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The effect of an external magnetic field on oscillatory instability
of convective flows in a rectangular cavity

A. Yu. Gelfgat and P. Z. Bar-Yoseph
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of Technology, Haifa, 32000, Israel
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The present study is devoted to the problem of onset of oscillatory instability in convective flow of
an electrically conducting fluid under an externally imposed time-independent uniform magnetic
field. Convection of a low-Prandtl-number fluid in a laterally heated two-dimensional horizontal
cavity is considered. Fixed values of the aspect ratio~length/height54! and Prandtl number
~Pr50.015!, which are associated with the horizontal Bridgman crystal growth process and are
commonly used for benchmarking purposes, are considered. The effect of a uniform magnetic field
with different magnitudes and orientations on the stability of the two distinct branches~with a
single-cell or a two-cell pattern! of the steady state flows is investigated. Stability diagrams showing
the dependence of the critical Grashof number on the Hartmann number are presented. It is shown
that a vertical magnetic field provides the strongest stabilization effect, and also that multiplicity of
steady states is suppressed by the electromagnetic effect, so that at a certain field level only the
single-cell flows remain stable. An analysis of the most dangerous flow perturbations shows that
starting with a certain value of the Hartmann number, single-cell flows are destabilized inside thin
Hartmann boundary layers. This can lead to destabilization of the flow with an increase of the field
magnitude, as is seen from the stability diagrams obtained. Contrary to the expected monotonicity
of the stabilization process with an increase of the field strength, the marginal stability curves show
nonmonotonic behavior and may contain hysteresis loops. ©2001 American Institute of Physics.
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I. INTRODUCTION

The externally imposed magnetic field is a widely us
tool for control of melt flow in bulk crystal growth of semi
conductors. One of the main purposes of the electromagn
control is stabilization of the flow and suppression of t
oscillatory instabilities arising at certain values of the cont
parameters. Such suppression was used in the pioneer ex
ments of Hurle,1,2 and since then has been widely used in
processing of bulk semiconductor monocrystals3 and other
technological processes involving metal melting and sol
fication. There exist numerous studies devoted to numer
modeling of the electromagnetic stabilization of convect
flows in several different configurations and at some fix
values of the governing parameters~see Refs. 3–13 and ref
erences therein!. However, to the best of our knowledg
there are no numerical studies reporting a validated dep
dence of the critical Grashof number on the magnitude
orientation of the magnetic field over a relatively wide ran
of parameters. Such a dependence is obtained in the pre
study for a particular geometry of the flow region and f
Pr50.015, where Pr is the Prandtl number. The model c
sidered~convection in a horizontally elongated rectangu
cavity! is usually associated with the horizontal Bridgm
crystal growth process. An investigation of the electrom
netic stabilization of convection in a rather simple numeri
model leads to several important qualitative conclusio
which will be valid also for more complicated configuratio
2261070-6631/2001/13(8)/2269/10/$18.00
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and therefore are relevant to the technological proces
mentioned above. Thus, the electromagnetic force chan
the flow pattern so that the convective circulation and
largest values of the temperature gradient are located in
Hartmann layers which are boundary layers adjacent to
walls normal to the magnetic field. Consequently, the ins
bility sets in inside the boundary layers where the convec
flow is most intensive. It is shown that contrary to the e
pected monotonic increase of the critical Grashof num
with the magnetic field strength, the corresponding margi
stability curves show nonmonotonic behavior and may c
tain hysteresis loops. In particular, we show that in spite
the strong damping of the flow a stronger magnetic field d
not always provide better stabilization of a steady flow.
was quite unexpectedly found that the critical Grashof nu
ber can be almost halved as the field strength increases.
leads to the problem of determining the optimal stabilizi
field magnitude, which has not hitherto been considered
formulated. Furthermore, we show that the electromagn
effect suppresses the multiplicity of possible steady s
flows14 so that only single-cell flows remain stable under
sufficiently strong electromagnetic force.

Following the configuration of an experimental setup,1 a
widely used computational model represents convection
low-Prandtl-number fluid in a laterally heated rectangu
cavity. The whole system is subjected to an externally i
posed constant and uniform magnetic field whose orienta
and magnitude can be varied. The considered problem
9 © 2001 American Institute of Physics
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shown schematically in Fig. 1. Several experimental4–6 and
numerical4,7–11 studies considered the influence of the ma
netic field on the damping of steady convection and h
transfer in a rectangular cavity. However, in spite of the n
merous studies devoted to the oscillatory instability of lo
Prandtl-number fluid convection in rectangular cavities,14–18

there is a marked shortage of numerical studies regarding
electromagnetic effect on the onset of instability. Most of t
numerical studies4,7–11deal with changes in steady state flo
patterns. To the best of our knowledge, Gelfgat19 made the
only attempt to obtain a relationship between the criti
Grashof number and the strength of the magnetic field
low-mode modeling. However, as is shown here, numer
models with poor spatial resolution, such as those wit
small number of spectral modes or coarse grids, are in
pable of resolving the Hartmann layers and therefore fai
yield the correct perturbation pattern.

