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Two-fluid Dean vortex flow in a coiled pipe with vanishing torsion, and its effect on the mass
transfer through the liquid—liquid interface of two immiscible fluids are studied numerically. The
liquids are stratified by gravity, with the denser one occupying the lower part of the pipe. The
Navier—Stokes equations in both fluid layers are solved numerically by the finite volume method.
The results reveal a detailed structure of the transverse(flemwDean vorticesin coiled pipes with

the dimensionless curvature 0.1. Both cocurrent and countercurrent axial flows in the fluid layers are
considered. Using the flow fields predicted, the mass transfer equation is solved. It is shown that the
mass transfer of a passive scalaay, a protein with the Schmidt number of the order of)10
through the interface can be significantly enhanced by the Dean vortices, so that the mass transfer
rate can be increased by three to four times. This makes the Dean vortex flow an effective tool for
mass transfer enhancement at the liquid—liquid interface. It is shown that the Dean flow provides a
stronger mixing than the Taylor—Couette flow. It is also shown that there exists an optimal axial flow
rate in terms of this enhancement. The optimal flow corresponds to the value of the Dean number
of about 180. In the countercurrent flow case the Dean vortices can split, which has a negative effect
on the mass transfer enhancement. Both the cocurrent and countercurrent axial flows yield a similar
enhancement effect on the interfacial mass transfer rate. The problem is related to the search for
novel bioseparator devices. @003 American Institute of Physic§DOI: 10.1063/1.1532732

I. INTRODUCTION vice of Refs. 1 and 2, and the results will be published in a
separate paper. Search for configurations in which the vorti-
In the present study, the effect of a two-fluid Dean vor-cal flow can be generated without motion of the boundaries,
tical flow on mass transfer through an interface separatingnd which can be implemented in novel bioseparators/
two immiscible liquids is examined. The study is motivatedbioreactors, led to study of stationary dc streaming generated
by the problem of extraction of admixtures having extremelyin emulsions’ thin channels with capillary wavésand of
low diffusion coefficients, e.g., proteins. Since purely diffu- natural-convection flow in two-layer horizontal annuli.
sional mass transfer of such admixtures is too slow and has The Dean vortices arising in coiled pipe single-liquid
to be enhanced, mixing by vortical flows is called fdn  flows are known as an effective means for heat and mass
such flows the vortices inside each fluid transport the admixtransfer enhancementsee Refs. 6-11 and references
ture toward the interface, which yields steeper concentratiotherein). In particular, Refs. 6 and 7 were motivated by the
gradients there. As a result, the mass fluxes through the imeed to prevent buildup of retained solute concentration near
terface increase and the mass transfer intensifies, evenmembrane in a reverse osmosis system. In these works it
though the diffusion coefficient remains small. The first ex-was shown that the concentration buildup, known as concen-
perimental attempt in this direction was made in Ref. 2, withtration polarization, can be significantly reduced if solutions
two-fluid Taylor—Couette vortical flow used in a specially are supplied through curved channels, where the Dean vorti-
designed bioseparator/bioreactor. This configuration was furees arise. The Dean vortices effectively mix the retained sol-
ther studied theoretically and numerically in Ref. 3, whereute and this results in depolarization and a significant in-
the effect of the Taylor vortices and of the axial throughflowcrease in the transmembrane flux. In Refs. 6 and 7, as well as
on the mass transfer rates was investigated. Practical appli the previous works of that group, direct numerical simu-
cation of the two-fluid Taylor—Couette apparatus was foundation was used to calculate the velocity fields in curved
to be problematic because the contact of the rapidly rotatinghannels and pipes with single fluid flowing under different
cylindrical boundariege.g., in the experimerftshe rotation  conditions (different Reynolds numbers, channel curvature,
rate exceeded 10 rey/with the stationary closed ends leads etc). Comparison with the experimental data obtained by
to instability of the liquid—liquid interface. This instability means of magnetic resonance flow imaging showed that the
was also observed numerically by the present group. It wasumerical results are capable of reproducing the details of
compared to the experimental results obtained using the dékhe secondary flow&he Dean vorticesrather accurately in-
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FIG. 1. Sketch of the problem.

B

cluding bifurcations of the additional vortices. Based on thecircular cross section of radiwis coiled in a circle of radius

numerically generated velocity fields, the concentration fieldA. Following the classical Dean formulatidfjt can be in-

was calculated numerically in Ref. 7, where it was shownterpreted as flow in a torus with centerline of radiisand

that concentration polarization in curved channels can be sigeross section of radiua. The flow region is shown sche-

nificantly inhibited by the Dean vortices as compared to thamatically in Fig. 1. The upper and lower halves of the torus

in flat channelgwhere the secondary vortices do not arise are filled with two immiscible liquids, denoted 1 and 2. The
The present work deals in the same context, with masproblem is considered in the coordinate systemé(s),

transfer enhancement by the Dean vortices developing iwhere ,6) are the polar coordinates in the cross section of

coiled pipes of circular cross section filled by two liquid the pipe, ands is the arclength along the centerline of the

layers formed by immiscible fluids. The flow is driven by the torus!” It is assumed that the flow is driven by constant

pressure gradient, which acts along the pipe centerline angressure gradients; and G, in the s direction, which can

can be the same or different in the fluid layers. The Dearbe different in each of the liquid layers. In the case of un-

vortices, driven by the excessive centrifugal force, develogqual pressures and pressure gradients in the layers, the in-

in each layer. It is assumed that each fluid layer occupies haterface is assumed to be slightly inclined and, as a result,

of the pipe cross section. For a preliminary insight into thestabilized by gravity. It is also assumed that the liquid—liquid

possibility of the mass transfer enhancement, we consider iaterface is nondeformable and located approximately at the

helical pipe with vanishing torsiot;'® so that the flow re- plane#=+=/2 and that the mass transfer does not affect the

gion reduces to a circular pipe coiled in a circle. The twoflow. Denoting all the variables and parameters related to

