartmann boundary layers decreases
cording to Ref. 18, the maximal absolute values of theproportionally to Hal as Ha increas¢sBen Hadidet al®
vertical velocity in the cross-sectign=0.5 are located @ showed that depth of the layers adjoining the boundaries
~0.15 andx~3.89. As a result, the main convective circu- parallel to the magnetic fieléthe vertical ones in the case
lation deforms so that the most intensive flow is shifted to-considerefibehaves as Ha'2 The pattern of the convective
wards the center and the horizontal boundaries, as shown @yculation shown in Fig. &) is characterized by steep gra-
Fig. 4a). Figure 4b) indicates that heat convection is strong gients of the stream function near the boundaries. The pattern
in the central region, while near the vertical boundaries thg, Fig. 5c) also shows a rapid increase of the stream func-
isotherms remain almost vertical. The perturbations of thejon perturbation inside the boundary layers and several local
stream function and the temperature, located in the core Ghaxima in the core flow. At the same time the temperature
the flow at Ha=0 [Figs. Ac) and 2d)], appear to be most pertyrbation has two sharp maxima near the vertical bound-

aries[Fig. 5(d)]. As in the previous case, the steep slowdown
— e of the convergence is reflected in the |_1eed to resolve the
(((f/ﬁlé})))} boundary layers with regard to the velocity and its perturba-
W) Tr/’# / tion, as well as the sharp maxima of the temperature pertur-
bation.

To sum up, it can be concluded that numerical modeling
of the magnetic field effect necessitated resolution of the
Hartmann layers, which in turn calls for higher numerical
FIG. 4. Single-cellflow under thehorizontal magnetic field at the critcal accuracy than a similar model without a magnetic field.
Grashof number. Ha20, a=0°, Gr,=5.37x 1¢° [point F, in Fig. 6@]. Al Hence, the assumption that electromagnetic damping of con-
contours are equally space@d) Streamiinesjimin=—1.919,¥ma=365.18, = active flows would make computations easier is wrong. At
(b) isotherms, & 6#<1; (c) amplitude of the most dangerous perturbation of . - -
the stream function(d) amplitude of the most dangerous perturbation of the the moderate Hartmann numbers considered, stabilization of
temperature. the flow takes place without significant damping of the con-
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vective circulation. This leads to the need for an accurat@®.6x 10’ at Ha=40 (not shown on the graphHowever, as
resolution of the convective flow at a relatively high Grashofwas emphasized above, convergence of the critical param-
number and of the corresponding most dangerous perturbaters for Ha>20 is extremely slow and the accuracy of the

tion. last result is not certain.
For =30° when the magnetic field has a nonzero ver-
IV. RESULTS tical component, the marginal stability curjésg. 6(@)], and

With a magnetic field absent, at aspect ratie-4 and those of the critical frequendyFig. 6(b)] become similar in

.__shape. For a given Hartmann number the strongest stabiliza-
Prandtl number RPr0.015, stable steady-state flows comprise,. P 29 . . . gest s
e . tion effect is associated with the vertical magnetic fieid
two branche¥ differing in the numbefone or twg of main . . ) ) )
. . R : =90°) except for the interval € Ha<7 in which part of the
convective rolls, as illustrated in Figs. 2 and 3. Following the

methodology of our previous stud§we consider the effect hysteresis loop corresponding 46=60° is located above its

of the magnetic field on each steady-state branch separate@lOunterpart fore=90"[Fig. 8a)]. The similar behavior and

The Hartmann number considered does not exceed HA€ strongest impact of the vertical field, are apparently the

—20. For liquid metals and semiconductors, assuming th§°nSequence of interaction of the field with the horizontal

characteristic length 0.1 m, this corresponds to the magneti\éeloc'ty' As was already mentioned, the latter reaches larger

field strength 0.1-0.2 T. As calculations far=—30° and values than its vertical counterpart, therefore the damping
—60° showed that the behavior of the marginal stabilityactlon of the vertical field component is stronger.

curves, the patterns of the most dangerous perturbations angl Al ma’g'”?" stability fcirves'gorlresponr:jl?g @=>30 ith
slightly supercritical flows are similar to those for positive SNOW @ rapid increase of the critical Grashof number wit

values ofe, we report results only for the latter. It should be "ather deep hysteresis loops in certain intervals of the Hart-
noted. however. that the results feand—« do not coincide Mann number, located according to the orientation of the

for 0°<a<90°. magnetic field. Inside these loops the critical Grashof num-
ber is almost halved with an increase of the Hartmann num-
A. Single-cell flows ber. This means that moderate field magnitudes., at