In the present paper the effect of an externally impo
magnetic field on the stability of a steady convective flow
studied by linear stability analysis. The completed stu
yielded stability diagrams showing the dependence of
critical Grashof number~corresponding to the steady
oscillatory transition! and critical circular frequency of oscil
lations~frequency of the oscillatory flow at the critical valu
of Grashof number! on the Hartmann number for the consi
ered problem. To simplify all additional effects and follow
ing our previous studies,14–17 a simple model of convection
in a laterally heated cavity is considered. We use an as
~length-to-height! ratio of 4 and Pr50.015, which correspond
to the widely used benchmark problem.18 A convergence
study involving different values of the Hartmann number a
different orientations of the magnetic field shows that ac
rate modeling of the electromagnetic effect requires be
numerical resolution than the one that suffices for differ
cases of pure buoyancy convection.14–17This contradicts the
common expectation that electromagnetic damping of
convective flow makes numerical modeling easier. The
sults obtained lead to the already mentioned conclus
about the behavior of the multiple solutions, marginal sta
ity curves, and the most dangerous perturbations pattern

II. GOVERNING EQUATIONS

Convective flow of a Boussinesq fluid with kinemat
viscosity n, densityr, thermal diffusivity x, and electrical
conductivitys in a two-dimensional cavity of lengthL and

FIG. 1. Sketch of the problem.
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heightH is considered. The problem is shown schematica
in Fig. 1. The vertical boundaries of the cavity have unifo
temperaturesuhot anducold, respectively, while the horizon
tal boundaries are thermally insulated. The cavity is s
jected to a uniform magnetic fieldB5Bxex1Byey ~whereBx

and By are space independent! of constant magnitudeB0

5ABx
21By

2, and ex and ey are unit vectors for a Cartesia
coordinate system. The orientation of the magnetic fi
forms an anglea with the horizontal axis@ tan(a)5By /Bx#.
The electric currentJ and the electromagnetic forceFEM are
defined by

J5s~2“w1vÃB!, ~1a!

“•J50, ~1b!

FEM5JÃB, ~1c!

where w is the electric potential andv5vxex1vyey is the
fluid velocity. Here Eq.~1a! is Ohm’s law and Eq.~1b! is the
conservation of electric current. With electrically insulat
boundaries in the present two-dimensional flow, the elec
potentialw is constant and

J5s@vÃB#, ~2a!

FEM5s@vÃB#3B. ~2b!

The flow is described by the momentum, continuity a
energy equations in a Cartesian coordinate system. Using
scalesH, H2/n, n/H, r(n/H)2, and B0 for length, time,
velocity, pressure and magnetic field, respectively, andu
5(u2ucold!/~uhot2ucold) for nondimensionalization of the
temperature, the dimensionless equations governing the
locity v, temperatureu and pressurep in the rectangular do-
main 0<x<A, 0<y<1 are

]vx

]t
1vx

]vx

]x
1vy

]vx

]y

52
]p

]x
1

]2vx

]x2 1
]2vx

]y2

1Ha2@vy cos~a!sin~a!2vx sin2~a!#, ~3!

]vy

]t
1vx

]vy

]x
1vy

]vy

]y

52
]p

]y
1

]2vy

]x2 1
]2vy

]y2

1Gru1Ha2@vx cos~a!sin~a!2vy cos2~a!#, ~4!

]vx

]x
1

]vy

]y
50, ~5!

]u

]t
1vx

]u

]x
1vy

]u

]y
5

1

PrS ]2u

]x2 1
]2u

]y2D . ~6!

Here A5L/H is the aspect ratio of the cavity, G
5gb(uhot2ucold)H

3/n2 the Grashof number, Pr5n/x the
Prandtl number, Ha5B0HAs/rn the Hartmann number,g
gravitational acceleration, andb the thermal expansion coef
ficient.
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2271Phys. Fluids, Vol. 13, No. 8, August 2001 Effect of a magnetic field on convective instability
No-slip boundary conditions are imposed at all boun
aries,

v50, at x50, A and y50, 1; ~7!

constant temperatures are imposed at the vertical bounda

u51, at x50, ~8a!

u50, at x5A, ~8b!

and zero heat fluxes are imposed at the horizontal bou
aries,

]u/]y50, at y50, 1. ~9!

The effect of the induced electric currents on the i
posed field and the Joulean heating are neglected. Th
justified by an estimation of the nondimensional parame
characteristic for liquid metals and semiconductors. In fa
the ratio of the induced and imposed magnetic fields is
fined by the magnetic Prandtl number Prm5msn, wherem is
the magnetic permeability. For liquid metals an
semiconductors20 Prm;1027. The Joulean heating is de
scribed by the dimensionless source term

q5
H2

cprn~uhot2ucold!

