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Abstract

A computational approach to the study of three-dimensional instabilities of flows in a Czochralski crucible is

proposed. The flow is driven by buoyancy, thermocapillarity and rotation of the crystal and the crucible. The thermal

boundary conditions account for the prescribed temperatures or heat flux, as well as convective and radiative heating or

cooling of the boundaries. The numerical approach is based on finite volume discretization and consists of a Newton-

type solver for the calculation of the steady flow states and an Arnoldi solver for the solution of the eigenvalue problems

associated with the linear stability of the flow. Preliminary test calculations and examples of stability studies for the

Czochralski melt flow are reported.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the axial symmetry of the
melt flow in a Czochralski crucible can be broken
by an instability, which leads to three-dimensional
non-stationary flow patterns, which, in their turn,
impair the quality of a growing crystal. Prediction
of the instability and understanding its physical
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mechanisms are necessary to find the means of
flow control, which are capable of stabilizing the
flow. However, this problem remains a challenge
for computational modeling. Most numerical
studies approach this problem by heavily CPU-
time consuming three-dimensional unsteady com-
putations (e.g., Refs. [1,2]), which hardly can
provide the necessary answers when parametric
analysis is needed. Another possibility is the three-
dimensional stability analysis of a basic axisym-
metric steady flow, which can be easily obtained as
d.
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a numerical solution of the corresponding non-
linear axisymmetric problem. This leads to a
generalized complex eigenvalue problem, which is
the bottleneck for all the numerical analyses of
such kind. Overcoming this difficulty allows one to
perform an effective parametric study of possible
flow instabilities and provide the necessary prac-
tical answers. In the case of crystal growth, for
example, stabilizing the primary instability would
mean stabilizing the process as a whole, which is
extremely desirable for various crystal growth
technologies.
In the present paper, we describe preliminary

results on three-dimensional stability of axisym-
metric flows in the Czochralski model and
simplified flow models related to crystal growth
processes. In the previously considered problems,
where the onset of three-dimensional instability
was studied, the flows were driven by convection
or rotation (see Refs. [3–7] and references therein).
These problems were solved mainly by the global
Galerkin method with specially constructed non-
orthogonal basis functions satisfying all the
boundary conditions and the continuity equation
[5]. This global Galerkin approach is well suited
for flows in simple rectangular or cylindrical
geometries, though it cannot be applied to much
more complicated configurations of the crystal
growth processes.
To approach practically important problems it

is necessary to develop a stability solver for
numerical methods based on a discretization of
the flow region. Such a solver, developed for the
finite volume discretization scheme, is described
here. Similar stability solvers were described in
several publications published during the last
decade [5,8–10], but none of these solvers seem
to be capable of handling the complicated crystal
growth-related problems involving complicated
geometries and nonlinear boundary conditions.
The main blocks of the solver described below can
be easily implemented for other discretization
schemes.
In the following we briefly describe the pro-

blem and the methods used, report several
comparisons between results obtained by the
Galerkin and finite volume solvers, and show also
examples of stability studies for the Czochralski
crystal growth model for the parameters taken
from Refs. [1,2].
2. Description of the problem and numerical method

The model of the Czochralski melt flow is
sketched in Fig. 1. The flow region is a cylindrical
crucible, which can be heated or cooled arbitrarily
at its bottom and sidewall. The bottom and the
sidewall are no-slip. The crystal and the crucible
can rotate around their common axis. The central
part of the upper boundary simulates the growing
crystal. It is no-slip and can rotate independently
from the crucible. Another part of the upper
boundary is the melt surface, on which the
thermocapillary force can act. The melt surface is
assumed to be flat. Therefore the flow is driven by
(i) buoyancy convection, (ii) thermocapillary con-
vection, and (iii) rotation. Clearly, this is a
simplified model, which does not account for
many important phenomena, however allows us
to study the main features of the flow instability.
The melt flow is described by the momentum,