immiscible liquid layers, stratified by gravity, then occupy liquids 1 and 2 by the corresponding subscripts, the flow in

the lower and upper parts of the torus so that the interfaceach layer is described by the dimensionless momentum and

coincides with the symmetry plane. To the best of our knowl-continuity equations

edge, such two-liquid flow in a coiled pipe has never been

corlsidered before. T_he emergence of Dean vortices in two- ﬂ-ﬁ-(Vl'V)Vl: —e—Vp,+ iAvl, (1)

fluid Dean flows, which are the counterpart of the classical ~ dt R

Dean problent? was demonstrated in Ref. 15, where chan-

nel flow was considered. In the present work novel results on Vv1=0, )
two-fluid flow in coiled pipegthe counterpart of the single- v, e 1 pop 1

fluid flow of Ref. 16 are discussed. In particular, the patterns Ty +(VorV)Vo=— —e,— —Vp,+ — ﬁAVZ' 3
of the Dean vortices, as well as the quantitative results on the P21 — Pz P21
Dean-vortex-enhancement of the mass transfer through the V-v,=0. (4

liquid—liquid interface are revealed. ) )
Section Il presents the problem formulation and brieflyHerevi=(uy,vi,wi) is the flow velocity vector, ang the
discusses the numerical technique employed. The results apéessure k=1,2); & is the axial unit vector in the pipe.

presented and discussed in Sec. lll. Conclusions are drawn frHrthermore, po1=pz/p1, pa1=pz/py and Gy =G, /G,
Sec. IV. are the ratios of the densities, dynamic viscosities, and pres-

sure gradients, respectively. The length, time, velocity and
pressure in(1)—(4) are rendered dimensionless by,
(p1a/G;)Y? (G,alp,)*? andG,a, respectively, so that the
value of the dimensionless external pressure gradient in layer
To estimate the effect of the Dean vortices on the masg is reduced to unity. The nondimensional paramédger
transfer we follow Ref. 13 and consider a helical pipe with= (a/u,)VGiap, is thus the analog of the Reynolds num-
vanishing torsion. Thus, we consider the flow in a pipe withber. Details on the momentum and continuity equations in

Il. FORMULATION OF PROBLEM
AND NUMERICAL TECHNIQUE
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the chosen ppordinate sy;tem are given'in Appepdix A Notedmixture-free liquid 2 ¢,;,,=0, c=0). The torus is as-
that an additional governing parameter is the dimensionlessumed to be impermeable for the admixture, while the con-
curvature of the pipes =a/A. Note also that gravity is as- centrations and mass fluxes are continuous at the interface.

sumed to be fully offset by the steady-state component of thehus the boundary and initial conditions for the mass trans-
vertical pressure gradient, whereby both factors are elimifer problem read

nated from Eqs(1) and(3).
It is emphasized that the above-introduced nondimen- r=0: c;<%», C,<%, (11
sional parameteR is a formal ratio of the inertial to viscous
forces. On the other hand, it is desirable to introduce also the dJc
— r=1, —w/2<0<3w/2: —=0, (12
Reynolds number Re based on the mean flow velodity ar
corresponding to the single-layer floghquid 1 only) in a
straight pipe of radiua. According to the Poiseuille formula dcy dcy
T 2 - _ 3 2 0=t77/2, 0$r$1: C]_:CZ, _:D2l_! (13)
Wl—a Gl/(8/.Ll) Hence, Re:plaW]_/,LLl—pla G1/(8ILL1) 00 00
The latter shows that ReR?/8. Introducing the Dean number
as® D=2¢p,a%G,/u3=8(2¢)*?Re, we have D t=0: c¢;=1, c,=0. (14)
=(2¢)¥?R2. The dimensionless groul§ of Ref. 12 isK o _
—D/252. For characterization of the mass transfer we introduce the
The flow is assumed to be independent of the coordinat9cal Sherwood number
s. Thus, the problem is treated in the planed), in the

domain Osr=1, - 72< 0<37/2. Followirjg the com- de)zlﬁ . X=—rsin0), (15)
monly used notatiol?*®=2%we call the velocity component L P,
w “axial velocity,” and the flow in the ¢, 6) plane “trans- ) ] ] o
verse flow.” and the mass fraction that has diffused into the liquid layer 2
The no-slip boundary conditions are imposed on the pipe 9 3wz (1
wall my=— f rco(r,6)drde, (16)
r=1, —w/2<0<3m/2: v=0, (5) e e
also where 7/2 is the area of half the dimensionless pipe cross
section of unit radius. The local Sherwood numk&b) is
r=0: |v|<e, (6)  unobtainable near=0 and should be calculated separately
and continuity of the velocities and tangent stresses is réor x<0 andx>0 or, respectivelyy=+m/2 and6=—m/2. It
quired on the liquid—liquid interface is emphasized that in our discussion of the mass transfer we
use the flow pattern andaxis corresponding to cross section
0:i7T/2, O$t‘$l: U1:U2, Uj_:UZ:O, W1:W2, Aof F|g 1
(7) The problemg1)—(8) and(9)—(14) were solved numeri-
auy Ay W, W, cally. The finite volume method was used with t®PLE
50 Mg ap Mg (8)  velocity-pressure decoupling algorithm and a semi-implicit

three-level time integration scheme. It was used for swirling

With the steady-state flow calculated, the mass transfeflows in a cylindrical containét and for study of mass-
problem is considered. Here we assume that the time needensfer enhancement due to Tayland natural convection
to reach the steady state of the flow is much shorter than thgortices. The code was validated additionally for single-fluid
characteristic diffusion time, so that the mass transfer durinflow against the analytical solution for sm&| ¢, Re, and D
the transient stage is negligible. The mass transfer equatiorisee Appendix Band against the results of Refs. 13, 22, and
are 23 for relatively large Dean numbers. The steady-state fluid