» ~Ha=<10) make for better stabilization of the flow than the
The_ de.pendence of the critical Grashof numb_er and C“t'higher oneglarger Ha. It should also be noted that when the

cal osgllauon frequency on t_he Hartmann numb&"j the field orientation changes from verticat=90°) to horizontal
magnitude of the magnetic figlénd on the orientation of (,_qe) the hysteretic behavior of the critical Grashof num-

the field _is OShO\f,V” ir: Figo. 6. Se\{)eral fixed orientations, o, i gelayed for higher Ha values. Changes in the critical
name_lya—O , 30°, 457, 60 and 90°, were Con5|dered. Theparameters are smaller at valuescotlose to 90° and be-
marginal stability curves GfHa) are nonmonotonic and come larger below 30°

consist of several continuous branches corresponding to dif- Snapshots of the slightly supercritical oscillatory states
ferent modes of the most dangerous perturbations describecﬁle shown in Figs. 7 and 8. The oscillatory states were ap-
by the distinct eigenvalues of t_he Iinear.st.ability prqblgm. proximated asymptotically, using the weakly nonlinear ex-
The depeqdengeucr(Ha) consists .Of d|st|_nct continuous ploration of the Hopf bifurcatiof’ a technique successfully
curves(the imaginary parts of the distinct eigenvaljesich plied to the study of slightly supercritical convective
that each curve matches a corresponding continuous bramﬁ ws 2416 The oscillatory flows shown in Figs. 7 and 8 cor-

of Gre(Ha). Overlapping of thes,(Ha) curves corresponds respond to the cases considered for the convergence study,
to_ the hysteresis Ioops_ of_the GHa). The cases shown in namely Ha=20 with =0° (Table Il and Figs. #and Ha=10

Figs. 2’. 4 ar_ld 7 are |n_d|cated by p(_)lntg,FF4 ant_j R, with «=90° (Table Il and Fig. 3. In the case of the hori-
respeqtlvely, n Fig. @) with the subscript for ”‘e_po'f‘t 'P" Zontal field of Fig. 7 the oscillations are most pronounced
resenting the figure number. The cases shown in Figs. 5 an ear the vertical boundaries, as it follows from the pattern of

8 correspond to Grashof numbers outside the range of I:'gihe most dangerous perturbation shown in Fig. 4. In the case

6. of the vertical field the streamlines remain almost unchanged

It IS seen in .F'g' @ tha.t_at I_—Ia<\20 there 'S a consider- throughout the period of oscillations shown in Figag
able difference in the stabilization of the flofincrease of - .
However, there are strong oscillations of the horizontal ve-

Gre; with Ha) for magnetic fields close to horizontat=0°) locity in the boundary layers located near the horizontal

?§>ggg'nslj[n(gleerld;ewrl]tgri;nf;?r}:gf;x}thvfggcg:e;%nrﬁgn?ntboundaries[without significant oscillations in the core re-
. : 9 gion; see Fig. t)]. Oscillations of the vertical velocity are

netic force counter directional to the vertical velogithe ; . -
" : . ; most pronounced in the central region shown in Fig),&ut
critical Grashof number increases monotonically with the

Hartmann number from Ha0 up to Ha=12. In the interval H;]Z'g) Iiir?:f;t;nEggjrdiv:tcg:#c;rgggn3222263 in the iso-
12<Ha<17, G, continue to increase steeply, exhibiting a '

hysteresis behavior. A further increase of Ha leads to a de-
crease of the critical Grashof number, due to the onset o
instability in the boundary layers near the vertical bound-  The effect of the magnetic field on the two-cell flows
aries. Calculations with larger Hartmann numb&6<Ha  differs from the single-cell case. The corresponding stability
<40) showed that the critical Grashof number behaves simidiagram is shown in Fig. 9. Examples of flow and perturba-
larly to the GfHa) curves fora=30° and reaches the value tion patterns are given in Figs. 10 and 11, with an example of

. Two-cell flows
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FIG. 6. Stability diagram for steadsingle-cellflows. Dependence of the critical Grashof numbarand critical frequencyb) on the Hartmann number and
field orientation. Points f5 F, and F, represent the cases illustrated in Figs. 2, 4 and 7, respectively.

a supercritical oscillatory state in Fig. 12. As in the precedingHartmann number, after the break on the marginal stability
section, points E, Fyo, Fi; and R, correspond to the cases curves in Fig. @a), the Hopf bifurcation becomes subcritical.
illustrated in Fig. 3 and Figs. 10-12. The steady-state flow and the bifurcation patterns character-
In the two-cell flow case the maximal magnitudes of theistic of these two branches of the marginal stability curves
horizontal and vertical velocities do not differ as much as inare shown in Figs. 10 and 11 and correspond to points F
the case of single-cell flows. Accordingly, the effect of dif- and R in Fig. 9a).
ferent orientation of the magnetic field is similar, as shown in  In case of the subcritical bifurcation, at lower values of
Fig. 9. For each orientation the two-cell flows are stable in-Ha, the supercritical flow results in an asymptotically stable
side the corresponding marginal stability curve shown in Figoscillatory two-cell pattern, while at higher values after sev-
9(a). The upper continuous part of the curves corresponds teral two-cell oscillations it transforms into a single-cell
the transition from steady to oscillatory two-cell flow due to (steady or oscillatony pattern. Such a transformation was
a supercritical Hopf bifurcation. With an increase of theobserved when the complete unsteady problem, given by
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FIG. 7. Horizontal magnetic field. Ha20, a=0°, Gr="5.50x 10° [point F,
in Fig. 6(@)]. Instantaneoustreamlinesplotted for equal time intervals cov-
ering the complete periofi=3.3x 103,

