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. EFFECTS OF THE MAGNETIC FIELD MAGNITUDE AND DIRECTION

ON THE OSCILLATORY THERMOGRAVITATIONAL CONVECTION REGIMES
IN A RECTANGULAR CAVITY

A. Yu. Gel'fgat UDC 536.25

At the presént time great attention is being given to the study of the oscillatory re-
gimes of convective flows. In particular, it is interesting to find out what effect a mag-
netic field has on the convective flow oscillations in a conducting fluid. This problem has
been addressed in [1-5], which studied the magnetic field effect both on stationary and os-
cillatory convective flows in various systems that were heated from below. Systems that are
heated from the side are more difficult to analyze, since in this case it becomes necessary
to investigate the stability of the stationary flows arising at arbitrarily small temperature
differences. The magnetic field effect on such flows in the stationary case has been inves-

tigated in {6, 7]. 1In the present report, computation results are presented for threshold

. oscillatory instability and oscillatory convection regimes for a liquid in a uniform horizon-

tal or vertical magnetic field in a square cavity, whose vertical walls are at different
temperatures. !

The flow is described by a dimensionless system of free convection equations (Oberbeck—

Boussinesq approximation), in which the electromagnetic force is accounted for in the induc-
tion less approximation

6v/dt+(vV)v=—Vﬁ+Av+Gr9e,,+Ha’ (vXB) XB, ‘ (1)
div v=0, (2)
00/0(+ (VV)©=A8/Pr , (3)
subject to the boundary conditions ,
8] ..o=1 8], =94l U=0,l=0; le=0.l=v|y=0,l=0’ _ (4)

where © is the temperature, Pr = v/a is the Prandtl number, and o is the thermal conductiv- ~

ity. The cavity length is taken as the characteristic dimension. The remaining symbols have
their customary meaning. , '

The solution to the problem is sought in the form

M, M
V= Z cij (D) @ij(x, y); O=(1—x)+ Z dij(t)gii(x, y) - (5
i, j=1 i\ j=0

using the Galerkin method. The coordinate functions gij and ¢ jj are constructed from linear
combinations of Chebyshev polynomials of the first and second kind T;(x) and Uy (x):

&ij (%, y) = (Ti(x) +aiTis2(x)) (T;(y) +B;Tir2(y)), (6)
4 4 -
2 gf Tini(x) Z q1;Uj41-1(y)
=0 1=0
(%, y) = 4 4 (7)
- Z, 11U (x) Z -%l Tivi(y)
1=0 =0 <l

The coefficients aj, Bj, fgi, QQj are chosen in such a way as to satisfy all homogeneous
boundary conditions. This choice of the coordinate functions makes it possible to exclude
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TABLE 1
N %ax.}lream Max, stream
Hartmann nction value Yartmann function value
number vertical | horizon-| number vertical | horizontal
field ta field field
field
0 462 462 100 106 107
10 429 426 150 54.8 51.3
25 31 335 200 31 29.3
30 229 229 | 300 14.1 13.5
75 151 163 | H00. 3.19 5,04 .
4

the pressure from the Navier—Stokes equations and to transform the problem described by Egs.
(1) to (4) into a system of ordinary differential equations of the form

dXi/db=a;;X; () + bipX; () Xu(t) +Fi, i=1,2, ..., N, (8)

where X;(t) is one of the coefficients cj; or djj. The utilized variant of the Galerkin
method is presented in greater detail in>f8] :

The computations were carried out for six coordinate functions (M; = M, = 5) along each
direction (N = 72). The limitations on M, and M, are tied in with the dimensions of the
three-dimensional matrix bj sk containing N® quantities. However, evenfor sucha (relatively
small) number of coordinate” functions it is possible to obtain sufficiently accurate results.
In addition, the possibility of adetailed investigationof thestability of fixed pointsand
the relatively fast numerical time integration of the system (8) make it possible to arrive
at some qualitative conclusions which are unobtainable with various kinds of finite differ-
ence, or finite element, methods. All computations were carried out for Pr = 0.02, which
characterizes liquid metals or semiconductors.

‘

The fixed points of system (8) corresponding to a steadv-state solution of the system
(1) to (4) were determined by the Newton method.

\
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Table 1 shows the variation of the maximum value of the stream function ¢ (v4 = 3y/3y,
vy = 3y/3x) at the calculated fixed points with increasing magnetic field in the case Gr =
107, .It is evident from the results presented that the convective flow intensity is weakly
dependent on the magnetic field direction. For Ha = 75 the greatest difference of the max-
imum ¢ value amounts to about 87. On the other hand, strong magnetic fields influence the
convective flow structure in different ways. Shown in Figs. 1 and 2 are streamlines (on the
left) and isotherms (on the right) for Gr = 107 and Ha = 25, 50, and 100 (shown in a, b,
and c, respectively) in a vertical (Fig. 1) and horizontal (Fig. 2) magnetic field. It is
evident from these figures that an increase in theHartmann number in the horizontal magnetic
field leads to the merging of two stream function maxima in the core flow, whereas in the
vertical field the difference between the stream function maxima increases.