ic, 1 flow could be calculated with a dimensionless time step

—=+(vp-V)e =—Acy, 9) =0.1 for D<200, and withr=0.01 for 206< D<6000(usu-

Jt Pe ally, several thousands of time steps are needed to reach a

5 Dy converged solution at large)D
— +(vy'V)co,=—==Ac,, (10 To ensure numerical stability of the mass transfer calcu-
ot Pe . S .
lations at the large Peclet numbers characteristic of proteins

wherec,, k=1,2, are the concentrations of a passive scala(Pe~O(10°)), the calculations were performed with a
in the liquid layers 1 and 2),;=D,/D;=0(1) is the ratio  smaller time stepr=10 3. The reported flow and mass-
of the diffusion coefficients, PeR Sc= (a/D;)VGjal/p, the transfer calculations were done on the same uniform stag-
Peclet number and Scu,/Dqp; the Schmidt number. The gered grid. Jumps of the physical properties over the liquid—
excess dimensionless concentration of solutecis(c liquid interface were smoothed as in Ref. 3. To ensure mesh-
— Cmin)/(Cmax—Cmin), Wherec o, andc,,, are the maximal and and time-step independence of the results, the calculations
minimal concentration values at=0. Initially, liquid 1 is  for the largest value of the Peclet number €P&°) were
assumed to contain a uniformly distributed admixture at aepeated on 100200 and 15&300 grids in ther and 6
concentrationca, =1, which begins to diffuse into the directions, respectively, with time steps=10 2 and 10 4.
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FIG. 2. Isolines of the axial velocity
(upper framepand streamlines of the
transverse flow (lower frame$ for
cocurrent flowG,,=1. The left-hand
side of each frame corresponds to the
inner part of the toroidal boundary, the
right-hand side to the outer part. The
cross-sectio3 of Fig. 1 is shown(a)
R=20 (D=179); (b) R=40 (D
=716); (c) R=60 (D=1610); (d) R
=80 (D=2862); () R=100 (D
=4472). In all casese=0.1, uq,
=0.96.

=—

y®=0.167 v ®=0.170 y®P=0.165 v ®=0.158 v M =0.150
v =-0.139 v =-0.182 ¥ =-0.187 v =-0.185 w© =-0.180

No significant changes were found. Most of the massthe maximal Schmidt number S®PeR was 1§ for R
transfer results reported in the following refer to the 100=100 and even larger for small&: The dimensionless cur-
X200 grid andr=10"2. vature of the tube was typically taken as-0.1. The varia-
FO”OWiﬂg Ref. 24 we define the characteristic thnOVGr,tion of R in the range E¥R<120 Corresponds to that of the
averaging, and diffusion time a3.=(p;a/G))"> T.  Dean number 0.45D<6440. The other governing param-
=TyPe 2% Ty4=a’/D,, respectively. Using, as before, the eters were fixed. We considered the cases of cocurrent and
time scale p;a/G;)"% we obtain the following dimension-  countercurrent axial flow in the two layers, corresponding to
less valuesT.=1, T,=P€e”, Ty=Pe. In the calculations G,,=1 and— 1, respectively. In most of the calculations the
reported in the fO"OWing 1%)5 Pe< 105 The range Of inte- fixed property ratios Of the ||qu|ds were Chosen ﬁlﬁ
gration in time for the mass-transfer problem was 200 for— 1.4, 1,,=0.96, andD,;=1.1, and the values of the density
Pe=10%, 1000 for Pe=10", and 10000 for Pe 10°, i.e., the  and viscosity ratios were taken from the experimeStnce

integration time was always longer than the averaging timgnhe physical properties of the two protein solutions should be

and shorter than the diffusion time. close, the value ob,; was chosen close to unity.
I1l. RESULTS AND DISCUSSION A. Flow patterns
In the calculations the paramet@rwas varied from 1 to The calculated flow patterns in the cocurrent and coun-

100 or 120 and the Peclet number Pe from t01(. Thus, tercurrent flows are plotted in Figs. 2 and 3. All the isolines

FIG. 3. Isolines of the axial velocity
(upper framepand streamlines of the
transverse flow (lower frame$ for
countercurrent flow G,;=—1. The
wh =1.921 w = 3521 w) = 4.400 wih = 5004 w) = 5540 left-hand side of each frame corre-
w0 =-2031 we) =-3.383 w() =-4.070 w0 =-4.611 w) =-5.071 sponds to the inner part of the toroidal

boundary, the right-hand side to the

outer part. The cross-secti@of Fig.

(a) (b) (c) (d) (e) 1 is shown.(a R=20 (D=179); (b)

R=40 (D=716); (c) R=60 (D
=1610); (d) R=80 (D=2862); (e)
R=100 (D=4472). In all casese
=0.1, u1,=0.96. The sections of the
streamliney=0, which do not coin-
cide with the interface, are highlighted
by numeral zero.

) =0.0407 y ® =0.0041 y®P=0.113 y®=0.121 v ®=0.125
vy =-0.0495 v =-0.0968 yO =—0.112 vy =-0.119 vy =-0124
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m1,=0.96.
4 i
| -—
- ’.‘ -
—
-
/ -
-
4 —
o
_ -
~
3 &
§
=
2
—o—w<0
] ——w>0
®
0 20 40 R 60 80 100