Egs. (3) through (9), was solved(by the finite volume
method for Ha=5, «=90°, Gr=3.55x10°. This is just
above the critical value Ge=3.53x10° on the right-hand
branch of the corresponding marginal stability curve with
a=90° as indicated by point;Fin Fig. 9(a). In this case the
resulting single-cell flow retains its own oscillations. Note
that according to the stability diagram of the single-cell flows
shown in Fig. 6a), the considered Grashof number is super- (b)
critical and the flow should indeed be oscillatory.

Figure 9b) shows that with an increase of the Hartmann
number the critical frequency rapidly tends to zero. At a
certain value of Ha the marginal stability curves turn to the
left and return to the axis Ha0, as is seen in Fig.(9).

These lower parts of the curves correspond to the reverse
transition from two-cell to single-cell flows, which takes
place due to the saddle-node bifurcation. This transition was
already described in our previous stiddyPoints on the neu-
tral curves corresponding to the replacement of the Hopf _
bifurcation by the former are marked in Fig. 9(a). m

The difference in the effect of the magnetic field on
flows with one or two circulations is clearly seen from the (€) -
patterns of the most dangerous perFurbE?\tions shown in Fig's_m. 8. Vertical magnetic field. Ha&10, =90°, Gr=1.80x 10". Instanta-

10 and 11(cf. the patterns shown in Figs. 4 and. §he  neousstreamlines(a), isolines ofhorizontal (b) and vertical (c) velocities
two-cell flows become unstable at relatively low Hartmannplotted for equal time intervals covering the complete perioe 9.95
numbers, i.e., Ha12, such that the Hartmann boundary lay- x107%.

ers do not develop. At higher Hartmann numbers these flows

are not observed. As is seen from the perturbation patter

shown in Figs. 10 and 11, the onset of instability affects thga CONCLUSIONS

central part of the flow between the main convective cells. The effect of an externally imposed uniform magnetic
Similar perturbation patterns were observed for multi-cellfield differs according to the flow pattern of the convective
flows without the magnetic fieldcompare Figs. 3 and 10 flow considered. The single-cell flow can be effectively sta-
The resulting oscillations, approximated asymptotically viabilized by such a magnetic field. For horizontally elongated
weakly nonlinear analysis, are illustrated in Fig. 12. The cavities the strongest stabilization effect is provided by a
oscillations of two convective cells reach maximal amplitudevertical field. However, at the moderate field magnitudes
at the center of the cavity and are similar to those observedonsidered(Ha<20) the behavior of the marginal stability
without the magnetic field? curves Gg(Ha) is nonmonotonic and involves rather deep

Since the two-cell patterrsteady as well as oscillatory hysteresis loops where the critical Grashof number decreases
are not observed at high Hartmann numbers it can bevith an increase of the Hartmann number. Thus, the most
summed up that under the action of a sufficiently strongunexpected conclusion of the present study is the possibility
electromagnetic force the cellular flow transforms into aof considerable destabilization of the flow by an increasing
single-cell one, for which a strong stabilization effect is ob-magnetic field of moderate magnitude. This leads to the
served. problem of optimal(from the stabilization viewpointmag-
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FIG. 9. Stability diagram for steadyvo-cell flows. Dependence of the critical Grashof numb®rand critical frequencyb) on Hartmann number and field
orientation. Points §; F, F;; and F, represent the cases illustrated in Fig. 3 and Figs. 10—12, respectively.

nitude of the field, which depends on the governing param-
eters of the problem. It is seen also that the perturbations are
suppressed before a significant reduction of the basic state
flow takes place.

The effect of the magnetic field on two-cell flows is
quite different. At small values of the Hartmann number the © “
stabilization effect is not very strong. However, as the fieldriG. 10. Two-cell flow under thevertical magnetic field at the critical
magnitude increases these flows are destabilized and tran@rashof number. Ha3, «=90°, Gi,=3.41x 10’ [point Fy, in Fig. 9a)].
form into single-cell ones, subject to their own stability prop-All contours are equally spaceda) Streamlines, yp=—0.933, Yimax

. LT A . . =294.31;(b) isotherms, &6#<1; (c) amplitude of the most dangerous per-
e_rtles. This indicates the poss'b'“t}’_ of using the magnetlcturbation of the stream functiorid) amplitude of the most dangerous per-
field for control not only of the stability but also of the flow turbation of the temperature.
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same for three-dimensional ones and for those involving
more complicated flow regions.
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