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Dean vortices-induced enhancement of mass transfer through an interface
separating two immiscible liquids
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Two-fluid Dean vortex flow in a coiled pipe with vanishing torsion, and its effect on the mass
transfer through the liquid–liquid interface of two immiscible fluids are studied numerically. The
liquids are stratified by gravity, with the denser one occupying the lower part of the pipe. The
Navier–Stokes equations in both fluid layers are solved numerically by the finite volume method.
The results reveal a detailed structure of the transverse flow~the Dean vortices! in coiled pipes with
the dimensionless curvature 0.1. Both cocurrent and countercurrent axial flows in the fluid layers are
considered. Using the flow fields predicted, the mass transfer equation is solved. It is shown that the
mass transfer of a passive scalar~say, a protein with the Schmidt number of the order of 103)
through the interface can be significantly enhanced by the Dean vortices, so that the mass transfer
rate can be increased by three to four times. This makes the Dean vortex flow an effective tool for
mass transfer enhancement at the liquid–liquid interface. It is shown that the Dean flow provides a
stronger mixing than the Taylor–Couette flow. It is also shown that there exists an optimal axial flow
rate in terms of this enhancement. The optimal flow corresponds to the value of the Dean number
of about 180. In the countercurrent flow case the Dean vortices can split, which has a negative effect
on the mass transfer enhancement. Both the cocurrent and countercurrent axial flows yield a similar
enhancement effect on the interfacial mass transfer rate. The problem is related to the search for
novel bioseparator devices. ©2003 American Institute of Physics.@DOI: 10.1063/1.1532732#
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I. INTRODUCTION

In the present study, the effect of a two-fluid Dean v
tical flow on mass transfer through an interface separa
two immiscible liquids is examined. The study is motivat
by the problem of extraction of admixtures having extrem
low diffusion coefficients, e.g., proteins. Since purely diff
sional mass transfer of such admixtures is too slow and
to be enhanced, mixing by vortical flows is called for.1 In
such flows the vortices inside each fluid transport the adm
ture toward the interface, which yields steeper concentra
gradients there. As a result, the mass fluxes through the
terface increase and the mass transfer intensifies, e
though the diffusion coefficient remains small. The first e
perimental attempt in this direction was made in Ref. 2, w
two-fluid Taylor–Couette vortical flow used in a specia
designed bioseparator/bioreactor. This configuration was
ther studied theoretically and numerically in Ref. 3, whe
the effect of the Taylor vortices and of the axial throughflo
on the mass transfer rates was investigated. Practical a
cation of the two-fluid Taylor–Couette apparatus was fou
to be problematic because the contact of the rapidly rota
cylindrical boundaries~e.g., in the experiments2 the rotation
rate exceeded 10 rev/s! with the stationary closed ends lea
to instability of the liquid–liquid interface. This instability
was also observed numerically by the present group. It
compared to the experimental results obtained using the
3301070-6631/2003/15(2)/330/18/$20.00
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vice of Refs. 1 and 2, and the results will be published in
separate paper. Search for configurations in which the vo
cal flow can be generated without motion of the boundar
and which can be implemented in novel bioseparato
bioreactors, led to study of stationary dc streaming genera
in emulsions,4 thin channels with capillary waves,5 and of
natural-convection flow in two-layer horizontal annuli.

The Dean vortices arising in coiled pipe single-liqu
flows are known as an effective means for heat and m
transfer enhancement~see Refs. 6–11 and referenc
therein!. In particular, Refs. 6 and 7 were motivated by t
need to prevent buildup of retained solute concentration n
a membrane in a reverse osmosis system. In these wor
was shown that the concentration buildup, known as conc
tration polarization, can be significantly reduced if solutio
are supplied through curved channels, where the Dean v
ces arise. The Dean vortices effectively mix the retained s
ute and this results in depolarization and a significant
crease in the transmembrane flux. In Refs. 6 and 7, as we
in the previous works of that group, direct numerical sim
lation was used to calculate the velocity fields in curv
channels and pipes with single fluid flowing under differe
conditions~different Reynolds numbers, channel curvatu
etc.!. Comparison with the experimental data obtained
means of magnetic resonance flow imaging showed that
numerical results are capable of reproducing the details
the secondary flows~the Dean vortices! rather accurately in-
© 2003 American Institute of Physics
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FIG. 1. Sketch of the problem.
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cluding bifurcations of the additional vortices. Based on
numerically generated velocity fields, the concentration fi
was calculated numerically in Ref. 7, where it was sho
that concentration polarization in curved channels can be
nificantly inhibited by the Dean vortices as compared to t
in flat channels~where the secondary vortices do not aris!.

The present work deals in the same context, with m
transfer enhancement by the Dean vortices developing
coiled pipes of circular cross section filled by two liqu
layers formed by immiscible fluids. The flow is driven by th
pressure gradient, which acts along the pipe centerline
can be the same or different in the fluid layers. The De
vortices, driven by the excessive centrifugal force, deve
in each layer. It is assumed that each fluid layer occupies
of the pipe cross section. For a preliminary insight into t
possibility of the mass transfer enhancement, we consid
helical pipe with vanishing torsion,12,13 so that the flow re-
gion reduces to a circular pipe coiled in a circle. The tw
immiscible liquid layers, stratified by gravity, then occup
the lower and upper parts of the torus so that the interf
coincides with the symmetry plane. To the best of our kno
edge, such two-liquid flow in a coiled pipe has never be
considered before. The emergence of Dean vortices in t
fluid Dean flows, which are the counterpart of the classi
Dean problem,14 was demonstrated in Ref. 15, where cha
nel flow was considered. In the present work novel results
two-fluid flow in coiled pipes~the counterpart of the single
fluid flow of Ref. 16! are discussed. In particular, the patter
of the Dean vortices, as well as the quantitative results on
Dean-vortex-enhancement of the mass transfer through
liquid–liquid interface are revealed.