are equally spaced, except for the streamlines in Hg) 3 eters used in the present calculations, development of two
where two additional levels are added to illustrate the apiocal maxima was not observed; it could probably happen if
pearance of additional vortices. The positive and negativéhe density and viscosity differentials between the liquids
contours of the stream function correspond to the clockwisevere larger. The transverse flows consist of a pair of the
and counterclockwise motion, respectively. Dean vortices with one vortex in each layer as in the classi-
In the case of the cocurrent flowGg,=1, Fig. 2 the cal Dean case of a single-liquid flow. With increase of the
maximal value of the axial velocity is located close(but  parameteR (i.e., of the Reynolds or the Dean numbers, Re
not a) the center planénote that in the single liquid case and D, the maximum of the axial velocity is advected to-
this maximum is always exactly at the center pfalié®=29.  ward the outer part of the solid boundary, and a boundary
In the two-fluid case considered here the advection of théayer of the axial velocity forms there. Also, with the in-
axial velocity takes place in each of the layers separatelycrease of the paramet& (or Re and D the “eyes” of the
Therefore, one can expect appearance of one maximum ebrtices are pushed backwards and outwards, as shown in
the axial velocity in each layer. However, with the param-Fig. 2. A similar observation was done in Ref. 7 regarding a
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single-fluid flow in a curved pipe, based on their numericalflow toward the outer part of the boundary, so that the flow
and experimental results. The maximum and minimum of theeturns to the inner part along the interface. Therefore, the
stream functions shift in the opposite direction—toward thedirection of motion along the interface is opposite to that in
inner boundary and the liquid—liquid interface. Developmentthe cocurrent casef. Figs. 2 and R Besides this, already at
of the boundary layer is a common observation for therather low values oR or of the Dean numbeR~10 or D
single-liquid casé®~2° Note that due to the action of the ~45, each Dean vortex of the transverse flow splits in two. It
centrifugal force, which is directed toward the outer part ofwill be shown in the following that this split reduces the
the toroidal boundary and is maximal near the interface, thenixing of a passive scalar. Note also that in the case of
motion along the latter is also directed from the infeft-  countercurrent flow, the boundary layers develop not only
hand to the outer(right-hand part of the solid(toroidal near the outer part of the boundary, but also near the inter-
boundary. face.

In the case of countercurrent flowsg,=—1, Fig. 3 The dependences of the maximal absolute values of the
there are two maxima of the axial velocity, one in each layeraxial velocity and the stream function on the Reynolds num-
Near these maxima the centrifugal force drives the transverdger are shown in Figs. 4 and 5. The axial velocity, as ex-
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0.4 corresponds to the area occupied by the vortices bounded by
. the interface and the streamline=0 marked by numeral
] zero in each of the layers in the lower frames in Fig. 3. The
05 / value of® is sensitive to both the vortex intensity,,] and

the fraction of the layer occupied by it. Variation of the quan-

tity @ with R is shown in Fig. ®). It is seen that folR

/‘\ >60, ® does not change strongly, and has a smooth maxi-

mum atR~100. Therefore in the countercurrent case, the
mixing rate is not expected to change strongly for<t®
<120 (1616=D=6440).
For aqueous solutions p{(=1glcn® and u,

0.1 =102 g/(cms)) in a pipe o= 1 cm the pressure gradient

G; can be estimated as 0.08 and 8 Pa/mRer10 and 100,

respectively. This corresponds to the respective maximal

transverse velocities of approximately 0.11 and 2.8 cm/s for
the cocurrent, and to 0.045 and 1.9 cm/s for the countercur-

X ’ rent flow. The smaller maximal transverse velocity in the

FIG. 6. Local Sherwood number calculated via the analytical boundaryIatter ,Case reflects the Sp“mng,Of the Vomces, in each fluid

layer model forR=1 ande=0.01. The Reynolds and Dean numbers are 1aY€r in the former. For comparison, the velocity of the sec-

Re=0.125 and B-0.141, respectively. The value @,, was chosen as ondary meridional flow in a two-layer Taylor—Couette

D,;=1. The plot corresponds to the cr_oss-secwonf Fig. 1,x:_71 cor- apparatu%was found to be of the order of 0.6 cm/s under

responds to the outer part of the toroidal surface,1—to the inner one. .. L. .

The Schmidt number was SA0° and thus the Peclet number P&c. realistic conditions, and the velocity of a two-layer natural
convection flow was estimated as 0.17 cm/s. The results
show that the Dean vortices in two-layer systems are stron-

pected, increases monotonicaljig. 4); the increase is lin- 9er than the corresponding Taylor—Couette or natural-

ear at small values oR<20 (D<179), where viscous convection counterparts. Thus novel bioseparators based on
dissipation is significant, and slows down at larger(or  the Dean vortices can be expected to be more effective than

larger D). those based on the Taylor—Couette apparatus. This fact is a

As mentioned, in the case of cocurrent flow there is aconsequence of the nature of the Dean and Taylor—Couette
single Dean vortex in each layéfig. 2). The maximal value vortices: the former appear at any flow rate as an intrinsic
of the stream function yields a coarse estimate of the vorteyart of the basic flow, and the latter—as a result of bifurca-
intensity, and consequently an estimate of the mixing speegyn, of the secondary flow from the basic one beyond a cer-
of a passive scalar inside the vortex. It was unexpectedly,in threshold. Thus the Dean vortices take up a significantly

':;)unfR)tg?é rllrc])ntrzﬁncc)(t)cfr?iz:rzr;t 4 ?g;vchczsnia:(?r?\ucrfg?zdceenr(t:;?r%rger amount of the flow energy than the Taylor—Couette
ma . n nd ar rdingly stronger than the latter.
value of the parameteR [Fig. 5a)]. Therefore the depen- es, and are accordingly stronger than the latte

dence of the mass transfer rate on the Reynolds numb@Br Mass transfer

should also be nonmonotonic, and indeed, we shall see in the

following that it also has a maximum at a certain moderate A general analytical solution for quasistationary mass

value ofR (or D). transfer through a liquid—liquid interface between a pair of
In the case of countercurrent flow the maximal absolutesounterrotating vortices is given in Ref. 4 for large Peclet

values of the stream function increase monotonically withaumbers. In the case of Bd the mass transfer takes place

the Reynolds numbgFig. Sb)]. However, in this case there i 3 thin boundary layer adjoining the interface, whereas far

can be two vortices in each of the layers subdivided by secgom this Jayer the concentration can be assumed to be con-

tions of the streamlings=0, which do not coincide with the stant. The local Sherwood number, corresponding to the qua-

interface (Fig. 3, and part of the passwe.scalar should besistationary concentration distribution, can then be expressed
transported through the boundary separating $teadyvor- X ) . .
s a function of the interfacial velocity. In the present case

tices. Therefore, there is no direct relation between the inten- | iical flow field lable is th q
sity of the strongest vortices and the mixing rate of a passivéhe only analytical flow field available is the one correspond-

scalar at the interface. To characterize the mixing rate insidé'd © @ single-liquid case at small values of the Dean num-