J2

s

5
snB0

2

cpr~uhot2ucold!
@vÃB#25D

Ha2

Gr
@vÃB#2,

D5
gbH

cp
. ~10!

For liquid metals and semiconductors the heat capacitycp is
of order 102 J/kg K, and the thermal expansion coefficientb
of order 1023 K21, so that forH of order 1 m the dimen-
sionless parameterD is of order 1024. Furthermore, we con
sider cases with Ha,102 and Gr.105. Therefore, the coef-
ficient D Ha2/Gr is of order 1025 or smaller, and the term in
question can be neglected.

III. NUMERICAL METHOD AND TEST CALCULATIONS

Following our previous studies,14–17 we use the globa
Galerkin method for the calculation of steady flows, analy
of their stability and weakly nonlinear analysis of slight
supercritical flows. The velocity and temperature are
proximated by the truncated series

v5(
i 51

Nx

(
j 51

Ny

ci j ~ t !ui j ~x,y!, ~11a!

u5~12x!1(
i 51

Nx

(
j 51

Ny

di j ~ t !qi j ~x,y!, ~11b!

whereci j (t) anddi j (t) are time-dependent coefficients to b
found, andNx andNy the number of basis functions used f
approximation in thex- and y-directions, respectively. Her
ui j (x,y) and qi j (x,y) are vector and scalar basis function
respectively, defined as linear superpositions of Chebys
polynomials satisfyinga priori the boundary conditions an
the continuity equation. The subscriptsi and j represent the
order of the first polynomial in the linear superpositions
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thex- andy-directions, respectively. All terms of Eqs.~3!, ~4!
and ~6! are evaluated as Galerkin projections on the ba
~11!. The corresponding inner products are evaluated ana
cally. The pressure is eliminated by projection of the press
gradient on the divergence-free velocity basis.14,17 The
stream functionc, defined bynx52]c/]y, ny5]c/]x, is
calculated as the integral of the velocity series~11! and used
for evaluation of the streamlines.

According to the linear stability approach, the calculat
steady state flow is subjected to all possible infinitesima
small perturbations, characterized by a complex time gro
ratel ~each unknown function being supposed to behave
time as ;elt! and a spatially distributed amplitude. Th
results in an eigenvalue problem wherel is considered as the
eigenvalue and the perturbation amplitude as the eigenve
The instability onset is associated with values of the gove
ing parameters~calledcritical values! for which the real part
of l exceeds zero, and the imaginary part characterizes
time behavior of the instability. Namely, if Re~l!50 and
vcr5Im(l), thenvcr50 corresponds to a transition from on
steady state to another, whilevcrÞ0 indicates a transition
from a steady to an oscillatory state. In the latter case
value of vcr represents the circular frequency of oscillatio
and is called thecritical frequency. The eigenvector corre
sponding to the eigenvaluel5 ivcr is called themost dan-
gerous perturbation. In case of a supercritical Hopf bifurca
tion, a slightly supercritical oscillatory state can be appro
imated as

$v~x,y,t !,u~x,y,t !%

'$v0~x,y!,u0~x,y!%1e$ṽ~x,y!,ũ~x,y!%exp~ ivcrt !,

~12!

where $v0 ,u0% is the steady flow at Gr5Grcr , $ṽ(x,y),
ũ(x,y)% the most dangerous perturbation, Grcr the critical
Grashof number;e the amplitude of the perturbation calcu
lated as a function of the supercriticality (Gr2Grcr!/Grcr via
the weakly nonlinear analysis.17 Note that the perturbation is
a complex function and its absolute value, to within mul
plication by a constant, coincides with the amplitude of flo
oscillations corresponding to a slightly supercritical oscil
tory state, as follows from Eq.~12!.14,17

The complete numerical process consists of~i! calcula-
tion of the steady state solution of Eqs.~3!–~9!, ~ii ! calcula-
tion of the critical Grashof number Grcr depending on all
other governing parameters, and~iii ! calculation of the de-
pendence of the amplitude of the most dangerous pertu
tion on the supercriticality.17 To validate the results we solv
the full unsteady problem, using another solver formulated
primitive variables and based on second-order finite volu
discretization in space and second-order three-time-level
cretization in time. Time-stepping is done using the SIMP
algorithm. A solution obtained by the Galerkin method w
taken as an initial state.