Section II presents the problem formulation and brie
discusses the numerical technique employed. The result
presented and discussed in Sec. III. Conclusions are draw
Sec. IV.

II. FORMULATION OF PROBLEM
AND NUMERICAL TECHNIQUE

To estimate the effect of the Dean vortices on the m
transfer we follow Ref. 13 and consider a helical pipe w
vanishing torsion. Thus, we consider the flow in a pipe w
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circular cross section of radiusa, coiled in a circle of radius
A. Following the classical Dean formulation,16 it can be in-
terpreted as flow in a torus with centerline of radiusA and
cross section of radiusa. The flow region is shown sche
matically in Fig. 1. The upper and lower halves of the tor
are filled with two immiscible liquids, denoted 1 and 2. Th
problem is considered in the coordinate system (r ,u,s),
where (r ,u) are the polar coordinates in the cross section
the pipe, ands is the arclength along the centerline of th
torus.17 It is assumed that the flow is driven by consta
pressure gradientsG1 and G2 in the s direction, which can
be different in each of the liquid layers. In the case of u
equal pressures and pressure gradients in the layers, th
terface is assumed to be slightly inclined and, as a res
stabilized by gravity. It is also assumed that the liquid–liqu
interface is nondeformable and located approximately at
planeu56p/2 and that the mass transfer does not affect
flow. Denoting all the variables and parameters related
liquids 1 and 2 by the corresponding subscripts, the flow
each layer is described by the dimensionless momentum
continuity equations

]v1

]t
1~v1"¹!v152es2¹p11

1

R
Dv1 , ~1!

¹"v150, ~2!

]v2

]t
1~v2"¹!v252

G21

r21
es2

1

r21
¹p21

m21

r21

1

R
Dv2 , ~3!

¹"v250. ~4!

Herevk5(uk ,vk ,wk) is the flow velocity vector, andpk the
pressure (k51,2); es is the axial unit vector in the pipe
Furthermore,r215r2 /r1 , m215m2 /m1 and G215G2 /G1

are the ratios of the densities, dynamic viscosities, and p
sure gradients, respectively. The length, time, velocity a
pressure in ~1!–~4! are rendered dimensionless bya,
(r1a/G1)1/2, (G1a/r1)1/2, andG1a, respectively, so that the
value of the dimensionless external pressure gradient in la
1 is reduced to unity. The nondimensional parameterR
5 (a/m1)AG1ar1 is thus the analog of the Reynolds num
ber. Details on the momentum and continuity equations
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the chosen coordinate system are given in Appendix A. N
that an additional governing parameter is the dimension
curvature of the pipe,«5a/A. Note also that gravity is as
sumed to be fully offset by the steady-state component of
vertical pressure gradient, whereby both factors are eli
nated from Eqs.~1! and ~3!.

It is emphasized that the above-introduced nondim
sional parameterR is a formal ratio of the inertial to viscou
forces. On the other hand, it is desirable to introduce also
Reynolds number Re based on the mean flow velocityW̄1

corresponding to the single-layer flow~liquid 1 only! in a
straight pipe of radiusa. According to the Poiseuille formula
W̄15a2G1 /(8m1). Hence, Re5r1aW̄1 /m15r1a

3G1 /(8m1
2).

The latter shows that Re5R2/8. Introducing the Dean numbe
as13 D5A2«r1a3G1 /m1

258(2«)1/2Re, we have D
5(2«)1/2R2. The dimensionless groupK of Ref. 12 is K
5D/25/2.

The flow is assumed to be independent of the coordin
s. Thus, the problem is treated in the plane (r ,u), in the
domain 0<r<1, 2p/2<u<3p/2. Following the com-
monly used notation12,18–20we call the velocity componen
w ‘‘axial velocity,’’ and the flow in the (r ,u) plane ‘‘trans-
verse flow.’’

The no-slip boundary conditions are imposed on the p
wall

r 51, 2p/2<u<3p/2: v50, ~5!

also

r 50: uvu,`, ~6!

and continuity of the velocities and tangent stresses is
quired on the liquid–liquid interface

u56p/2, 0<r<1: u15u2 , v15v250, w15w2 ,
~7!

]u1

]u
5m21

]u2

]u
,

]w1

]u
5m21

]w2

]u
. ~8!

With the steady-state flow calculated, the mass tran
problem is considered. Here we assume that the time ne
to reach the steady state of the flow is much shorter than
characteristic diffusion time, so that the mass transfer du
the transient stage is negligible. The mass transfer equa
are

]c1

]t
1~v1"¹!c15

1

Pe
Dc1 , ~9!

]c2

]t
1~v2"¹!c25

D21

Pe
Dc2 , ~10!

whereck , k51,2, are the concentrations of a passive sca
in the liquid layers 1 and 2,D215D2 /D15O(1) is the ratio
of the diffusion coefficients, Pe5R Sc5 (a/D1)AG1a/r1 the
Peclet number and Sc5m1 /D1r1 the Schmidt number. The
excess dimensionless concentration of solute isc5(c
2cmin)/(cmax2cmin), wherecmax andcmin are the maximal and
minimal concentration values att50. Initially, liquid 1 is
assumed to contain a uniformly distributed admixture a
concentrationcmax, c51, which begins to diffuse into the
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admixture-free liquid 2 (cmin50, c50). The torus is as-
sumed to be impermeable for the admixture, while the c
centrations and mass fluxes are continuous at the interf
Thus the boundary and initial conditions for the mass tra
fer problem read

r 50: c1,`, c2,`, ~11!

r 51, 2p/2<u<3p/2:
]c

]r
50, ~12!

u56p/2, 0<r<1: c15c2 ,
]c1

]u
5D21

]c2

]u
, ~13!

t50: c151, c250. ~14!