Sh
N

—_
o
[é)]
o
o
[$)]
—

a vortex(Sec. Ill) we introduce the following measure: ber (cf. (B5)—(B9) in Appendix B. It is appliable to the
5 two-layer cocurrentG,,=1) case only ap,;= u,1=1 and
-z D—0, for which we undertake to derive an analytical solu-
(D T Svortexl lr//| max: (17)

tion for the mass transfer rate. Then, employing the general

whereS, o ey i the dimensionless area occupied by the vor-solutiorf for the concentration field and E¢C19) (see Ap-
tex and/2 is the total area of the layéthe dimensionless pendix Q, we arrive in the present case at the following
radius of the pipe cross section is equal joThe are&S,gex  result:

Downloaded 17 Jan 2003 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 2, February 2003 Dean vortices-induced enhancement 337

35

N
//
.
P,

¥ ] \s__,a/z \ 18
o —— =10 ] t = 4000
5
,.g 25 — —a— - =20 i
E | —
g y P ~al A + —al 4 ——v—-— =30 ;51.4
B ] Sal g —— =40 <
= ~A — g i
=20 . - — —a—— =50 £
g T ~7 T ; EN
= v Y ——0—= =60 €13
2 N 'V-\AV_A_V___V___V.,-V’ E .
S s }\\ f - —o— - =70 z
9 15— d 7]
i T ] - i
S T el =
Frmon - e o 3
D e D e oo T ] S
B R - e o - oS R 1.2
10 |
5 T T T T 1.1 T L T T T T
1 0.5 0 0.5 1 1 0.5 0 0.5 1

(@ e X ” (© - x

E —e— t=80
_;\S\S\s AE/E/E/\ — —a— — =90
1 e [T .- — == =100
T T Mt ca | e [T —_—— = =150
9 Vg I
. T T —mg—nm =200
f.é ] —— =300
- — 00— - =
a T e e e T T o :_:zg
- =
8§ Tt PRI IR I St N ——a—— =600
E© —mp—m (=800
S ] = =
5} o > t=1200
= B~% ©-8 —o0—6-0-|-6 —0— & 10— 6 —0 — oo 1500
9] 4B — B =B B O o= B O — S E— O — —— - =2000
3 b e pm et — e ] m@—— 22000
3 e S e % — e m b b= %t — R =3000
Pl ==L — 0 L o~ =000
[ o —0— | —0— % — o= = - —O— = = o — o ]
B o= 6. ]
B=F S-H - - =-3% ¢ S g - Rt
T Sc=1.E+05
0 — T T T
1 0.5 0 0.5 L
{b) x

FIG. 7. The instantaneous local Sherwood number calculateR#ot, £¢=0.01,G,=1, D,;=1, and Pe-10°. The Reynolds and Dean numbers are Re
=0.125 and B-0.141, respectively. The axis represents the liquid—liquid interfacess —1 corresponding to the outer part of the toroidal pipe, &and
=1—to the inner part. The cross-sectinof Fig. 1 is shown(a) 10<t<80, (b) 80<t=<4000,(c) t=4000.

1 , Di/D, model(9)—(14)—are shown in Figs. 7 and 8 for P40 and
Shg (x)= —=D ———=f(x), —1sxs1, 10P, respectively. Cross-sectioh of Fig. 1 corresponds to
48\/m 1+4D./D; (18 these results as well.
. o At Pe=10° and relatively short integration time§ig.
where Se= u,/(p1D1). The functionf(x) is given by 7(a)) the local Sherwood number is distributed almost sym-
|x|(1—x2/4)(1—x2)2 metrically about the central point=0 and has two almost

f(x)= . (19 equal maxima located to the right and left of the central
[22/315-X°/3+ 9x°120~ 3x/14+ X°/36] point. With increase of the integration time, the mass transfer
It is readily seen that $p(+=1)=0. in the central part of the interface intensifies, so that these
Figure 6 shows the local Sherwood numbegStalcu-  two maxima disappediFig. 7(b)). At long integration times
lated as per Eq918) and (19) for R=1 ande=0.01. The (t>500), the local Sherwood number slowly decreases with
profile of Shy (x) is characterized by a zero value in the time and its profile approaches a certain asymptotic shape,
middle of the interface and two local maxima, with the largerillustrated in Fig. Tc). At a long integration time the profile
maximum corresponding to the inner part of the flow alongis characterized by slow variation in the central part of the
the interface. Cross-sectioh of Fig. 1 corresponds to the boundary and a steep decrease near the boundaries.
results in Fig. 6. For Pe=10° and short integration times< 500, the dis-
The instantaneous local Sherwood numbers obtained vittibution of the local Sherwood number is likewise charac-
time-dependent numerical modeling for the above-mentionetkrized by two almost equal and symmetric maxi(fags.
case R=1, £=0.01,G,=1, 7o1=p»=D»=1) using the 8(a) and &b)). With increase of the integration time, these
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maxima are shifted from the central part of the interfacemodel, the profiles have a rather steep minimum between the

toward the boundaries. At larger times; 2000, the profile  two maxima, but unlike the former the minimum is located
likewise acquires an asymptotic shafiég. 8c)), qualita-  neary=—0.5 instead of the analytically predictee:0. The

tively different from that for Pe 10°. The profiles att magnitudes of the local Sherwood number at the maxima in
=5000 and 7000 are zoomed in FigdB8and are seen to 9

have two non-symmetric and nonequal maxima, the Iarge'r:ig' 8(d) are also significantly larger than those in Fig. 6.
one near the inner part of the torus boundary: () and the This shows that steady-state mass transfer has not yet been
smaller one—near the outer park=f—1). This agrees achieved in Fig. &l). Closer agreement with the analytical
qualitatively with the analytical resultLl8) and (19) as per model may perhaps be obtained for larger Peclet numbers,
Fig. 6. In agreement with the analytical boundary layere.g., Pe=10" or 16°. However, in this case much finer grids
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tion times. This is illustrated in Fig. 9. The calculations were
performed forR=10, e=0.01, G,;=1, and ,;=p»1=Dy;