A previous study14 on the stability of convective flows
without an electromagnetic effect forA54 and Pr50.015
showed that there are two distinct steady-state flow patte
In that study Gelfgatet al. showed that among a steady flo
with a single convective circulation, another steady-st
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2272 Phys. Fluids, Vol. 13, No. 8, August 2001 A. Yu. Gelfgat and P. Z. Bar-Yoseph
branch with two main circulations appears when the Gras
number exceeds Gr'1.203105 and remains stable up t
Gr'1.483106. This phenomenon is demonstrated in Fig
2~a! and 3~a! which show a single convective circulation fo
Grcr51.323105 and two circulations for Grcr51.483106,
respectively, the critical values for two solutions. The is
therms for the circulations in the above figures are prese
in Figs. 2~b! and 3~b!, respectively. The amplitudes of th
most dangerous perturbation of the stream function and
temperature are presented in Figs. 2~c!, 2~d!, 3~c!, and 3~d!,
respectively. As was mentioned above, the perturbations
defined to within multiplication by a constant; thus the ma
nitudes of the maximal absolute values have no mean
The amplitude of the oscillating perturbations can be deri
from the weakly nonlinear analysis of the Hopf bifurcation17

which is used here for an asymptotic approximation
slightly supercritical oscillatory flows.

For the considered problem of convection in rectangu
cavities, convergence of the global Galerkin method w
studied in detail.14–17Here we focus mainly on the influenc
of the magnetic field on the convergence of computed crit
parameters, and on the steady states calculated at the cr
points forA54 and Pr50.015. To compare the convergen
with and without a magnetic field, we report the results
Ha50, for Ha520 with a50°, and for Ha510 with a590°,
in Tables I, II and III, respectively, which correspond to t
steady-state flows and perturbations shown in Figs. 2, 4
5, respectively. The tables show the critical Grashof num
Grcr and the corresponding critical oscillation frequencyvcr

calculated for different numbers of basis functions in t
Galerkin series~11!. To characterize the steady-state flows
well, we report the maximal value of the stream functi
cmax and the Nusselt number,

FIG. 2. Single-cellflow without a magnetic field at the critical Grasho
number Grcr51.323105 @point F2 in Fig. 6~a!#. All contours are equally
spaced.~a! Streamlines,cmin50, cmax579.625; ~b! isotherms, 0<u<1; ~c!
amplitude of the most dangerous perturbation of the stream function~d!
amplitude of the most dangerous perturbation of the temperature.

FIG. 3. Two-cell flow withouta magnetic field at the critical Grashof numb
Grcr51.483106 @point F3 in Fig. 9~a!#. All contours are equally spaced.~a!
Streamlines,cmin520.5499,cmax5233.45;~b! isotherms, 0<u<1; ~c! am-
plitude of the most dangerous perturbation of the stream function;~d! am-
plitude of the most dangerous perturbation of the temperature.
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1]u

]xU
x50

dy, ~13!

calculated at the hot wall for the critical value of the Grash
number, Grcr .

As Table I shows, convergence for Ha50 is fast, such
that four correct digits of Grcr andvcr are already obtainable
with 50 and 20 basis functions in thex- and y-directions,
respectively. AtNx560 andNy530 six correct digits are
obtainable. Convergence of the steady state is even fa
such that seven correct digits of the Nusselt number and
correct digits ofcmax are obtainable already with 50320
basis functions.

The imposed magnetic field damps the flow, which lea
to an increase of the critical Grashof number. A horizon
field with Ha520 increases the value of Grcr by approxi-
mately a factor of 4, as shown in Table II. Damping of t
steady-state flow is still weak, as is seen from the values
cmax and Nu, which are significantly higher~following the
increase of Grcr! compared with the Ha50 case. This means
that the electromagnetic force suppresses perturbations o
flow before significant electromagnetic damping of t
steady state has taken place. Therefore, numerical mode
of stability requires an accurate calculation of the stea
state together with the corresponding most dangerous pe
bation. Table II shows that 60330 basis functions yield only
four correct digits of both the critical parameters and t
stream function, and five correct digits of the Nusselt nu
ber.

This slowdown of convergence of the critical paramet
is even more pronounced for a vertical magnetic field, a
shown in Table III. Here, even a smaller value of the Ha
mann number, Ha510, increases Grcr by two orders of mag-

TABLE I. Convergence of the Nusselt number~at Gr51.323105! and criti-
cal parameters for Ha50.

Nx Ny cmax Nu Grcr31025 vcr

40 10 79.73818 1.136835 1.31176 122.420
40 20 79.66010 1.136620 1.32078 123.510
50 20 79.66111 1.136619 1.31981 123.456
60 20 79.66118 1.136619 1.31972 123.446
60 30 79.66116 1.136619 1.31983 123.454
70 30 79.66112
70 40 79.66112 No further change
80 30 79.66113

TABLE II. Convergence of the Nusselt number~at Gr55.43106! and criti-
cal parameters for Ha520, a50°.