For characterization of the mass transfer we introduce
local Sherwood number

Sh~x!5
1

r

]c2

]u U
u56p/2

, x52r sin~u!, ~15!

and the mass fraction that has diffused into the liquid laye

mf5
2

p E
p/2

3p/2E
0

1

rc2~r ,u! dr du, ~16!

wherep/2 is the area of half the dimensionless pipe cro
section of unit radius. The local Sherwood number~15! is
unobtainable nearr 50 and should be calculated separate
for x,0 andx.0 or, respectively,u51p/2 andu52p/2. It
is emphasized that in our discussion of the mass transfe
use the flow pattern andx axis corresponding to cross sectio
A of Fig. 1.

The problems~1!–~8! and~9!–~14! were solved numeri-
cally. The finite volume method was used with theSIMPLE

velocity-pressure decoupling algorithm and a semi-impl
three-level time integration scheme. It was used for swirl
flows in a cylindrical container21 and for study of mass-
transfer enhancement due to Taylor3 and natural convection
vortices. The code was validated additionally for single-flu
flow against the analytical solution for smallR, «, Re, and D
~see Appendix B! and against the results of Refs. 13, 22, a
23 for relatively large Dean numbers. The steady-state fl
flow could be calculated with a dimensionless time stept
50.1 for D<200, and witht50.01 for 200<D<6000~usu-
ally, several thousands of time steps are needed to rea
converged solution at large D!.

To ensure numerical stability of the mass transfer cal
lations at the large Peclet numbers characteristic of prot
(Pe;O(105)), the calculations were performed with
smaller time stept51023. The reported flow and mass
transfer calculations were done on the same uniform s
gered grid. Jumps of the physical properties over the liqu
liquid interface were smoothed as in Ref. 3. To ensure me
and time-step independence of the results, the calculat
for the largest value of the Peclet number (Pe5105) were
repeated on 1003200 and 1503300 grids in ther and u
directions, respectively, with time stepst51023 and 1024.
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. Isolines of the axial velocityw
~upper frames! and streamlines of the
transverse flow ~lower frames! for
cocurrent flowG2151. The left-hand
side of each frame corresponds to th
inner part of the toroidal boundary, th
right-hand side to the outer part. Th
cross-sectionB of Fig. 1 is shown.~a!
R520 (D5179); ~b! R540 (D
5716); ~c! R560 (D51610); ~d! R
580 (D52862); ~e! R5100 (D
54472). In all cases«50.1, m12

50.96.
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No significant changes were found. Most of the ma
transfer results reported in the following refer to the 1
3200 grid andt51023.

Following Ref. 24 we define the characteristic turnov
averaging, and diffusion time asTe5(r1a/G1)1/2, Ta

5Td Pe22/3, Td5a2/D1 , respectively. Using, as before, th
time scale (r1a/G1)1/2, we obtain the following dimension
less values:Te51, Ta5Pe1/3, Td5Pe. In the calculations
reported in the following 103<Pe<105. The range of inte-
gration in time for the mass-transfer problem was 200
Pe5103, 1000 for Pe5104, and 10 000 for Pe5105, i.e., the
integration time was always longer than the averaging t
and shorter than the diffusion time.

III. RESULTS AND DISCUSSION

In the calculations the parameterR was varied from 1 to
100 or 120 and the Peclet number Pe from 103 to 105. Thus,
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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the maximal Schmidt number Sc5Pe/R was 103 for R
5100 and even larger for smallerR. The dimensionless cur
vature of the tube was typically taken as«50.1. The varia-
tion of R in the range 1<R<120 corresponds to that of th
Dean number 0.45<D<6440. The other governing param
eters were fixed. We considered the cases of cocurrent
countercurrent axial flow in the two layers, corresponding
G2151 and21, respectively. In most of the calculations th
fixed property ratios of the liquids were chosen asr21

51.4,m2150.96, andD2151.1, and the values of the densi
and viscosity ratios were taken from the experiment.1 Since
the physical properties of the two protein solutions should
close, the value ofD21 was chosen close to unity.

A. Flow patterns

The calculated flow patterns in the cocurrent and co
tercurrent flows are plotted in Figs. 2 and 3. All the isolin
-
l

e

FIG. 3. Isolines of the axial velocityw
~upper frames! and streamlines of the
transverse flow ~lower frames! for
countercurrent flow G21521. The
left-hand side of each frame corre
sponds to the inner part of the toroida
boundary, the right-hand side to th
outer part. The cross-sectionB of Fig.
1 is shown.~a! R520 (D5179); ~b!
R540 (D5716); ~c! R560 (D
51610); ~d! R580 (D52862); ~e!
R5100 (D54472). In all cases«
50.1, m1250.96. The sections of the
streamlinec50, which do not coin-
cide with the interface, are highlighted
by numeral zero.
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. Maximal values of the axial
velocity vs the R number. Symbols
correspond to the calculated point
The range 0<R<100 corresponds to
that of the Dean number 0<D<4472;
«50.1. ~a! Cocurrent flow, G2151,
~b! countercurrent flow, G21521,
m1250.96.
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are equally spaced, except for the streamlines in Fig.~a!
where two additional levels are added to illustrate the
pearance of additional vortices. The positive and nega
contours of the stream function correspond to the clockw
and counterclockwise motion, respectively.

