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Azimuthal velocities of the rotating magnetic field driven flow in a cylindrical container
are measured in two different experiments for different aspect ratios (height/radius) of
the container and different strengths of the magnetic field. The measured velocities are
compared with the calculated ones. A good agreement between the experimental and
numerical results is obtained. This validates the experimental techniques, the computa-
tional approach, and also the time-averaged model widely used in calculations of RMF-
driven flows. It is shown that the average angular velocity normalized by the square
root of the magnetic Taylor number grows linearly for the aspect ratios exceeding 1,
and non-linearly for smaller aspect ratios. It is shown also that when the magnetic field
is sufficiently large, the average angular velocity grows proportionally to the Hartmann
number or proportionally to the square root of the magnetic Taylor number. It is shown
that the dependence of the average angular velocity on the aspect ratio can be roughly
approximated by a power of the ratio radius/height.

1. Introduction. Rotating magnetic fields (RMFs) are widely used in
metallurgical and crystal growth technologies for controlling the melt flows and
heat and mass transfer characteristics [1–3]. The rotating magnetic field induces a
time-averaged azimuthal force, which drives the flow in circumferential direction.
In its turn, non-uniform rotation of the liquid induces the azimuthal flow. All three
components of the flow affect the heat and mass transfer processes thus yielding a
powerful tool for flow and heat and mass transfer control. The RMF-driven flows
have been intensively studied during two recent decades both experimentally and
numerically (see [2–18] and references therein).

In spite of the large number of numerical studies of the RMF-induced flows,
there are only few experimental investigations [2–9]. Most of experimental studies
examine the influence of RMF on the temperature field or on the properties of
grown crystals [2, 8–11], so avoiding the study of the flow field itself. There are
very few attempts to measure the fluid velocities directly [3, 7, 14].

In the present study we report direct measurements of the azimuthal veloc-
ities of the RMF-driven flow in cylindrical containers of different aspect ratios
(height/radius). The measured velocities are compared with the results of calcula-
tions, which, in their turn, are performed by two independent approaches. In this
way we perform cross-validation of the experimental methodology with the calcu-
lations. The main set of results of the present study consists of the experimentally
measured and numerically calculated dependencies of the azimuthal velocity in
different radial and axial cross-sections of the container on the parameters of the
RMF inductor and the geometry of the cylindrical container. A good agreement
between the experimental and numerical results provides a rigorous experimental
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validation of the widely used time-averaged RMF-driven flow model introduced in
[12, 13].

2. Experimental technique and methodology. The experimental
studies were performed by two different techniques. In the first series of experi-
ments the azimuthal velocities were measured directly in different radial and axial
cross-sections of the container for varying values of the magnetic field strength.
In the second series the melt angular velocity was measured indirectly using the
measurements of the pressure drop between the points located at the sidewall
and at the center of the upper cover. The eutectic alloy InGaSn was used as a
working liquid in both cases. The melting temperature of InGaSn is 10.5◦C, and
for temperature 20◦C its electric conductivity is σ = 3.3 × 106 Ω−1m−1, density
ρ = 6350 kgm−3 and kinematic viscosity ν, according to different sources, varies
from 3 × 10−7 to 3.5 × 10−7 m2s−1.

In the first series of experiments the measurements were carried out in a
cylindrical container made of acrylic plastic (Fig. 1). The inner diameter of the
container was D = 2R = 60 mm. The height was varied by means of different
cylindrical inserts, and in different experiments it was H = 25, 30, 40, 50 and
60 mm. In all experiments the container was completely filled with the alloy. To
ensure wettability of the walls, the alloy was forcefully rubbed into the solid walls
until a metallic film appeared on them.

The container with the alloy was axially aligned with the RMF inductor and
positioned symmetrically with respect to its lower and upper ends. The RMF
inductor was produced as an analog of the stator of a three-phase asynchronous
electrical engine with the inner diameter of 213 mm and the height of the magnetic
circuit of 100 mm (Fig. 1). The RMF inductor had 18 slots containing the coils with
130 windings each. The coils were connected into the two-pole circuits (2p = 2)
with two parallel branches. The maximal value of the magnetic field strength in
the center of the inductor can reach 20 mT.