=1. The profiles have two maxima with the larger maximum
near the inner part of the torus boundary, as predicted by the
analytical model, and the minimum closer to the center of the
interfacex=0 (cf. Fig. 8d)) and shifting towarck=—0.5 as
time increases. This deviation from the analytical prediction
can be explained by mixing of the admixture inside the bulk
of the Dean vortices, which affects the boundary conditions
for the interfacial mass transfer already at a very early stage
of the process.

The instantaneous concentration fields at large Reynolds
and Peclet numbers, R400 and Pe 10°, are shown in
Figs. 10 and 11. It is seen that the concentration isolines
reproduce the streamlines of the transverse flow in the bulk
of both liquids (cf. Figs. 2 and B This means that at the
large Peclet number, the mass transfer is almost completely
dominated by the convective transport due to the transverse
flow. However, diffusion represents the only mechanism of
mass transfer through the interface. As was shown in Ref. 3,
enhancement of the mass transfer is due to the steeper con-

and calculation over much longer times will be required,centration gradients at the interface created by the enhanced

which makes the process unaffordable.

convective transport of the admixture. This leads to a higher

Profiles qualitatively similar to the analytical one can mass flux even though the diffusion coefficients continue to

also be observed at larg® numbers at very short integra-

t= 1000

0.96
0.88
0.80
0.72
0.64
0.56
0.48
0.40
0.32
0.24
0.16
0.08
0.00

t = 3000

be low. The corresponding distributions of the local Sher-

t= 2000

FIG. 10. The instantaneous concentra-
tion contours at different time mo-
ments. The case of cocurrent flow,
G,;=1, £=0.1,R=100, and Pe 10°
(D=4472. 25 concentration contours
are equally distributed between=0
andc=1. The cross-sectioB of Fig.

1 is shown.

t = 4000
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0.08 FIG. 11. The instantaneous concentra-

0.00 tion contours at different time mo-
ments. The case of countercurrent
flow, G,;=—1, e=0.1, R=100, and
Pe=10° (D=4472. 25 concentration
contours are equally distributed be-
tween c=0 and c=1. The cross-
sectionB of Fig. 1 is shown.
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wood number over the interface are shown in Figs. 12 andhen decreases as the inner one is approached. In both cases

13. In the case of cocurrent flo#ig. 2) the local Sherwood the Sherwood number is larger in the areas where the liquid

10*

FIG. 14. Time histories of the mass
fraction m; in layer 2. R=100 (D
=4472. (a) Cocurrent flow,G,=1,
(b) countercurrent flow, G,;=—1,
1,=0.96.

number increases starting from the inner part of the flonmotion in the vortices is directed toward the interface. The
region,x=—1 (where the streamlines in the two layers be-rapid growth of Shf) nearx=0 should not be overesti-

come closer near the interfgcand then decays toward the mated, since a significant numerical error may be involved

outer partx=1. In the case of countercurrent floiig. 3 there(see Eq(15)), but still the distributions corresponding

the direction of the interfacial flow is opposite, and the localto higher values of the Dean number the higher values of
Sherwood number increases from the outer boundary an@) are radically different from those for-B0. Indeed, com-
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FIG. 15. (a) Time histories of the mass
fractionm; in layer 2 for different vis-
cosity ratiosu,,. R=50 (D=1118,
Pe=1C°, £=0.1. Cocurrent flowG,,
=1. (b) Isolines of the axial velocity
(1) and streamlines of the transverse
flow (2). R=50 (D=1118, Pe=10",
e=0.1. Cocurrent flow,G,;=1, ui»
=0.5.

parison of Figs. 6, 7, and 12 shows that the minimum of Sh s
at the pipe center, characteristic o, disappears for
higher values of D.

04

Time histories of the mass fraction; (Eq. (16)) in layer
2 are shown in Fig. 14 foR=100(D~4500 and the Peclet
number varying from 19to 1¢°. With increase of the Peclet =,

=05
- === hy=1
- My =15

number, the mass transfer slows down, since the limiting§
purely diffusional transport through the interface becomesz

weaker. The dimensionless time necessary to reach abolf 02
90% of complete equilibration of the admixture concentra-
tion in both layers can be estimated as Pe/10.

0.1
The effect of the viscosity ratigq, is illustrated in Figs.

15 and 16 for the cocurrent and countercurrent flows, respec /

tively. It is seen(Fig. 15@)) that for the cocurrent flow mass 0
transfer increases significantly fqu,,=0.5. This results
from the fact that a single-vortex system in each fluid laye

10'

10° 10°

l'FIG. 16. Time histories of the mass fraction; in layer 2 for different

characteristic of the valugs,,=0.96—1.5(cf. Fig. 2 is re-  yiscosity ratiosu;,. R=50 (D=1118, Pe=1C°, s=0.1. Countercurrent

placed in the case qi;»=0.5 by a double-vortex system in flow, G,,=—1.
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each fluid layefFig. 15b)). On the other hand, the effect of ®, steeply increase up ®®~40 (D~715), and at larger val-
viscosity ratiou,, on the mass transfer rate in countercurrentues ofR the quantity® almost saturates. The increase of the
flows is relatively smallFig. 16. mass transfer rate in this ca@d. Fig. 18 corresponds to the