In the case of the cocurrent flow (G2151, Fig. 2! the
maximal value of the axial velocity is located close to~but
not at! the center plane~note that in the single liquid cas
this maximum is always exactly at the center plane3,13,18–20!.
In the two-fluid case considered here the advection of
axial velocity takes place in each of the layers separat
Therefore, one can expect appearance of one maximum
the axial velocity in each layer. However, with the para
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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eters used in the present calculations, development of
local maxima was not observed; it could probably happe
the density and viscosity differentials between the liqu
were larger. The transverse flows consist of a pair of
Dean vortices with one vortex in each layer as in the cla
cal Dean case of a single-liquid flow. With increase of t
parameterR ~i.e., of the Reynolds or the Dean numbers,
and D!, the maximum of the axial velocity is advected t
ward the outer part of the solid boundary, and a bound
layer of the axial velocity forms there. Also, with the in
crease of the parameterR ~or Re and D! the ‘‘eyes’’ of the
vortices are pushed backwards and outwards, as show
Fig. 2. A similar observation was done in Ref. 7 regarding
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. Maximal values of the stream
function and the quantityF vs theR
number. The range 0<R<100 corre-
sponds to that of the Dean numbe
0<D<4472; «50.1. ~a! Cocurrent
flow, G2151, ~b! countercurrent flow,
G21521, m1250.96.
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single-fluid flow in a curved pipe, based on their numeri
and experimental results. The maximum and minimum of
stream functions shift in the opposite direction—toward
inner boundary and the liquid–liquid interface. Developme
of the boundary layer is a common observation for
single-liquid case.18–20 Note that due to the action of th
centrifugal force, which is directed toward the outer part
the toroidal boundary and is maximal near the interface,
motion along the latter is also directed from the inner~left-
hand! to the outer~right-hand! part of the solid~toroidal!
boundary.

In the case of countercurrent flow (G21521, Fig. 3!
there are two maxima of the axial velocity, one in each lay
Near these maxima the centrifugal force drives the transv
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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flow toward the outer part of the boundary, so that the fl
returns to the inner part along the interface. Therefore,
direction of motion along the interface is opposite to that
the cocurrent case~cf. Figs. 2 and 3!. Besides this, already a
rather low values ofR or of the Dean number,R'10 or D
'45, each Dean vortex of the transverse flow splits in two
will be shown in the following that this split reduces th
mixing of a passive scalar. Note also that in the case
countercurrent flow, the boundary layers develop not o
near the outer part of the boundary, but also near the in
face.

The dependences of the maximal absolute values of
axial velocity and the stream function on the Reynolds nu
ber are shown in Figs. 4 and 5. The axial velocity, as
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



rte
ee
d

cie
ta
-
b
t

at

ut
it

e
e

be

te
iv
id

or

d by
l
he

n-

axi-
the

t

mal
for

cur-
he
uid
c-

te
er
ral
ults
on-
ral-
d on
than
is a
ette
sic
a-
er-

ntly
tte

ss
of
let
e
far
on-
ua-
sed
se
d-
m-

lu-
eral

g

ar
re

336 Phys. Fluids, Vol. 15, No. 2, February 2003 Gelfgat, Yarin, and Bar-Yoseph
pected, increases monotonically~Fig. 4!; the increase is lin-
ear at small values ofR,20 (D,179), where viscous
dissipation is significant, and slows down at largerR ~or
larger D!.

As mentioned, in the case of cocurrent flow there is
single Dean vortex in each layer~Fig. 2!. The maximal value
of the stream function yields a coarse estimate of the vo
intensity, and consequently an estimate of the mixing sp
of a passive scalar inside the vortex. It was unexpecte
found that in the cocurrent flow case the dependen
cmax(R) are nonmonotonic and reach a maximum at a cer
value of the parameterR @Fig. 5~a!#. Therefore the depen
dence of the mass transfer rate on the Reynolds num
should also be nonmonotonic, and indeed, we shall see in
following that it also has a maximum at a certain moder
value ofR ~or D!.

In the case of countercurrent flow the maximal absol
values of the stream function increase monotonically w
the Reynolds number@Fig. 5~b!#. However, in this case ther
can be two vortices in each of the layers subdivided by s
tions of the streamlinec50, which do not coincide with the
interface~Fig. 3!, and part of the passive scalar should
transported through the boundary separating twosteadyvor-
tices. Therefore, there is no direct relation between the in
sity of the strongest vortices and the mixing rate of a pass
scalar at the interface. To characterize the mixing rate ins
a vortex~Sec. III! we introduce the following measure:

F5
2

p
Svortexucumax, ~17!

whereSvortex is the dimensionless area occupied by the v
tex andp/2 is the total area of the layer~the dimensionless
radius of the pipe cross section is equal to 1!. The areaSvortex

FIG. 6. Local Sherwood number calculated via the analytical bound
layer model forR51 and«50.01. The Reynolds and Dean numbers a
Re50.125 and D50.141, respectively. The value ofD21 was chosen as
D2151. The plot corresponds to the cross-sectionA of Fig. 1, x521 cor-
responds to the outer part of the toroidal surface,x51—to the inner one.
The Schmidt number was Sc5105 and thus the Peclet number Pe5105.
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corresponds to the area occupied by the vortices bounde
the interface and the streamlinec50 marked by numera
zero in each of the layers in the lower frames in Fig. 3. T
value ofF is sensitive to both the vortex intensityucmaxu and
the fraction of the layer occupied by it. Variation of the qua
tity F with R is shown in Fig. 5~b!. It is seen that forR
.60, F does not change strongly, and has a smooth m
mum at R'100. Therefore in the countercurrent case,
mixing rate is not expected to change strongly for 60<R
<120 (1610<D<6440).