Nx Ny cmax Nu Grcr31026 vcr

40 10 362.667 3.4110 5.918 2037
40 20 365.963 3.4374 5.372 1926
50 20 365.975 3.4375 5.367 1925
60 20 365.978 3.4377 5.366 1924
60 30 365.939 3.4377 5.373 1925
70 30 365.946
70 40 365.946 No further change
80 30 365.948
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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nitude, but 60330 basis functions yield only three corre
digits of the critical parameters. Convergence of the Nus
number and the stream function also slows down, while th
values corresponding to the critical state, increase rapidl

Since a 60330 basis suffices for three or more corre
digits in the critical parameters, we can accurately calcu
the dependences Grcr~Ha) andvcr~Ha) for a horizontal mag-
netic field with Ha<20 and a vertical magnetic field wit
Ha<10. In view of the slowed convergence, the stabil
analysis cannot be extended to larger Hartmann numb
However, recent experimental observations of convec
flow in a cylindrical cell21 showed that convective oscilla
tions are already damped at the relatively low value of
510.

The reason for the convergence slowdown follows fro
the flow patterns of flow and the most dangerous pertur
tion. The critical steady state of the flow, under the horizon
magnetic field, and the corresponding most dangerous
turbation are shown in Fig. 4. The horizontal field genera
a vertical electromagnetic force which counteracts any ve
cal velocity. The strongest damping takes place near the
tical boundaries where the vertical velocity is highest~ac-
cording to Ref. 18, the maximal absolute values of
vertical velocity in the cross-sectiony50.5 are located atx
'0.15 andx'3.85!. As a result, the main convective circu
lation deforms so that the most intensive flow is shifted
wards the center and the horizontal boundaries, as show
Fig. 4~a!. Figure 4~b! indicates that heat convection is stron
in the central region, while near the vertical boundaries
isotherms remain almost vertical. The perturbations of
stream function and the temperature, located in the cor
the flow at Ha50 @Figs. 2~c! and 2~d!#, appear to be mos

FIG. 4. Single-cellflow under thehorizontal magnetic field at the critical
Grashof number. Ha520,a50°, Grcr55.373106 @point F4 in Fig. 6~a!#. All
contours are equally spaced.~a! Streamlines,cmin521.919,cmax5365.18;
~b! isotherms, 0<u<1; ~c! amplitude of the most dangerous perturbation
the stream function;~d! amplitude of the most dangerous perturbation of t
temperature.

TABLE III. Convergence of the Nusselt number~at Gr51.63107! and criti-
cal parameters for Ha510, a590°.

Nx Ny cmax Nu Grcr31027 vcr

40 10 542.315 8.2628 0.9769 4994
40 20 548.328 8.4661 1.446 5995
50 20 547.874 8.4712 1.473 6054
60 20 547.792 8.4708 1.477 6063
60 30 547.636 8.4692 1.594 6313
60 40 547.610 8.4688 1.593 6310
70 30 547.620 No 1.594 6313
70 40 547.619 further 1.593 6310
80 30 547.619 change 1.594 6313
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intensive near the vertical boundaries, where the electrom
netic damping is strongest and the convective circulation
weakened. The slowed convergence of the critical para
eters is reflected in the need for correct resolution of
perturbation pattern~containing sharp maxima near the ve
tical boundaries!, while at the same time resolving accurate
the steady-state flow at larger values of the Grashof num

The effect of a vertical magnetic field is quite differe
as is shown in Fig. 5. The vertical field generates a horizo
electromagnetic forceFEM52Ha2 nxex , which counteracts
the horizontal velocity. Since the cavity is elongated horizo
tally, for a single convective circulation the maximum ho
zontal velocity exceeds its vertical counterpart. Therefo
for a given Ha, the electromagnetic damping and stabili
tion will be stronger for a vertical magnetic field. Thus, for
horizontal field with Ha510 the critical Grashof number i
smaller than the one with Ha520 ~Table II!, and accordingly
significantly smaller than its counterpart for a vertical fie
with Ha510 ~Table III!. In the case illustrated in Fig. 5, th
horizontal velocity, counteracted by the opposing for
forms Hartmann boundary layers near the horizontal bou
aries and, via the continuity, near the vertical boundaries
well ~the depth of the Hartmann boundary layers decrea
proportionally to Ha21 as Ha increases!. Ben Hadidet al.8

showed that depth of the layers adjoining the bounda
parallel to the magnetic field~the vertical ones in the cas
considered! behaves as Ha21/2. The pattern of the convective
circulation shown in Fig. 5~a! is characterized by steep gra
dients of the stream function near the boundaries. The pat
in Fig. 5~c! also shows a rapid increase of the stream fu
tion perturbation inside the boundary layers and several lo
maxima in the core flow. At the same time the temperat
perturbation has two sharp maxima near the vertical bou
aries@Fig. 5~d!#. As in the previous case, the steep slowdo
of the convergence is reflected in the need to resolve
boundary layers with regard to the velocity and its pertur
tion, as well as the sharp maxima of the temperature per
bation.