continuity and energy equations in the Boussinesq
approximation. Assuming that the problem is
completely axisymmetric and that the basic
axisymmetric flow Uðr; zÞ;Pðr; zÞ and Tðr; zÞ can
be calculated, we consider the three-dimensional
infinitesimally small perturbations of the basic
state. The perturbations are defined as
fuðr; zÞ; pðr; zÞ; tðr; zÞg exp½iðkyþ ltÞ�: The linear sta-
bility analysis leads to an eigenproblem for the
time amplification rate l: It is well known that the
resulting eigenproblem is defined in the ðr; zÞ plane
and contains the azimuthal wave number k as an
additional governing parameter [5].
Assuming that the flow region is mapped onto a

certain grid and that the discretization at a grid
node ðri; zjÞ is known, the generalized stability
problem can be expressed in the following form:

luij ¼ � ½ðu 
 rÞU�ij � ½ðU 
 rÞu�ij � ½rp�ij

þ ½Du�ij þ Grtij ;

½r 
 u�ij ¼ 0; ltij ¼ � ½ðU 
 rÞt�ij � ½ðu 
 rÞT �ij

þ Pr�1½Dt�ij : ð1Þ
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Fig. 1. Sketch of the problem.
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Here ½
�ij denote the discretization at a node, Gr

and Pr are the Grashof and the Prandtl numbers,
respectively. Eq. (1) apply to all the inner nodes.
Additional equations describing the boundary
conditions must be supplied in all the boun-
dary nodes. These equations can contain thermo-
capillary forces, rotation of the boundaries (i.e.,
of the crystal or the crucible), as well as the
terms describing heating or cooling of a certain
boundary.
The complete set of the linearized equation leads

to the generalized eigenproblem

Ax ¼ lBx; (2)

where x is the vector of unknowns, and A and B

are complex matrices. Due to the continuity
equation and the boundary conditions the matrix
B is singular, so that problem (2) cannot be
transformed into a standard eigenvalue problem.
The whole computational process is separated

into two main blocks. The first block yields the
steady axisymmetric base state solution and the
second one computes several leading eigenvalues
of the linearized stability problem. In our codes
the base state solution is calculated by the Newton
iteration with parameter continuation where ne-
cessary. The Newton method is formulated in two
versions: Jacobian-full and Jacobian-free. Each
Newton iteration needs a solution of systems of
linear equations, which is solved by the BICG(2)-
stab algorithm. Our experience shows that the
calculation of steady state, even for complicated
cases, does not cause significant problems if a
proper parameter-continuation is chosen. The
iterative solver can be replaced or optimized for
a certain problem, however a possible speedup
seems to be negligible compared with the CPU
time consumed by the eigenvalue solver.
The eigenproblem (2) is solved by the Arnoldi

iteration in the shift-and inverse-mode

ðA � sBÞ�1Bx ¼ mx; m ¼ 1=ðl� sÞ; (3)

where s is a complex shift. It should be noted that
this approach succeeds when the shift s; which can
be complex, is chosen close to the leading
eigenvalue l: It is an easy task for benchmark
problems, where the estimate of l is known.
However, it is an additional difficulty for each
new problem where no information on the stability
properties of the flow is available.
Each Arnoldi iteration requires the solution of

the linear equations system ðA � sBÞx ¼ b: The
usual approach is an iterative solution of these
equations. The iterative solution usually requires
too many iterations, because the right-hand side
vector b changes completely from one iteration to
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another, so that no good initial guess for the
solution can be supplied. We have realized another
approach, in addition to the iterative one, which
builds the LU decomposition of the sparse matrix
ðA � sBÞ: This consumes much more computer
memory and a certain amount of CPU time for
calculation of the LU decomposition. At the same
time, the consequent Arnoldi iterations become
fast, which allows us to calculate quite many
leading eigenvalues. The number of the eigenva-
lues in different runs varies from 10 to 100. This
approach can fail when the matrix is ill-condi-
tioned. Note, that the iterations can diverge as
well, so that two different linear solvers give us a
possibility to attack more problems.
To validate the developed code we consider a

series of test problems for the flows driven by
buoyancy convection only, or thermocapillary
convection only, or by rotation only. Tables 1–3
report the corresponding comparisons with the
Table 1