For aqueous solutions (r151 g/cm3 and m1

51022 g/(cm s)) in a pipe ofa51 cm the pressure gradien
G1 can be estimated as 0.08 and 8 Pa/m forR510 and 100,
respectively. This corresponds to the respective maxi
transverse velocities of approximately 0.11 and 2.8 cm/s
the cocurrent, and to 0.045 and 1.9 cm/s for the counter
rent flow. The smaller maximal transverse velocity in t
latter case reflects the splitting of the vortices in each fl
layer in the former. For comparison, the velocity of the se
ondary meridional flow in a two-layer Taylor–Couet
apparatus3 was found to be of the order of 0.6 cm/s und
realistic conditions, and the velocity of a two-layer natu
convection flow was estimated as 0.17 cm/s. The res
show that the Dean vortices in two-layer systems are str
ger than the corresponding Taylor–Couette or natu
convection counterparts. Thus novel bioseparators base
the Dean vortices can be expected to be more effective
those based on the Taylor–Couette apparatus. This fact
consequence of the nature of the Dean and Taylor–Cou
vortices: the former appear at any flow rate as an intrin
part of the basic flow, and the latter—as a result of bifurc
tion of the secondary flow from the basic one beyond a c
tain threshold. Thus the Dean vortices take up a significa
larger amount of the flow energy than the Taylor–Coue
ones, and are accordingly stronger than the latter.

B. Mass transfer

A general analytical solution for quasistationary ma
transfer through a liquid–liquid interface between a pair
counterrotating vortices is given in Ref. 4 for large Pec
numbers. In the case of Pe@1 the mass transfer takes plac
in a thin boundary layer adjoining the interface, whereas
from this layer the concentration can be assumed to be c
stant. The local Sherwood number, corresponding to the q
sistationary concentration distribution, can then be expres
as a function of the interfacial velocity. In the present ca
the only analytical flow field available is the one correspon
ing to a single-liquid case at small values of the Dean nu
ber ~cf. ~B5!–~B9! in Appendix B!. It is appliable to the
two-layer cocurrent (G2151) case only atr215m2151 and
D→0, for which we undertake to derive an analytical so
tion for the mass transfer rate. Then, employing the gen
solution4 for the concentration field and Eq.~C19! ~see Ap-
pendix C!, we arrive in the present case at the followin
result:

y
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FIG. 7. The instantaneous local Sherwood number calculated forR51, «50.01, G2151, D2151, and Pe5105. The Reynolds and Dean numbers are R
50.125 and D50.141, respectively. Thex axis represents the liquid–liquid interface,x521 corresponding to the outer part of the toroidal pipe, andx
51—to the inner part. The cross-sectionA of Fig. 1 is shown.~a! 10<t<80, ~b! 80<t<4000,~c! t54000.
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ShBL~x!5
1

48Ap
D Sc1/2

D1 /D2

11AD1 /D2

f ~x!, 21<x<1,

~18!

where Sc5m1 /(r1D1). The functionf (x) is given by

f ~x!5
uxu~12x2/4!~12x2!2

@22/3152x3/319x5/2023x7/141x9/36#1/2. ~19!

It is readily seen that ShBL(61)50.
Figure 6 shows the local Sherwood number ShBL calcu-

lated as per Eqs.~18! and ~19! for R51 and«50.01. The
profile of ShBL(x) is characterized by a zero value in th
middle of the interface and two local maxima, with the larg
maximum corresponding to the inner part of the flow alo
the interface. Cross-sectionA of Fig. 1 corresponds to the
results in Fig. 6.

The instantaneous local Sherwood numbers obtained
time-dependent numerical modeling for the above-mentio
case (R51, «50.01,G2151, h215r215D2151) using the
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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model~9!–~14!—are shown in Figs. 7 and 8 for Pe5105 and
106, respectively. Cross-sectionA of Fig. 1 corresponds to
these results as well.

At Pe5105 and relatively short integration times~Fig.
7~a!! the local Sherwood number is distributed almost sy
metrically about the central pointx50 and has two almos
equal maxima located to the right and left of the cent
point. With increase of the integration time, the mass trans
in the central part of the interface intensifies, so that th
two maxima disappear~Fig. 7~b!!. At long integration times
(t.500), the local Sherwood number slowly decreases w
time and its profile approaches a certain asymptotic sha
illustrated in Fig. 7~c!. At a long integration time the profile
is characterized by slow variation in the central part of t
boundary and a steep decrease near the boundaries.

For Pe5106 and short integration times,t,500, the dis-
tribution of the local Sherwood number is likewise chara
terized by two almost equal and symmetric maxima~Figs.
8~a! and 8~b!!. With increase of the integration time, thes
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. The instantaneous local Sherwood number calculated forR51, «50.01, G2151, D2151, and Pe5106. The Reynolds and Dean numbers a
Re50.125 and D50.141, respectively. Thex axis represents the liquid–liquid interface,x521 corresponding to the outer part of the toroidal pipe, andx
51—to the inner part. The cross-sectionA of Fig. 1 is shown.~a! 10<t<150, ~b! 200<t<2000,~c! 2500<t<5000,~d! t55000 and 7000.
c

g

e

the

d

in

6.
been
al
ers,
s

maxima are shifted from the central part of the interfa
toward the boundaries. At larger times,t.2000, the profile
likewise acquires an asymptotic shape~Fig. 8~c!!, qualita-
tively different from that for Pe5105. The profiles att
55000 and 7000 are zoomed in Fig. 8~d! and are seen to
have two non-symmetric and nonequal maxima, the lar
one near the inner part of the torus boundary (x51) and the
smaller one—near the outer part (x521). This agrees
qualitatively with the analytical result~18! and ~19! as per
Fig. 6. In agreement with the analytical boundary lay
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
e

er

r

model, the profiles have a rather steep minimum between

two maxima, but unlike the former the minimum is locate

nearx520.5 instead of the analytically predictedx50. The

magnitudes of the local Sherwood number at the maxima

Fig. 8~d! are also significantly larger than those in Fig.
This shows that steady-state mass transfer has not yet
achieved in Fig. 8~d!. Closer agreement with the analytic
model may perhaps be obtained for larger Peclet numb
e.g., Pe5107 or 108. However, in this case much finer grid
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and calculation over much longer times will be require
which makes the process unaffordable.