To sum up, it can be concluded that numerical model
of the magnetic field effect necessitated resolution of
Hartmann layers, which in turn calls for higher numeric
accuracy than a similar model without a magnetic fie
Hence, the assumption that electromagnetic damping of c
vective flows would make computations easier is wrong.
the moderate Hartmann numbers considered, stabilizatio
the flow takes place without significant damping of the co

FIG. 5. Single-cell flow under thevertical magnetic field at the critical
Grashof number. Ha510,a590°, Grcr51.593107. All contours are equally
spaced. ~a! Streamlines, cmin520.563, cmax5546.91; ~b! isotherms,
0<u<1; ~c! amplitude of the most dangerous perturbation of the stre
function; ~d! amplitude of the most dangerous perturbation of the tempe
ture.
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vective circulation. This leads to the need for an accur
resolution of the convective flow at a relatively high Grash
number and of the corresponding most dangerous pertu
tion.

IV. RESULTS

With a magnetic field absent, at aspect ratioA54 and
Prandtl number Pr50.015, stable steady-state flows compr
two branches14 differing in the number~one or two! of main
convective rolls, as illustrated in Figs. 2 and 3. Following t
methodology of our previous study,14 we consider the effec
of the magnetic field on each steady-state branch separa

The Hartmann number considered does not exceed
520. For liquid metals and semiconductors, assuming
characteristic length 0.1 m, this corresponds to the magn
field strength 0.1–0.2 T. As calculations fora5230° and
260° showed that the behavior of the marginal stabi
curves, the patterns of the most dangerous perturbations
slightly supercritical flows are similar to those for positiv
values ofa, we report results only for the latter. It should b
noted, however, that the results fora and2a do not coincide
for 0°,a,90°.

A. Single-cell flows

The dependence of the critical Grashof number and c
cal oscillation frequency on the Hartmann number~i.e., the
magnitude of the magnetic field! and on the orientation o
the field is shown in Fig. 6. Several fixed orientation
namelya50°, 30°, 45°, 60° and 90°, were considered. T
marginal stability curves Grcr~Ha) are nonmonotonic an
consist of several continuous branches corresponding to
ferent modes of the most dangerous perturbations descr
by the distinct eigenvalues of the linear stability problem17

The dependencevcr~Ha) consists of distinct continuou
curves~the imaginary parts of the distinct eigenvalues!, such
that each curve matches a corresponding continuous br
of Grcr~Ha). Overlapping of thevcr~Ha) curves correspond
to the hysteresis loops of the Grcr~Ha). The cases shown i
Figs. 2, 4 and 7 are indicated by points F2 , F4 and F7 ,
respectively, in Fig. 6~a! with the subscript for the point rep
resenting the figure number. The cases shown in Figs. 5
8 correspond to Grashof numbers outside the range of
6~a!.

It is seen in Fig. 6~a! that at Ha<20 there is a consider
able difference in the stabilization of the flow~increase of
Grcr with Ha! for magnetic fields close to horizontal~a50°!
as against fields with a significant vertical compone
~a>30°!. Under the horizontal field~with the electromag-
netic force counter directional to the vertical velocity! the
critical Grashof number increases monotonically with t
Hartmann number from Ha50 up to Ha512. In the interval
12<Ha<17, Grcr continue to increase steeply, exhibiting
hysteresis behavior. A further increase of Ha leads to a
crease of the critical Grashof number, due to the onse
instability in the boundary layers near the vertical boun
aries. Calculations with larger Hartmann numbers~20<Ha
<40! showed that the critical Grashof number behaves si
larly to the Gr~Ha! curves fora>30° and reaches the valu
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3.63107 at Ha540 ~not shown on the graph!. However, as
was emphasized above, convergence of the critical par
eters for Ha.20 is extremely slow and the accuracy of th
last result is not certain.

For a>30° when the magnetic field has a nonzero v
tical component, the marginal stability curves@Fig. 6~a!#, and
those of the critical frequency@Fig. 6~b!# become similar in
shape. For a given Hartmann number the strongest stabi
tion effect is associated with the vertical magnetic field~a
590°! except for the interval 6,Ha,7 in which part of the
hysteresis loop corresponding toa560° is located above its
counterpart fora590° @Fig. 6~a!#. The similar behavior and
the strongest impact of the vertical field, are apparently
consequence of interaction of the field with the horizon
velocity. As was already mentioned, the latter reaches la
values than its vertical counterpart, therefore the damp
action of the vertical field component is stronger.

All marginal stability curves corresponding toa>30°
show a rapid increase of the critical Grashof number w
rather deep hysteresis loops in certain intervals of the H
mann number, located according to the orientation of
magnetic field. Inside these loops the critical Grashof nu
ber is almost halved with an increase of the Hartmann nu
ber. This means that moderate field magnitudes~i.e., at
Ha<10! make for better stabilization of the flow than th
higher ones~larger Ha!. It should also be noted that when th
field orientation changes from vertical~a590°! to horizontal
~a50°! the hysteretic behavior of the critical Grashof num
ber is delayed for higher Ha values. Changes in the crit
parameters are smaller at values ofa close to 90° and be-
come larger below 30°.