To illustrate how the Dean vortices in two-layer systemsrangeR<50 (D<1118, which also correlates with the esti-
enhance the mass transfer, the mass fraatiprat several mated intensity of the vortices adjoining to the liquid—liquid
fixed time moments is plotted in Figs. 17 and 18 versus thenterface. The steep growth of the mass fractiand, there-
parameteR (or the Dean numbgifor several Peclet num- fore, of the mass transfer ratm the countercurrent case of
bers. It is seen that increaseRfrom 0 to approximately 10 Fig. 18 corresponds to Re25 (D<280) at Pe=1C°, to R
or 15(increase of D from 0 to about 45 or 10@ads to steep <20 (D<180 at Pe=10%, and toR~15 (D<100 at Pe
increase of the mass transfer rates in both the cocurrent and10°. This means that there exists an optimal value of the
countercurrent flows. Further increaseRf(or of the Dean parameterR (an optimal axial flow ratge which yields the
numbej does not yield any significant increase of the masamost effective mass transfer through the liquid—liquid inter-
transfer and sometimes even a slight reductibig. 17.  face. This optimal value depends on the Peclet number, on
Note that the trend of variation of the mass transfer rate wittthe pipe curvature, and on the mode of axial fl@@current
R (or with the Dean numbercorresponds to the trend of or countercurrent In any case, it is not very large and can be
intensity of the vortical motion illustrated in Fig. 5. In the roughly estimated aR~ 20, which corresponds to R&0 or
case of cocurrent flowFigs. 2 and £g)) the stream function D=~180 for e=0.1. From the practical point of view this
reaches its largest value B&=25 (D~280) and then virtu- means that optimal mass transfer enhancement is reached at
ally saturates versuR (or D). Figure 17 shows that the mass a moderate pressure drop, and there is no need to increase the
transfer affected by this flow, steeply intensifies upRo axial flow rate beyond a certain point. This conclusion is
~15 (D~100 and then likewise practically saturates. Thevalid for both the cocurrent and countercurrent cases, which
position of the maximum ofMm; in Figs. 1{a)—17c) is al-  do not differ too much.
most independent of the Peclet number. Thus, the depen- It should be noted that we did not find any well-defined
dence of the mass transfer rate on the paranieter on the  power scaling in the dependence of the intensity of the trans-
Dean numbercorrelates with the corresponding dependenceverse flow on the paramet& (or on the Reynolds and Dean
of the vortex intensity(cf. Figs. §a) and 17. In the case of numbers; cf. Fig. b As a result, there is no power-law scal-
countercurrent flow(Figs. 3 and &)) the maximum of the ing of the mass transfer rate versus the Peclet number either.
stream function of the transverse flow, as well as the quantity  Finally, it is emphasized that the effect of variation of
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dimensionless curvature of the pipeon the flow field and liquid—liquid interface are studied. Patterns of the Dean vor-
the mass transfer rate was studied in the present work fdices appearing in the transverse flow are reported. In particu-
two-layer flows in the range &f=0.01-0.1. Some additional lar, it is shown that the flow along the immiscible liquid—
numerical and experimental results on the effectsobn  liquid interface is in opposite directions in the cases of
single-layer fluid flows at the values efas high as 0.317 cocurrent and countercurrent axial flow. In the countercurrent
can be found in Ref. 7. Both works, however, fully dispensecase the Dean vortices are found to split into two vortices in
with the possible torsion of the pipe axis, which might limit each liquid layer, which leads to a certain decrease in the
application of the present results to helical pipes. A recentlyelocity of the transverse flow. It is also shown that the in-
published Ref. 25 and references therein shed some light a@nsity of these vortices does not increase monotonically
the effect of torsion on the transverse flow field in single-with increase of the Reynold®r Dean number, albeit it
fluid flows. The numerical and experimental results of theyirtually saturates at higher values of R& D). This results
latter work show that as pipe torsion increases at a constaf a similar behavior of the mass transfer rate versus the
Dean number, the structure of the transverse flow Changfﬁeynolds(or Dean number. Both the cocurrent and counter-
from two counterrotating vortices to a single-vortex type.cyrrent cases studied lead eventually to similar enhancement
Similar results for two-fluid flows are unavailable, and the of the mass transfer.
present group has undertaken such calculations, which will |t is shown that the Dean vortex flow considered can be
be reported separately. It is clea_r that a transition 1_‘rom &n effective tool for enhancement of the mass transfer
two-vortex secondary flow to a single-vortex type will re- yyqygh liquid—liquid interfaces, especially in cases when the
duce efficiency of the method of enhancement of the interfag:pmidt number is largée.g., Se-10°, as for proteins It is
cial mass transfer discussed in the present work. Therefo’@mphasized that the Dean vortices provide a stronger mixing
there should exist a limitation on the value of the dimensionyachanism than the Taylor—Couette counterparts. It is also
less pipe torsion, which guarantees a two-vortex structure Oémphasized that such a coiled-pipe-based bioseparator/
the secondary flow and the enhanced interfacial mass trangjgreactor should not contain any moving boundaries and the
fer. flow inside it can be sustained for a long time. There exists
an optimal value of the Reynoldsr Dean number(optimal
IV. CONCLUSIONS axial flow ratg which yields the most effective mass transfer
Two-liquid flows in a coiled circular pipe with vanishing enhancement. The optimal value was found to be about
torsion and their effect on the mass transfer through the=20 (or Re=50 and D~180), which is not very high and
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can be easily reached in practice. No definite scaling law for

Dean vortices-induced enhancement 345

h,=1, hy,=r, hg=1+ersing. (A1)

the diffused mass fraction versus the Reynolds, Dean, or Pe-

clet numbers was found.
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APPENDIX A: CONTINUITY, MOMENTUM, AND MASS
TRANSFER EQUATIONS IN HELICAL
COORDINATES (1,8, s)