Profiles qualitatively similar to the analytical one ca
also be observed at largerR numbers at very short integra

FIG. 9. The instantaneous local Sherwood number calculated forR510,
«50.01, G2151, D2151, and Pe5105. The Reynolds and Dean numbe
are Re512.5 and D514.1, respectively. Thex axis represents the liquid–
liquid interface,x521 corresponding to the outer part of the toroidal pip
andx51—to the inner part. The cross-sectionA of Fig. 1 is shown.
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
,

tion times. This is illustrated in Fig. 9. The calculations we
performed forR510, «50.01, G2151, andh215r215D21

51. The profiles have two maxima with the larger maximu
near the inner part of the torus boundary, as predicted by
analytical model, and the minimum closer to the center of
interfacex50 ~cf. Fig. 8~d!! and shifting towardx520.5 as
time increases. This deviation from the analytical predict
can be explained by mixing of the admixture inside the b
of the Dean vortices, which affects the boundary conditio
for the interfacial mass transfer already at a very early st
of the process.

The instantaneous concentration fields at large Reyn
and Peclet numbers, Re5100 and Pe5105, are shown in
Figs. 10 and 11. It is seen that the concentration isoli
reproduce the streamlines of the transverse flow in the b
of both liquids ~cf. Figs. 2 and 3!. This means that at the
large Peclet number, the mass transfer is almost comple
dominated by the convective transport due to the transv
flow. However, diffusion represents the only mechanism
mass transfer through the interface. As was shown in Re
enhancement of the mass transfer is due to the steeper
centration gradients at the interface created by the enha
convective transport of the admixture. This leads to a hig
mass flux even though the diffusion coefficients continue
be low. The corresponding distributions of the local Sh
a-

,

FIG. 10. The instantaneous concentr
tion contours at different time mo-
ments. The case of cocurrent flow
G2151, «50.1, R5100, and Pe5105

~D54472!. 25 concentration contours
are equally distributed betweenc50
andc51. The cross-sectionB of Fig.
1 is shown.
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



a-

nt

-

340 Phys. Fluids, Vol. 15, No. 2, February 2003 Gelfgat, Yarin, and Bar-Yoseph
FIG. 11. The instantaneous concentr
tion contours at different time mo-
ments. The case of countercurre
flow, G21521, «50.1, R5100, and
Pe5105 ~D54472!. 25 concentration
contours are equally distributed be
tween c50 and c51. The cross-
sectionB of Fig. 1 is shown.
m mo-
FIG. 12. The instantaneous local Sherwood number at different time
ments. The case of cocurrent flow,G2151, «50.1, R5100 ~D54472!, and
Pe5105. The cross-sectionA of Fig. 1 is shown.
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
o-FIG. 13. The instantaneous local Sherwood number at different time
ments. The case of countercurrent flow,G21521, «50.1, R5100 ~D
54472!, and Pe5105. The cross-sectionA of Fig. 1 is shown.
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FIG. 14. Time histories of the mas
fraction mf in layer 2. R5100 ~D
54472!. ~a! Cocurrent flow,G2151,
~b! countercurrent flow, G21521,
m1250.96.
an
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e

a
a

cases
uid
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g

wood number over the interface are shown in Figs. 12
13. In the case of cocurrent flow~Fig. 2! the local Sherwood
number increases starting from the inner part of the fl
region,x521 ~where the streamlines in the two layers b
come closer near the interface! and then decays toward th
outer part,x51. In the case of countercurrent flow~Fig. 3!
the direction of the interfacial flow is opposite, and the loc
Sherwood number increases from the outer boundary
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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then decreases as the inner one is approached. In both
the Sherwood number is larger in the areas where the liq
motion in the vortices is directed toward the interface. T
rapid growth of Sh(x) near x50 should not be overesti
mated, since a significant numerical error may be involv
there~see Eq.~15!!, but still the distributions correspondin
to higher values of the Dean number~or the higher values of
R) are radically different from those for D→0. Indeed, com-
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FIG. 15. ~a! Time histories of the mass
fractionmf in layer 2 for different vis-
cosity ratiosm12 . R550 ~D51118!,
Pe5105, «50.1. Cocurrent flow,G21

51. ~b! Isolines of the axial velocity
~1! and streamlines of the transvers
flow ~2!. R550 ~D51118!, Pe5105,
«50.1. Cocurrent flow,G2151, m12

50.5.
S
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parison of Figs. 6, 7, and 12 shows that the minimum of
at the pipe center, characteristic of D→0, disappears for
higher values of D.

Time histories of the mass fractionmf ~Eq. ~16!! in layer
2 are shown in Fig. 14 forR5100 ~D'4500! and the Peclet
number varying from 103 to 105. With increase of the Pecle
number, the mass transfer slows down, since the limit
purely diffusional transport through the interface becom
weaker. The dimensionless time necessary to reach a
90% of complete equilibration of the admixture concent
tion in both layers can be estimated as Pe/10.

The effect of the viscosity ratiom12 is illustrated in Figs.
15 and 16 for the cocurrent and countercurrent flows, resp
tively. It is seen~Fig. 15~a!! that for the cocurrent flow mas
transfer increases significantly form1250.5. This results
from the fact that a single-vortex system in each fluid la
characteristic of the valuesm1250.96– 1.5~cf. Fig. 2! is re-
placed in the case ofm1250.5 by a double-vortex system i
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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rFIG. 16. Time histories of the mass fractionmf in layer 2 for different
viscosity ratiosm12 . R550 ~D51118!, Pe5105, «50.1. Countercurrent
flow, G21521.
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FIG. 17. Volume fractionmf in layer 2 vs the parameterR ~or the Dean number at three different times!. Cocurrent flow, 0<R<100, 0<D<4472,G21

51, m1250.96. ~a! Pe5103, ~b! Pe5104, ~c! Pe5105.
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of
each fluid layer~Fig. 15~b!!. On the other hand, the effect o
viscosity ratiom12 on the mass transfer rate in countercurre
flows is relatively small~Fig. 16!.