Critical parameters for buoyancy convection in a cylinder with parab

Finite volume, 90� 90 grid, present calculation

Grcr ocr=
ffiffiffiffiffiffiffiffiffi

Grcr
p

k ¼ 0 512,964 0.4224

k ¼ 1 325,625 0.2623

k ¼ 2 96,254 0.1970

k ¼ 3 312,483 0

k ¼ 4 312,612 0

k ¼ 5 810,000 0

H=R ¼ 2;Pr ¼ 0:03:

Table 2

Critical parameters for swirling flow in a cylinder with rotating lid

Finite volume, 100� 100 grid, present calculation

Recr ocr

k ¼ 0 2564 0.2336

k ¼ 1 3308 0.06803

k ¼ 2 2993 �0.01615

k ¼ 3 3919.5 �0.1112

k ¼ 4 5890 �0.1988

k ¼ 5 6767 �0.8353

H/R ¼ 2.
independent calculations of Refs. [4,6,11]. Details
on the problem formulations can be found in the
cited papers. The satisfactory results of the
comparison allow us to continue the study for
more complicated flows in the Czochralski config-
uration.
3. Results for Czochralski configuration

For the preliminary calculation we studied the
flow of the melt of LiCaAlF6 ðPr ¼ 1:4Þ considered
in Ref. [1]. In this case the crucible sidewall and the
crystal surface are isothermal, the melt upper
surface, the crucible bottom are thermally insu-
lated. The crystal rotates with constant angular
velocity and the crucible is motionless. As noted
above, the flow is driven by buoyancy, thermo-
capillarity and rotation. Other details and para-
meters can be found in Ref. [1]. Since both
olic heating from the side

Galerkin method, 30� 30 functions, result of Ref. [4]

Grcr ocr=
ffiffiffiffiffiffiffiffiffi

Grcr
p

513,157 0.4600

324,920 0.2614

95,851 0.1977

318,059 0

311,111 0

809,618 0

Galerkin, 30� 30 functions, result of Ref. [6]

Recr ocr

2584 0.23486

3308 0.06828

2996 �0.01592

3919 �0.1116

5939 �0.2000

6586 �0.8334
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Table 3

Critical parameters for thermocapillary convection in a cylindrical liquid bridge

Pr kcr Finite volume, 100� 100 grid, present calculation Result of Ref. [11]

Mncr ¼ Pr Macr ocr Mncr ¼ Pr Macr ocr

0 2 1784 0 1793 0

0.01 2 1896 0 1901 0

0.02 2 2057 0 2062 0

0.05 2 3520 0 3522 0

0.06 3 13,270 171 13,251 179

0.07 2 18,319 54.8 18,302 54.3

0.08 2 17,384 66.2 17,356 65.7

0.1 2 16,130 74.9 16,094 74.2

0.16 2 14,530 75.2 14,504 75.0

0.2 3 13,290 396 13,275 393

0.3 3 10,531 312 10,545 317

0.7 3 7575 187.4 7570 187

1.0 2 2533 64.2 2551 65.0

2.0 2 1397 40.1 1407 40.1

4.0 2 997 28.3 1002 28.5

H/R ¼ 1.
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buoyant and thermocapillary forces are created by
the temperature gradient, we considered the
difference between the crystal and the sidewall
temperatures DT as a critical parameter. Using the
thermophysical properties of LiCaAlF6 [1] the
Grashof and Marangoni numbers can be recalcu-
lated as

Gr ¼ gbR3
crucibleDT=v2 ¼ 6:16� 103DT

and

Ma ¼ �gRcrucibleDT=rvk ¼ 92:26DT :

Fig. 2 shows how the critical temperature differ-
ence varies with the rotation of the crystal. The
lines correspond to the marginal instability of the
most critical modes corresponding to the azi-
muthal wave numbers k ¼ 0; 1; 2 and 3. To
determine the stable region the left and lower
envelope of all the curves should be considered. It
is seen that at low values of the crystal angular
velocity Recrystalo400;Recrystal ¼ OcrystalR