The RMF distribution in the working area of the inductor is given by a cal-
ibration curve, showing the dependence of the magnetic field strength B on the
electric current I in the coils (Figs. 2 and 3). It is seen that in the area occupied
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Fig. 1. Sketch of the exper-
imental setup used in the first
series of experiments.
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Fig. 2. Distribution of the
magnetic field strength over
the diameter D = 2R and the
height H at different values of
the electric current in the in-
ductor coils.

with the cylindrical container (r ≤ 30 mm) the inhomogeneity of the magnetic
field distribution does not exceed 0.5% for B ≤ 4 mT, and 3% for B ≤ 7.5 mT.

Velocity was measured by a special probe, which was constructed as a conduc-
tive anemometer with its own magnetic field [22, 23]. The conductive anemometer
was made from a thin ceramic tube 3 mm indiameter. A longitudinally magne-
tized permanent magnet was mounted at one end of the tube. The diameter of
the magnet is 2.5 mm and the magnetic field strength at its end is 0.3 T. The elec-
trodes made from 0.1 mm diameter copper wire were mounted at the two opposite
sides of the magnet and aligned along its axis. The electrodes ends protruded by
0.4 mm from the magnet end. Other ends of the electrodes passed through the
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Fig. 3. Calibration curve of
the RMF inductor in the center
of the working volume.
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ceramic tube and were attached to the terminal block. The whole probe, except
the ends of the electrode near the magnet, was covered with lacquer insulation.

The probe was fixed in the holder of the traverse gear and could move along the
radial 4 mm wide slot located in the upper cover of the container. After the probe
was positioned at a necessary point, the slot was closed by a special plug, which
was made flush-mounted with the container upper cover. The accuracy of the
probe location in the radial and vertical directions was 0.1 mm. The voltage from
the conductive anemometer was applied to a nano-voltmeter P341, from which
it was transmitted to a programmable digital voltmeter B7-43. As a rule, each
measurement was repeated not less than five times. Each of the five measurements
was an average of 200 readings, which were registered by the voltmeter B7-43 at
the same time intervals.

The probes were calibrated on a special calibration stand made as an annular
duct filled with the InGaSn alloy and rotated mechanically with different angular
velocities. Examples of the obtained calibration curves are shown in Fig. 4.

Measurements by the above described probes were possible for the container
aspect ratios larger than H/R ≈ 0.8. At smaller aspect ratios the probe-induced
disturbances caused significant errors. Measurements for smaller aspect ratios
called for another experimental approach, whose description follows. Three cylin-
drical cavities, made of acrylic plastic, with the inner diameter D = 2R = 40 mm
and three different heights H = 2, 5 and 10 mm were used. Each cavity had
two holes for pressure measuring, which were located at the center of the top
cover and at the mid-height of its sidewall (Fig. 5). The holes were connected to a
differential manometer consisting of a two-liquid (InGaSn and ethanol) hydraulic
amplifier with an expanding tank and a tilted measuring U-tube [23]. The cavities
were axially aligned inside the RMF inductor and arranged symmetrically with
respect to its ends (Fig. 5). In this series of measurements we used a RMF induc-
tor that had 4 poles with the coils on them. In this case, a symmetrically rotating
magnetic field can be induced if the phase shift between the pairs of opposite coils
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Fig. 4. Calibration curve of the measuring probe.
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Fig. 5. Sketch of the exper-
imental setup used in the sec-
ond series of experiments.

is 90◦. The latter was achieved by a sequential connection of a capacitor in the
circuit of one pair of the coils. The capacitance of the capacitor was calculated in
advance. The electric currents in the circuits of each coil pairs were equalized by
an adjustable resistor.

The magnetic field strength was varied by varying the voltage of the power
supply. The calibration curves, showing the dependence of the magnetic field
strength B on the electric current I in the coils, were obtained in the same way
as in the first measurement series. The inhomogeneity of the magnetic field in the
area occupied with a cavity did not exceed 3–4%.