To illustrate how the Dean vortices in two-layer syste
enhance the mass transfer, the mass fractionmf at several
fixed time moments is plotted in Figs. 17 and 18 versus
parameterR ~or the Dean number! for several Peclet num
bers. It is seen that increase ofR from 0 to approximately 10
or 15~increase of D from 0 to about 45 or 100! leads to steep
increase of the mass transfer rates in both the cocurrent
countercurrent flows. Further increase ofR ~or of the Dean
number! does not yield any significant increase of the ma
transfer and sometimes even a slight reduction~Fig. 17!.
Note that the trend of variation of the mass transfer rate w
R ~or with the Dean number! corresponds to the trend o
intensity of the vortical motion illustrated in Fig. 5. In th
case of cocurrent flow~Figs. 2 and 5~a!! the stream function
reaches its largest value atR'25 ~D'280! and then virtu-
ally saturates versusR ~or D!. Figure 17 shows that the mas
transfer affected by this flow, steeply intensifies up toR
'15 ~D'100! and then likewise practically saturates. T
position of the maximum ofmf in Figs. 17~a!–17~c! is al-
most independent of the Peclet number. Thus, the de
dence of the mass transfer rate on the parameterR ~or on the
Dean number! correlates with the corresponding dependen
of the vortex intensity~cf. Figs. 5~a! and 17!. In the case of
countercurrent flow~Figs. 3 and 5~b!! the maximum of the
stream function of the transverse flow, as well as the quan
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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F, steeply increase up toR'40 ~D'715!, and at larger val-
ues ofR the quantityF almost saturates. The increase of t
mass transfer rate in this case~cf. Fig. 18! corresponds to the
rangeR,50 ~D,1118!, which also correlates with the est
mated intensity of the vortices adjoining to the liquid–liqu
interface. The steep growth of the mass fraction~and, there-
fore, of the mass transfer rate! in the countercurrent case o
Fig. 18 corresponds to Re,25 ~D,280! at Pe5103, to R
,20 ~D,180! at Pe5104, and to R'15 ~D,100! at Pe
5105. This means that there exists an optimal value of
parameterR ~an optimal axial flow rate!, which yields the
most effective mass transfer through the liquid–liquid int
face. This optimal value depends on the Peclet number
the pipe curvature, and on the mode of axial flow~cocurrent
or countercurrent!. In any case, it is not very large and can
roughly estimated asR'20, which corresponds to Re'50 or
D'180 for «50.1. From the practical point of view thi
means that optimal mass transfer enhancement is reach
a moderate pressure drop, and there is no need to increas
axial flow rate beyond a certain point. This conclusion
valid for both the cocurrent and countercurrent cases, wh
do not differ too much.

It should be noted that we did not find any well-defin
power scaling in the dependence of the intensity of the tra
verse flow on the parameterR ~or on the Reynolds and Dea
numbers; cf. Fig. 5!. As a result, there is no power-law sca
ing of the mass transfer rate versus the Peclet number ei

Finally, it is emphasized that the effect of variation
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 18. Volume fractionmf in layer 2 vs the parameterR ~or the Dean number at three different times!. Countercurrent flow, 0<R<100, 0<D<4472,
G21521, m1250.96. ~a! Pe5103, ~b! Pe5104, ~c! Pe5105.
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dimensionless curvature of the pipe« on the flow field and
the mass transfer rate was studied in the present work
two-layer flows in the range of«50.01–0.1. Some additiona
numerical and experimental results on the effect of« on
single-layer fluid flows at the values of« as high as 0.317
can be found in Ref. 7. Both works, however, fully dispen
with the possible torsion of the pipe axis, which might lim
application of the present results to helical pipes. A recen
published Ref. 25 and references therein shed some ligh
the effect of torsion on the transverse flow field in sing
fluid flows. The numerical and experimental results of t
latter work show that as pipe torsion increases at a cons
Dean number, the structure of the transverse flow chan
from two counterrotating vortices to a single-vortex typ
Similar results for two-fluid flows are unavailable, and t
present group has undertaken such calculations, which
be reported separately. It is clear that a transition from
two-vortex secondary flow to a single-vortex type will r
duce efficiency of the method of enhancement of the inte
cial mass transfer discussed in the present work. There
there should exist a limitation on the value of the dimensi
less pipe torsion, which guarantees a two-vortex structur
the secondary flow and the enhanced interfacial mass tr
fer.

IV. CONCLUSIONS

Two-liquid flows in a coiled circular pipe with vanishin
torsion and their effect on the mass transfer through
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
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liquid–liquid interface are studied. Patterns of the Dean v
tices appearing in the transverse flow are reported. In part
lar, it is shown that the flow along the immiscible liquid
liquid interface is in opposite directions in the cases
cocurrent and countercurrent axial flow. In the countercurr
case the Dean vortices are found to split into two vortices
each liquid layer, which leads to a certain decrease in
velocity of the transverse flow. It is also shown that the
tensity of these vortices does not increase monotonic
with increase of the Reynolds~or Dean! number, albeit it
virtually saturates at higher values of Re~or D!. This results
in a similar behavior of the mass transfer rate versus
Reynolds~or Dean! number. Both the cocurrent and counte
current cases studied lead eventually to similar enhancem
of the mass transfer.