The Lamecoefficients of the coordinate system shown in

%[r(lJrsr sing)u]+ a—ﬁa[(1+sr sinf)v]=0; (A2

Fig. 1 are ther, 6, ands projections of the momentum equations are
|
au+ au+uau v? esing ap+1 d 1 d Ltersingiull+ 1 d
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oW OW v oW esing £ COS6 The stream function) of the transverse flow is given by
—tu—+-— . + .
ot u ar r a6 1+srsm0uw 1+er smavw 1 Iy 1 Iy
101 9 " J U= f(1tersing) a6’ Y~ 1+tersing ar’ (A7)
-G+ =i —|————— —[(1+ i . : .
! R[ r o | Txersing grittersin a)w]} and is rendered dimensionless b$,8%/p,)*2
19 1 d . APPENDIX B: ANALYTICAL SOLUTION
+— —|———=— —[(1+ersinf)w]
r<odf|1l+ersing 9o FOR THE FLOW FIELD IN A SINGLE-LIQUID CASE
) FOR SMALL CURVATURE
+¢&? cost p_er*sing (A5) To derive the analytical solution for small curvature we
€ (1+a3rsin0)3u ® (1+ersing)’| y

whereG;=1 or G, for liquids 1 and 2, respectively.
Note that Re=R%/8, and D=8(2¢)? Re=(2¢)Y?R.
The mass transfer equation is

&C+ (9C+v Jc
ot Yar Ty a0
1 (la(rc) 1% esing dc
T Pelr or r296° 1-+ersing or
N gcosd 1 c AG
1+ersinfr 90| (A6)

assume that the axial velocity is of order 1 and the transverse
flow of ordere. Thus, separating all the terms of order 1 in
Eqg. (A5) and all those of ordee in Egs. (A2)—(A4), we
arrive at the following equations.

The continuity equation

19(ru) 1av_ B1
roor rae (B1)
and the momentum equations
ap 1&1&(ru)+1a2u 2 v| 26ing
T TRlar | o T2 a@ e/ T EW s,
(B2)
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1op 1(a[1a(rv) . 1 0720+ 2 du 5 A o dA/dr - dcy P o5
va0 T R|ar|r Tar TP T a0 P T T Yy Ty €9
= —gW? cosé, (B3)  where Eqs(C2) and(C3) were used and the coordinates
normal tox (normal to the interface; the coordinates are
14 l } i I’d—W}IO (B4) dimensionless Since at the interfac#=+ /2 we havex
Rrdr{ dr ' ==*r, and Eq.(C5) can be rearranged to the following form:
EquationgB1)—(B4) must be solved with the no-slip bound- 9cy ack aCk
ary condition ar =1. The solution i§*1° &_y2+ Pk(x)yW:Qk(X)Wa (C6)
R
w= Z(l_r2)’ (BS) where
dA/dr
3 r2 2o PKZSPQ( * r
U=¢ 1152(1—Z>(1—r )<sing, (B6) A at 6= /2. 7
3 Qu=—eP&
v=—s4608(r2—1)(7r4—23rz+4)cosa, (B7)
Solution of Eq.(C6) is subject to the following boundary
2 , conditions:
= —_— 4— i
p=e¢ 192r(2r 6r-+9)siné. (B8) Y=, Cy=Cuy, 8
This solution corresponds to small values of the Dean num-  y— 4 ¢,=c,,, (C9)
ber D=8(2¢)Y?Re=(2¢)Y?R?. The dimensionless stream
function of the flowy is given by (A7), (B6), and(B7) in B _ <9Cz__ dJcy
this limit (e—0) as per y=0, DZW_ Ly (C10
R r2 - -
Y=—¢ 1152r(l— Z)(l—rz)zcosa, (B9) y=0, &1=c, (C1y
and solution of the problerfC6)—(C11) yields'
where it is rendered dimensionless b§,6%/p;)2.
c _CoptKCop K(Cap—Coey) ) Z (12
27 1+« 1+« 2/
APPENDIX C: CALCULATION OF THE SHERWOOD
NUMBER WITHIN THE FRAMEWORK OF THE c _ Copt KCoy B (Cop—Co1) f E (C13
BOUNDARY LAYER MODEL 7 1+k 1+« 2)’
We assume that the admixture concentration varies onlywhere
in a thin boundary layer near the interface in both liquids 1 _poi2 c14
and 2, which is a plausible approximation based on the fact “~-21 - (C14
that Se>1. In the present casg = c,(r,6) and the dimen- x @V -W) 1172
sionless Eqgs(9) and (10) in the boundary layer approxima- Z=y de} , (C1H
tion take the form ! k
(9Ck Vk &Ck 11 &ch W(x :ZIX Pk(g)d C16
Ui YO G0 Pa 2 o I XA .
wheresU,=u, andeV,=v, are theu andv velocity com-  Given Eqgs.(C4), (C7), and(C16), we find
ponents in thekth layer, rEspectiver, and Pare the Peclet £(1— E214)(1— £2)?
numbers defined as peW,a,/Dy. In the present case we W(E)—W(x)=2In (1= X2 (1=x2)2 (C17)

assumep,;=uo1=1, as well asG,;=1. As a result,U,
=U,=U and V,;=V,=V. According to Eqgs.(B6), (B7),
and(B9),

A(r)

Uszina, (CZ)
_dA
V=4 cost, (C3
Re r2
A(r)=1—8r<1—z)(1—r2)2. (C4)

At the interfacef== #/2, Eq.(C1) takes the form

for 6= 7/2.
Therefore the mass fluy,=—(D,/a)dc,/dyly—¢ is
found from(C12), (C15, and(C17) as

. Dy (Cup—Cu1)
12 a\/; 1+K

ePe(Re/18x3(1—x%/14)%(1—x?)* 12
22/315- x°/3+9x°/20— 3x'/14+ x°/36

(C18
Obviously,j,=]j,. The Sherwood number is defined as
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