2
crucible=v;

the melt flow remains stable at rather large
temperature differences, DT4100K. When the
crystal Reynolds number exceeds the value of 400
the critical temperature difference steeply drops
below 20K. Zeng et al. [1] reported that at
DT ¼ 50 �C the instability sets in beyond
Ocrystal ¼ 15 rpm with k ¼ 1; which corresponds
to Recrystal � 490: According to the present results
the instability sets in due to an axisymmetric
perturbation at slightly lower angular velocity.
Possibly, the three-dimensional pattern found in
Ref. [1] corresponds to the secondary instability of
the oscillatory axisymmetric motion.
For another example we considered the config-

uration of Ref. [2]. In this case the melt flow of
LiNbO3 ðPr ¼ 13:6;Tmelting ¼ 1526KÞ is consid-
ered. The crucible sidewall is heated by a constant
heat flux q � 104 W and the upper surface is
cooled by the radiation to the enclosure, whose
temperature is 0:8Tmelting: The present calcula-
tions, performed for the parameters of Ref. [2],
show that the steady axisymmetric flow is unstable
to three-dimensional perturbations with the azi-
muthal wave number varying from 0 to 13.
Detailed results are not presented here due to lack
of space. Thus, we expect that the pattern of the
resulting three-dimensional flow will depend
strongly on the initial conditions. The full un-
steady three-dimensional calculations of Ref. [2]
resulted in a three-dimensional pattern with five-
fold azimuthal symmetry ðk ¼ 5Þ: Our stability
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Fig. 2. Stability diagram of the melt flow in the Czochralski configuration considered in Ref. [1].
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calculations show that this mode has the largest
growth rate. However, we expect that patterns
with other azimuthal symmetry could be found if
other initial conditions will be specified.
Patterns of the fastest growing perturbations for

the configuration of Ref. [2] show that the
instability sets in at the free melt surface. The
instability is caused by the thermocapillary force,
which is large because of a steep temperature
gradient there. The steep temperature gradient, in
its turn, is the consequence of the heating from the
side and cooling from the above. The heating
cannot be decreased since then the melt tempera-
ture would decrease below the melting point.
However, the temperature gradient and, conse-
quently, the thermocapillary force can be de-
creased if the cooling of free surface will be
weakened. This can be done, for example, by
increase of the ambient temperature. Our calcula-
tions show that in the case of stationary crystal
and crucible an increase of the ambient tempe-
rature from 0:8Tmelting to 0:95Tmelting would
stabilize the flow drastically, so that the basic
axisymmetric flow would remain stable even if the
wall heat flux is tripled. With the increase of
the angular velocity of the crystal the instability
sets in abruptly similarly to the case illustrated in
Fig. 2. Apparently, the comprehensive analysis
of stability properties of this flow requires a
detailed parametric stability analysis, which
should result in a stability diagram showing, for
example, the dependence of the critical wall heat
flux on the crystal rotation for different ambient
temperatures.
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4. Concluding remarks

The present paper reports some preliminary
results of the study of three-dimensional instabil-
ities of an axisymmetric melt flow in a hydro-
dynamic model of Czochralski growth. It is shown
that the numerical approach developed is capable
of reproducing the previously published results
obtained for simplified models, in which we
studied the instabilities driven by the sole action
of buoyant, thermocapillary and centrifugal/Cor-
iolis forces. A rigorous validation of the developed
approach for the Czochralski model still is needed.
Unfortunately, the published three-dimensional
calculations are performed on rather coarse grids
and they cannot be used as reliable reference
points.
Further development of the numerical approach

described would include the heat transfer calcula-
tion in the growing crystal together with the
calculation of the front of crystallization and the
capillary meniscus. In case of semiconductor
crystals the electromagnetic flow control should
be also accounted for.
It should be emphasized that the hydrodynamic

Czochralski model described is chosen because of
its higher complexity compared to other methods
of crystal growth from melts. The present numer-
ical approach can be easily transformed to the
study of other configurations, e.g., Bridgman or
floating zone techniques.
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