Snapshots of the slightly supercritical oscillatory sta
are shown in Figs. 7 and 8. The oscillatory states were
proximated asymptotically, using the weakly nonlinear e
ploration of the Hopf bifurcation,17 a technique successfull
applied to the study of slightly supercritical convectiv
flows.14,16 The oscillatory flows shown in Figs. 7 and 8 co
respond to the cases considered for the convergence s
namely Ha520 with a50° ~Table II and Figs. 4! and Ha510
with a590° ~Table III and Fig. 5!. In the case of the hori-
zontal field of Fig. 7 the oscillations are most pronounc
near the vertical boundaries, as it follows from the pattern
the most dangerous perturbation shown in Fig. 4. In the c
of the vertical field the streamlines remain almost unchan
throughout the period of oscillations shown in Fig. 8~a!.
However, there are strong oscillations of the horizontal
locity in the boundary layers located near the horizon
boundaries@without significant oscillations in the core re
gion; see Fig. 8~b!#. Oscillations of the vertical velocity are
most pronounced in the central region shown in Fig. 8~c!, but
their largest amplitude~without strong changes in the iso
lines! is located near the vertical boundaries.

B. Two-cell flows

The effect of the magnetic field on the two-cell flow
differs from the single-cell case. The corresponding stabi
diagram is shown in Fig. 9. Examples of flow and perturb
tion patterns are given in Figs. 10 and 11, with an example
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Stability diagram for steadysingle-cellflows. Dependence of the critical Grashof number~a! and critical frequency~b! on the Hartmann number and
field orientation. Points F2 , F4 and F7 represent the cases illustrated in Figs. 2, 4 and 7, respectively.
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a supercritical oscillatory state in Fig. 12. As in the preced
section, points F3 , F10, F11 and F12 correspond to the case
illustrated in Fig. 3 and Figs. 10–12.

In the two-cell flow case the maximal magnitudes of t
horizontal and vertical velocities do not differ as much as
the case of single-cell flows. Accordingly, the effect of d
ferent orientation of the magnetic field is similar, as shown
Fig. 9. For each orientation the two-cell flows are stable
side the corresponding marginal stability curve shown in F
9~a!. The upper continuous part of the curves correspond
the transition from steady to oscillatory two-cell flow due
a supercritical Hopf bifurcation. With an increase of t
Downloaded 19 Jul 2001 to 132.68.1.29. Redistribution subject to AIP
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Hartmann number, after the break on the marginal stab
curves in Fig. 9~a!, the Hopf bifurcation becomes subcritica
The steady-state flow and the bifurcation patterns charac
istic of these two branches of the marginal stability curv
are shown in Figs. 10 and 11 and correspond to points10

and F11 in Fig. 9~a!.
In case of the subcritical bifurcation, at lower values

Ha, the supercritical flow results in an asymptotically sta
oscillatory two-cell pattern, while at higher values after se
eral two-cell oscillations it transforms into a single-ce
~steady or oscillatory! pattern. Such a transformation wa
observed when the complete unsteady problem, given
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Eqs. ~3! through ~9!, was solved~by the finite volume
method! for Ha55, a590°, Gr53.553106. This is just
above the critical value Grcr53.533106 on the right-hand
branch of the corresponding marginal stability curve w
a590° as indicated by point F11 in Fig. 9~a!. In this case the
resulting single-cell flow retains its own oscillations. No
that according to the stability diagram of the single-cell flo
shown in Fig. 6~a!, the considered Grashof number is sup
critical and the flow should indeed be oscillatory.

Figure 9~b! shows that with an increase of the Hartma
number the critical frequency rapidly tends to zero. At
certain value of Ha the marginal stability curves turn to t
left and return to the axis Ha50, as is seen in Fig. 9~a!.
These lower parts of the curves correspond to the rev
transition from two-cell to single-cell flows, which take
place due to the saddle-node bifurcation. This transition w
already described in our previous study.14 Points on the neu-
tral curves corresponding to the replacement of the H
bifurcation by the former are marked3 in Fig. 9~a!.

The difference in the effect of the magnetic field o
flows with one or two circulations is clearly seen from t
patterns of the most dangerous perturbations shown in F
10 and 11~cf. the patterns shown in Figs. 4 and 5!. The
two-cell flows become unstable at relatively low Hartma
numbers, i.e., Ha,12, such that the Hartmann boundary la
ers do not develop. At higher Hartmann numbers these fl
are not observed. As is seen from the perturbation patt
shown in Figs. 10 and 11, the onset of instability affects
central part of the flow between the main convective ce
Similar perturbation patterns were observed for multi-c
flows without the magnetic field~compare Figs. 3 and 10!.
The resulting oscillations, approximated asymptotically
weakly nonlinear analysis,17 are illustrated in Fig. 12. The
oscillations of two convective cells reach maximal amplitu
at the center of the cavity and are similar to those obser
without the magnetic field.14

Since the two-cell patterns~steady as well as oscillatory!
are not observed at high Hartmann numbers it can
summed up that under the action of a sufficiently stro
electromagnetic force the cellular flow transforms into
single-cell one, for which a strong stabilization effect is o
served.