The measurements were processed as follows. For each cavity the depen-
dence of the pressure drop on the electric current ∆P = P1 − P2 = f(I) was
measured. These dependences were recalculated into functions vθ = f(B), where
vθ =

√
2∆P/ρ is the azimuthal velocity of the melt near the cavity sidewall, or into

functions Ω = f(Ha), where Ω is the fluid angular velocity, and Ha = BR
√

σ/ρν
is the Hartmann number. Note that in both experimental series the actual value
of the magnetic field Beff differs from its amplitude value BA, used in calculations,
by the factor of

√
2, so that Beff = BA

√
2. Obviously, the value of the Hartmann

number, used in the calculations below, must be changed by the same factor, i.e.,
Hacalc = Haexp

√
2.

3. Formulation of the problem and numerical techniques. The
mathematical problem was formulated on the basis of the model that accounts only
for the time-averaged effect of the electromagnetic force induced by the rotating
magnetic field. This model was introduced in [12, 13] and then was widely used
in various numerical studies (see, for example, [14–18]). The fluid flow driven by
the rotating magnetic field

B0(r, θ, t) = B0
r

Ri
[er sin(pθ − ωt) + eθ cos(pθ − ωt)] (1)

is described by the incompressible continuity and momentum equations

∇ · v = 0, (2)

∂v
∂t

+ (v · ∇)v = −∇p + ∆v + Tam [−∇(φ1 + φ2) + reθ] (3)

where (r, θ, z) are the cylindrical coordinates, Ri is the radius of a RMF inductor,
ω is the circular frequency of magnetic field rotation, v = {ur, uθ, uz} and p are
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the fluid velocity and pressure, respectively, and φ1 and φ2 are parts of the electric
potential of the RMF-induced currents. The scales of length, time, velocity and
pressure used to render Eqs. (1)–(3) dimensionless are R, R2/ν, ν/R, and ρν2/R2,
respectively. With these scales the RMF forcing is defined by the rotating magnetic
field Taylor number Tam = B2

0R4σω/2ρν2. The parts of the electric potential φ1

and φ2 are defined by the following problems

∆φ1 =
1

Reω

(
1
r

∂ur

∂ϕ
− ∂uϕ

∂z

)
,

∂ϕ1

∂n

∣∣∣
Γ

=
(
ez · n

|n|
)

r. (4)

∆φ2 =
1

Reω

(
∂ur

∂z
− ∂uz

∂r

)
,

∂ϕ2

∂n

∣∣∣
Γ

= 0. (5)

Here Reω = ωR2/ν is the rotating magnetic field Reynolds number. The three
governing parameters Ha, Tam and Reω are related as:

Tam =
1
2
Ha2Reω, (6)

so that only two of them are independent. We have found that sometimes it is
more convenient to use the Hartmann number instead of the Taylor number.

The RMF Reynolds number Reω is usually very large and in most numerical
works the right-hand side (r.h.s.) of Eqs. (4) and (5) is neglected. In this case,
φ2 = 0 and the problem (4), (5) for φ1 allows for an analytical solution [25]. We,
however, prefer not to neglect the effect of Reω and solve the problems (4), (5)
and (6), (7) numerically. Our computational experiments show that the r.h.s. of
(4) indeed can be neglected for Reω > 105, which is consistent with the similar
conclusion made in [14].

The calculations were carried out using two independent numerical approaches,
which cross-validated each other. The first approach is based on the global Galerkin
method [19] and calculates the steady solution directly by the Newton method.
The second one is based on the finite volume discretization in space and applies
the SIMPLE time-integration scheme to reach the steady-state solution. This ap-
proach has been successfully used for calculating the rotating flows in a cylinder
[20] and is applied here for validation purposes only. The calculations performed
by the global Galerkin method used from 20 to 60 basis functions in each spatial
direction, depending on the values of the aspect ratio and the RMF Taylor number.
The calculations by the finite volume method were done using stretched staggered
grids with the number of nodes varying from 50 to 200 in each spatial direction.
The results obtained by the both numerical methods differed in less than 1%. The
difference in the results is caused mainly by the discontinuity in the boundary
condition for the electric potential (5). This discontinuity is treated differently by
the two methods that leads to certain, however, negligible discrepancies.