The investigation of the stability of the fixed points in the system (8) with respect
to infinitely small perturbations leads to the determination of the critical Grashof number
at which at least one eigenvalue of the Jacobian matrix of the system (8), evaluated at the
pertinent fixed point, has a nonnegative, real part. The computations, carried out using the
BIFOR2 program [9], have shown that such eigenvalues appear in complex conjugate pairs; this
points to the oscillatory instability of the steady state solution (1)-(4) [1, 9].

Shown in Fig. 3a is the neutral curve, indicating the dependence of the critical Grashof
number on the Hartmann number in vertical (continuous) and horizontal (dashed line) magnetic
fields. Shown below, in Fig. 3b, is the corresponding dependence of the dimensionless flow
oscillation frequency on the Hartmann number at the critical point. The neutral curves con-
sist of two parts, defined by different eigenvalues of the Jacobian matrix. The left section
of the curve at 0 < Ha < 12 corresponds to the instability of a free convection flow in a
weak magnetic field which displays insignificant influence upon the character and stability
of the flow. The right neutral curve branches at Ha > 12 describe a regime inwhich themag-
netic field is the major determinant. In this instance, a slight increase in the magnetic
field (12 < Ha < 30) abruptly changes the oscillatory flow frequency (Fig. 3b), and conse-

quently, also the nonstationary flow'structure. At Ha > 30 the critical Grashof number be-
gins to increase rapidly.
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- TABLE 2

Vertical field Horizontal field
1i, .
Ver Ycr A, 1 L | Ycr ' A, \ Ag
LI 320 0316 0.151 0139 389 0.310 0.133 ¢.041
2 311 Q.298 0.12% 0.036 307 0.298 U130 0.035
an =5 0.243 0.085 0.032 212 0.292 0.039 0.034
41 210 0.305 0 0 190 0.302 U 0
TABLE 3
' Vertical field ) Horizontal field
Ha ' .
I ver I Scr | Ag- 10 IA“'lﬂ' Yer I Yr l A0 | 1000
10 184 0.5 1.42 0.133 330 0.5 0.117 U195
20 430 .05 0.006 0.179 430 0.5 0.095 C.177
30 341 0.5 0.045 0.126 346 0.5 0.045 0.129
40 28Q 0.5 0 0 288 0.5 0 0

The indicated frequency jump in the oscillating convective flow for increasing Hartmann
numbers can be used as a criterion in experimental verification of the obtained results. Fur-,
thermore, as evidenced from Fig. 3, the magnetic field direction has a very weak effect on
the critical Grashof number value and the flow oscillation frequency. This fact constitutes
an important qualitative conclusion which easily lends itself to experimental verification.
The stronger suppression of oscillatory instability by the horizontal magnetic field can be
explained by the different interactions of the variously oriented field with flow in the
boundary layer found on the vertical cavity wall.

A further increase in the Hartmann number (Ha > 70) at fixed Gr and Pr numbers leads to
the appearance of several mutually slightly differing fixed points of the system of equations
(8). This means that for strong magnetic fields and sufficiéntly large Grashof numbers there
exist several close branches of the steady-state solution to the problem posed by Egs. (1)-
(4), each of them corresponding, for fixed Pr and Ha values, to a certain critical Grashof
number value. In this case, the appearance of one of the steady or oscillatory regimes de-
pends on the process history. This is illustrated in Fig. 3c, which shows the computed
points at which stability is lost in various steady regimes at Ha > 100 in a ver*tical mag-
netic field. It should be noted that, according to Fig. 3’ some of the steady regimes indi-
cated in Table 1 and in Figs. 1 and 2 are unstable or not unique and that they merely indi-
cate the general character of the convection flow variation when the magnetic field is in-
creased. ‘

The oscillatory regimes were investigated for the cases of Gr = 107 and Pr = 0.02 in mag-
netic fields varying both in magnitude and direction. For the indicated parameter values in
the absence of the magnetic field aperiodic convective flow oscillations were observed.

Shown in Fig. 4 are the stream function oscillations at the points having the coordinates
(0.25, 0.25), and below it, the frequency spectrum density of these oscillations. Upon the
application of a weak magnetic field with Ha = 10, the oscillations become periodic, and their
amplitude diminishes. This finding is illustrated in Fig. 5, which shows the stream function
oscillations at the same point at Ha = 10 (a — for the vertical, and b — for the horizontal
magnetic field). - It is evident from the figure that the oscillatory convection regimes in
magnetic fields having different orientations are substantially different. At the same time,
it follows from the -linear stability analysis (Fig. 3a, b) that near the point where the
stability is lost, the flow oscillations in variously oriented fields proceed at close fre-
quencies.

Listed in Tables 2 and 3 are average values and relative oscillation amplitudes
A_f-_-”um;—’mml/”m:nx‘i"fmml (9)

of the stream function and temperature at various magnetic field strengths for the point with
coordinates x = 0.25 and y = 0.25 (in Table 2) and x = 0.5 and v = 0.5 (in Table 3). It
follows from these results that for Ha *> 20 the average values of the functions and oscilla-
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tion amplitudes in the horizontal and vertical magnetic fields become close to each other,
which confirms the conclusions derived by linear stability analysis of steady-state flows.
As previously indicated, in weak magnetic fields at Ha < 20,.the characteristics of the os-
cillatory convection regimes also depend on the magnetic field direction.
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