FIG. 7. Horizontal magnetic field. Ha520, a50°, Gr55.503106 @point F7

in Fig. 6~a!#. Instantaneousstreamlinesplotted for equal time intervals cov
ering the complete periodT53.331023.
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V. CONCLUSIONS

The effect of an externally imposed uniform magne
field differs according to the flow pattern of the convecti
flow considered. The single-cell flow can be effectively s
bilized by such a magnetic field. For horizontally elongat
cavities the strongest stabilization effect is provided by
vertical field. However, at the moderate field magnitud
considered~Ha<20! the behavior of the marginal stabilit
curves Grcr~Ha) is nonmonotonic and involves rather de
hysteresis loops where the critical Grashof number decre
with an increase of the Hartmann number. Thus, the m
unexpected conclusion of the present study is the possib
of considerable destabilization of the flow by an increas
magnetic field of moderate magnitude. This leads to
problem of optimal~from the stabilization viewpoint! mag-

FIG. 8. Vertical magnetic field. Ha510, a590°, Gr51.803107. Instanta-
neousstreamlines~a!, isolines ofhorizontal ~b! and vertical ~c! velocities
plotted for equal time intervals covering the complete periodT59.95
31023.
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FIG. 9. Stability diagram for steadytwo-cell flows. Dependence of the critical Grashof number~a! and critical frequency~b! on Hartmann number and field
orientation. Points F3 , F10 , F11 and F12 represent the cases illustrated in Fig. 3 and Figs. 10–12, respectively.
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nitude of the field, which depends on the governing para
eters of the problem. It is seen also that the perturbations
suppressed before a significant reduction of the basic s
flow takes place.

The effect of the magnetic field on two-cell flows
quite different. At small values of the Hartmann number t
stabilization effect is not very strong. However, as the fi
magnitude increases these flows are destabilized and t
form into single-cell ones, subject to their own stability pro
erties. This indicates the possibility of using the magne
field for control not only of the stability but also of the flow
Downloaded 19 Jul 2001 to 132.68.1.29. Redistribution subject to AIP
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FIG. 10. Two-cell flow under thevertical magnetic field at the critical
Grashof number. Ha53, a590°, Grcr53.413107 @point F10 in Fig. 9~a!#.
All contours are equally spaced.~a! Streamlines,cmin520.933, cmax

5294.31;~b! isotherms, 0<u<1; ~c! amplitude of the most dangerous pe
turbation of the stream function;~d! amplitude of the most dangerous pe
turbation of the temperature.
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pattern—by suppression of the multiplicity of possib
steady states. We expect a similar effect for multiple stea
state flows consisting of three and more convective ce
whose stability without the magnetic field was studi
previously.14

In the single-cell flows the electromagnetic dampi
leads to the development of the Hartmann boundary lay
as well as to boundary layers adjoining the walls paralle
the magnetic field. These layers, whose depth decreases
portionally to Ha21 and Ha21/2, respectively, should be ac
counted for in any numerical model used for such flows, a
is found that the oscillatory instability sets in inside them
significant slowdown of the numerical convergence, refle
ing the need to resolve the boundary layers, can be expe
at large Hartmann numbers.

It should be emphasized that the model considered
simplified as much as possible with a view to investigat
the main effects of the externally imposed magnetic field
the stability of a free convective flow. Further study w
involve three-dimensional models with a nonuniform~and
possibly alternating! magnetic field. However, it was alread
shown14 that the critical parameters calculated for tw
dimensional cavities compare well with the experimental
sults in cases where the experimental box is sufficiently lo
in the third direction. The conclusions derived here on
basis of a two-dimensional model should be qualitatively

FIG. 11. Two-cell flow under thevertical magnetic field at the critical
Grashof number. Ha55, a590°, Grcr53.533107 @point F11 in Fig. 9~a!#.
All contours are equally spaced.~a! Streamlines,cmin520.655, cmax

5291.69;~b! isotherms, 0<u<1; ~c! amplitude of the most dangerous pe
turbation of the stream function;~d! amplitude of the most dangerous pe
turbation of the temperature.

FIG. 12. Two-cell oscillatory flow in thevertical magnetic field. Ha53,
a590°, Gr53.53107 @point F12 in Fig. 9~a!#. Instantaneousstreamlines
plotted for equal time intervals covering the complete periodT50.0043.
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same for three-dimensional ones and for those involv
more complicated flow regions.
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