It is shown that the Dean vortex flow considered can
an effective tool for enhancement of the mass trans
through liquid–liquid interfaces, especially in cases when
Schmidt number is large~e.g., Sc;103, as for proteins!. It is
emphasized that the Dean vortices provide a stronger mix
mechanism than the Taylor–Couette counterparts. It is a
emphasized that such a coiled-pipe-based biosepar
bioreactor should not contain any moving boundaries and
flow inside it can be sustained for a long time. There exi
an optimal value of the Reynolds~or Dean! number~optimal
axial flow rate! which yields the most effective mass transf
enhancement. The optimal value was found to be abouR
520 ~or Re550 and D'180!, which is not very high and
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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can be easily reached in practice. No definite scaling law
the diffused mass fraction versus the Reynolds, Dean, or
clet numbers was found.
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APPENDIX A: CONTINUITY, MOMENTUM, AND MASS
TRANSFER EQUATIONS IN HELICAL
COORDINATES „r ,u,s …

The Lamécoefficients of the coordinate system shown
Fig. 1 are
Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP
r
e-

hr51, hu5r , hs511«r sinu. ~A1!

The corresponding equations can be derived from their co
terparts in general orthogonal curvilinear coordinates~see,
for example Ref. 17!. Assuming ]/]s[0, the continuity
equation reads

]

]r
@r ~11«r sinu!u#1

]

]u
@~11«r sinu!v#50; ~A2!

the r , u, ands projections of the momentum equations ar
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whereGi51 or G21 for liquids 1 and 2, respectively.
Note that Re5R2/8, and D58(2«)1/2 Re5(2«)1/2R2.
The mass transfer equation is

]c
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1u
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1

v
r
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PeH 1
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]u2 1
« sinu

11«r sinu
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1
« cosu

11«r sinu

1

r

]c

]uJ . ~A6!
The stream functionc of the transverse flow is given by

u5
1

r ~11«r sinu!

]c

]u
, v52

1

11«r sinu

]c

]r
, ~A7!

and is rendered dimensionless by (G1a3/r1)1/2.

APPENDIX B: ANALYTICAL SOLUTION
FOR THE FLOW FIELD IN A SINGLE-LIQUID CASE
FOR SMALL CURVATURE

To derive the analytical solution for small curvature w
assume that the axial velocity is of order 1 and the transve
flow of order«. Thus, separating all the terms of order 1
Eq. ~A5! and all those of order« in Eqs. ~A2!–~A4!, we
arrive at the following equations.
The continuity equation

1

r

]~ru !

]r
1

1

r

]v
]u

50, ~B1!

and the momentum equations

2
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r 2

]2u

]u2 2
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]uJ 52«w2 sinu,

~B2!
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2
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]2v
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52«w2 cosu, ~B3!

211
1

R

1

r

d

dr F r
dw

dr G50. ~B4!

Equations~B1!–~B4! must be solved with the no-slip bound
ary condition atr 51. The solution is13,16

w5
R

4
~12r 2!, ~B5!

u5«
R3

1152S 12
r 2

4 D ~12r 2!2 sinu, ~B6!

v52«
R3

4608
~r 221!~7r 4223r 214!cosu, ~B7!

p5«
R2

192
r ~2r 426r 219!sinu. ~B8!

This solution corresponds to small values of the Dean nu
ber D58(2«)1/2Re5(2«)1/2R2. The dimensionless stream
function of the flowc is given by ~A7!, ~B6!, and ~B7! in
this limit ~«→0! as per

c52«
R3

1152
r S 12

r 2

4 D ~12r 2!2 cosu, ~B9!

where it is rendered dimensionless by (G1a3/r1)1/2.

APPENDIX C: CALCULATION OF THE SHERWOOD
NUMBER WITHIN THE FRAMEWORK OF THE
BOUNDARY LAYER MODEL

We assume that the admixture concentration varies o
in a thin boundary layer near the interface in both liquids
and 2, which is a plausible approximation based on the
that Sc@1. In the present caseck5ck(r ,u) and the dimen-
sionless Eqs.~9! and ~10! in the boundary layer approxima
tion take the form

«Uk

]ck

]r
1«

Vk

r
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r 2

]2ck

]u2 , ~C1!

where«Uk5uk and«Vk5vk are theu andv velocity com-
ponents in thekth layer, respectively, and Pek are the Peclet
numbers defined as Pek5W̄1a1 /Dk . In the present case w
assumer215m2151, as well asG2151. As a result,U1

5U25U and V15V25V. According to Eqs.~B6!, ~B7!,
and ~B9!,
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4 D ~12r 2!2. ~C4!

At the interfaceu57p/2, Eq. ~C1! takes the form
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where Eqs.~C2! and~C3! were used and the coordinatey is
normal to x ~normal to the interface; the coordinates a
dimensionless!. Since at the interfaceu57p/2 we havex
56r , and Eq.~C5! can be rearranged to the following form
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where

Pk5«PekS 7
dA/dr

r D
Qk52«Pek

A

r

J at u57p/2. ~C7!

Solution of Eq.~C6! is subject to the following boundary
conditions:

y52`, c25c`2 , ~C8!

y51`, c15c`1 , ~C9!
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, ~C10!

y50, c15c2 , ~C11!

and solution of the problem~C6!–~C11! yields4
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where

k5D21
21/2, ~C14!
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W~x!52E
const
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Given Eqs.~C4!, ~C7!, and~C16!, we find

W~j!2W~x!52 lnFj~12j2/4!~12j2!2

x~12x2/4!~12x2!2G ~C17!

for u57p/2.
Therefore the mass fluxj 252(D2 /a)]c2 /]yuy50 is

found from ~C12!, ~C15!, and~C17! as

j 25
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~C18!

Obviously, j 15 j 2 . The Sherwood number is defined as
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ShBL~x!5
j 2a

~c`22c`1!D2
, ~C19!

which yields, with the aid of Eq.~C18!, the expressions~18!
and ~19!.
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