To compare with the experimental results, it is necessary to remove the un-
certainty in the kinematic viscosity value of the InGaSn alloy. Upon completion
of the first series of calculations, it has been found that the best agreement with
the experimental and numerical results is reached for ν = 3.03 × 10−7 m2s−1,
which falls within the range of the values reported in literature. This yields for
the first series of the experiments described above: Reω = 9.33 × 105, Ha =
1.24 × 103B, Tam = 7.20 × 1011B2, and for the second series: Reω = 4.15 × 105,
Ha = 0.83 × 103B, Tam = 1.42 × 1011B2. Here B is the amplitude value of the
magnetic field measured in Teslas.

It is emphasized that in the following we consider only steady states of the
RMF-driven flows regardless of their possible instability [17,18] or multiplicity
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[21]. We are aware of the fact that according to the results of [17,18] the flow
becomes unstable at Tam > 105. We tried to reproduce these results using the
global Galerkin method [19], which is developed for such kind of stability studies.
However, we have failed to reach the convergence in the critical RMF Taylor
number. A good agreement between the experimental measurements and the
steady state calculations, obtained up to Tam > 6×106, shows that the instability,
if exists, does not change the flow pattern significantly.

4. Results. The measurements performed for different values of the as-
pect ratio and the Hartmann (or RMF Taylor) number were compared with the
numerical results. Only steady flows regardless of their stability were calculated in
the numerical study. A characteristic example is given in Figs. 6–8 for the series
of experiments in the container with the aspect ration H/R = 2. On these graphs
the experimental and numerical results are shown as points and solid lines, respec-
tively. Fig. 6 illustrates the dependence of the azimuthal velocity at point r = R/2,
z = H/2 at different RMF Taylor numbers (i.e., different values of the magnetic
field strength). Velocity profiles at different radial and axial cross-sections are
shown in Figs. 7 and 8, respectively.

Comparison of the experimental and numerical results (Figs. 6–8) shows a
good agreement everywhere except the points located near the cylinder sidewall.
There the accuracy of the experimental measurements by the above described
probe is significantly lower, so that the deviation between the numerical and the
experimental results exceeds 10% .

Fig. 6 shows the dependence of the azimuthal velocity at point r = R/2, z =
H/2 on the RMF Taylor number for the cylinder with the aspect ratio H/R = 2.
It is seen that the measured values perfectly fit the numerical curve. Note that
according to the numerical results of [17, 18], the flow is unstable beyond Tam >
105. Thus, the deviation of the experimentally measured time-averaged velocity
from the result of the steady-state calculation can be expected at larger Tam,
when pulsating components gather significant part of the flow energy. However,
no deviation is observed. This means, assuming that the instability was detected
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Fig. 6. Dependence of the dimensionless azimuthal velocity on the RMF Taylor number
at point r = R/2, z = H/2. Calculation and measurements for H/R = 2, B = 2.1 mT,
Tam = 3.03 × 106, Ha = 2.58.
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correctly, that the azimuthal component of the flow is not noticeably affected by
the instability. A larger effect can be possibly observed in the meridional flow.

Fig. 7 shows some profiles of the azimuthal velocity in different radial cross-
sections of the meridional plane. As mentioned, the agreement between calcula-
tion and measurement is observed everywhere except the cross-section r = 25 mm,
which is located close to the cylinder sidewall. As mentioned above, precise mea-
surements are impossible in the region.

The azimuthal velocity profiles in the axial cross-sections are shown in Fig. 8.
Note that the shape of the profiles is almost independent on the axial coordinate.
As above, the disagreement between experiment and calculation is observed only
close to the cylinder sidewall (i.e., r = R).

Fig. 9 compares the measured and the calculated averaged angular velocity
for different aspect ratios and different values of the RMF Taylor (or Hartmann)
number. For all values of the aspect ratio, H/R = 0.833, 1.333, 1.667 and 2, there
is a good agreement between the experimental and numerical results. Growth of
the aspect ratio reduces the effect of friction at the top and at the bottom. As a
result, the average rotation grows with the increase of H/R.

The measurements in the second series of experiments were possible only at
relatively large values of the Hartmann number, Ha > 8, which implies Tam > 7.5×
106. This restriction is caused by the accuracy of the pressure drop measurements
by the above manometer system. The obtained results, showing the dependence of
the averaged angular velocity on the RMF Taylor number for H/R = 0.1, 0.25 and
0.5, are shown in Fig. 10. As expected, with the decrease of the aspect ratio H/R
the angular velocity decreases. This leads to further measurement restrictions, so
that at H/R = 0.1 reliable results could be obtained only for Ha > 20.

The comparison of all experimental and numerical results for all values of the
aspect ratios considered is illustrated in Fig. 11 as a dependence of the averaged
angular velocity on the aspect ratio. The angular velocity is scaled by

√
2Tam =

Ha
√

Reω. As seen from the figure, the results agree better for larger values of the
aspect ratio. It should be emphasized that starting from H/R = 1 and for larger
aspect ratios the dependence of the angular velocity on the Hartmann number is
linear, assuming that the RMF Reynolds number is constant. Consequently, this
dependence behaves as

√
Tam for large aspect ratios.

From the practical point of view it would be interesting to estimate how the
average angular velocity varies with the variation of the container aspect ratio and
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Fig. 8. Azimuthal velocity profiles in different axial cross-sections. Calculation and
measurements for H/R = 2, B = 2.13 mT, Tam = 3.12 × 106, Ha = 2.62.
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Fig. 9. Dependence of the average angular velocity on the Hartmann number for differ-
ent aspect ratios. Measurements of the first series of experiments, 0 < Ha < 3.5.
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Fig. 10. Dependence of the averaged angular velocity on the Hartmann number for
different aspect ratios. Measurements of the second series of experiments, 5 < Ha < 35.

the magnetic field. Such an attempt is made in Fig. 12, where we use the data of
two experiments reported here and the results of another experiment [7]. Note that
the average angular velocity in Fig. 12 is dimensional (rad/s). It happens that the
linear dependence on the Hartmann number can be found if the average angular
velocity is scaled by (H/R)1.8 for small aspect ratios (H/R < 0.5, Fig. 12a), by
(H/R)1.5 for the aspect ratios close to unity (0.8 < H/R < 2, Fig. 12b) and by
R/H for large aspect ratios (H/R > 2, Fig. 12c). These scalings yield for large
Hartmann numbers:

Ω ≈ −7.6 + 0.65Ha
(

H

R

)1.8

for H/R < 0.5; (7)

Ω ≈ −0.96 + 1.6Ha
(

H

R

)1.5

for 0.8 < H/R < 2; (8)
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Fig. 11. Comparison of the measured and calculated values of the averaged angular
velocity.
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Fig. 12. Scaling of the average angular velocity by the aspect ratio and the Hartmann
number for (a) H/R ≤ 0.5, (b) 0.8 ≤ H/R ≤ 2, (c) H/R > 3 (data is taken from [7]).
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Ω ≈ −0.75 + 1.25Ha
H

R
for H/R > 2. (9)

Hence, it is expected that at large Ha the average angular velocity varies as
Ha(H/R)α, where α also depends on the aspect ratio, but varies slowly from
α ≈ 2 at small H/R to α ≈ 1 at large H/R.

5. Conclusions. The experimental and numerical results reported here
yield a quantitative validation of the RMF driving force time-averaged model
formulated in [12, 13] and widely used in various studies (e.g., [12–18]).

Obviously, the rotating magnetic field induces a rather intensive rotating mo-
tion in a cylindrical container filled with an electrically conducting fluid. The
reported experimental results show that with the increase of the relative height
of the cylindrical container the average rotation of the fluid increases faster at
lower aspect ratios of the cylindrical container (H/R < 1). Beyond the value of
H/R = 1 the growth is linear. Moreover, at large aspect ratios, i.e., H/R > 1, the
dependence of the averaged rotation on the Hartmann number is linear that im-
plies that the average rotation at the fixed RMF Reynolds number grows as

√
Tam.

The dependence of average rotation on the aspect ratio of the container is more
complicated. It is shown that at large Hartmann numbers this dependence can be
roughly estimated as (R/H)α, where power α varies from α ≈ 2, characteristic for
very low cylinders, to α ≈ 1 for high cylinders.
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