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Abstract

Three-dimensional instability and patterns of an axisymmetric flow of electrically conducting liquid in a cylindrical

enclosure driven by an axial traveling magnetic field (TMF) is studied. The attention is focused on the TMF of a large

axial wavenumber or large frequency, which leads to a formation of the skin layer near the sidewall. It is shown that the

flow intensity grows with the increase of the TMF wavenumber from small to a moderate value and decreases with

further increase of the wavenumber. Similar dependence of the flow intensity on the growing TMF frequency is

observed. The critical amplitude of the electromagnetic forcing, which corresponds to a transition from axisymmetric to

three-dimensional flow state, sharply decreases with the increase of the TMF wavenumber or frequency from a small

value. After reaching a minimum it slowly increases with the further increase of the wavenumber or frequency.
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1. Introduction

The traveling magnetic field (TMF) is one of the
various tools which can be used for the electro-
magnetic control of melt flows in bulk semicon-
ductor crystal growth. Conversely to the widely
used rotating magnetic field (RMF), the TMF
e front matter r 2005 Elsevier B.V. All rights reserve
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yields a possibility to create or control meridional
melt circulations directly, i.e., without unnecessary
forcing of a non-uniform rotational flow [1,3]. This
possibility initiated a number of recent studies
devoted to the TMF-driven and TMF-controlled
flows regarding various crystal growth applica-
tions in terrestrial and microgravity environment
[1–11].
One of the important problems directly con-

nected with the TMF driving and control of melt
d.
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flows in crystal growth processes is the stability of
the resulting time-average flow. The study of this
issue was started in Ref. [11], where the simplest
possible expression for the TMF driving force was
used. The model considered in Ref. [11] corre-
sponds to small dimensionless TMF wavenumbers
a and small dimensionless circular frequency g;
and does not account for a possible skin-effect.
The present study extends results of Ref. [11] to the
cases of moderate and large wavenumbers. The
TMF-driven flow in a cylindrical container is
considered. In the following, we discuss how the
time-averaged TMF force and the TMF-driven
flow patterns change with the growth of TMF
wavenumber. Then we study the three-dimensional
stability of axisymmetric TMF-driven flows for
different aspect ratios of the container and the
TMF wavenumber varying from 1 to 20. Another
parameter, which can affect the TMF driving
force, is so-called skin depth K ¼

ffiffiffi
g

p
[4], where g

can be interpreted also as a dimensionless circular
frequency of TMF. We examine how variation of g
affects the TMF driving force, steady states, and
the stability properties of the flow. The calcula-
tions are performed using the global Galerkin
method described in Ref. [12].
It is known that with the increase of the TMF

wavenumber, the time-averaged TMF driving
force exhibits a significant skin-effect. We study
how the flow varies with the TMF wavenumber
and show that intensity of the TMF-induced
vortex grows rapidly with the increase of the
TMF wavenumber from a small value ao1 to a
moderate value 1oao10; which depends on the
aspect ratio and the TMF force amplitude. With
further increase of a the intensity slowly decreases.
A similar change of the flow intensity is observed
when the parameter g is varied in the interval
1pgp20:
The present study shows that the dependence of

the stability properties of the flow on the TMF
wavenumber and the skin depth is rather compli-
cated. The marginal stability curves contain non-
monotonic parts with turning points and reinstate-
ment of stability. Generally, the critical amplitude
of the electromagnetic force steeply reduces with
the increase of a or g from the value a ¼ 1 (g ¼ 1)
and then slowly increases for a410 (g410), thus
behaves correspondingly to the increase or de-
crease of the intensity of the main TMF-induced
vortex. The patterns of the most unstable pertur-
bations show that the transition from an axisym-
metric to the three-dimensional flow should be
attributed to the instability of the main vortex and
not to the thin skin-layer, even for large values of a
or g:
2. Formulation of the problem

Consider flow of a Newtonian incompressible
electrically conducting fluid in a cylindrical en-
closure 0prpR; 0pzpH under action of a
magnetic field traveling along the z-axis. It is
assumed that at the cylindrical sidewall the vector
potential of the magnetic field is given by

Ar ¼ 0; Ay ¼ A0 e
iðot�~azÞ; Az ¼ 0, (1)

where ~a and o are the wavenumber and the
circular frequency of the TMF.
Assuming that magnetic Reynolds number is

small, the effect of the fluid flow on the magnetic
field is neglected. Additionally, we assume that the
flow is decomposed into time-averaged and
oscillating parts and that the amplitude of the
oscillating part is much smaller than that of the
average part. This assumption is justified for large
frequency of the magnetic field, which usually is
about 50Hz or even larger. Under the assumptions
made, the time-averaged part of the flow is driven
by a time-averaged electromagnetic force f and is
described by the dimensionless momentum and
continuity equations:

qv
qt

þ ðv � rÞv ¼ �rp þ Dv þ f, (2)

D � v ¼ 0, (3)

where v is the fluid velocity and p is the pressure.
The scales of length, time, velocity and pressure
are R, R2/n, n/R and rn2=R2; respectively, where r
is the fluid density and n is the kinematic viscosity.
The expression for the electromagnetic force f

depends on a configuration of a magnetic field
inductor. In the case of an infinite cylinder in an
infinite inductor, the problem for the magnetic and
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Fig. 1. Comparison of expressions (4) and (5) for the axial

component of the time-averaged electromagnetic force.
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electric fields allows for an analytical solution,
which yields the following expression for the time-
averaged electromagnetic force [13]:

f r ¼ �Ft
Im½I1ðb


rÞI0ðbrÞ�

jI0ðbÞj2
; f y ¼ 0,

f z ¼ Fta
jI1ðbrÞj2

jI0ðbÞj2
. ð4Þ

Here, Ft ¼ A2
0ðosR2=ð2rn2ÞÞ; a ¼ ~aR; b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ig
p

; g ¼ somR2; and m is magnetic perme-
ability. An additional parameter defining the flow
is the aspect ratio of the cylinder A ¼ H=R: More
complicated expressions, which take into account
the finite extent of the inductor and the cylinder, as
well as the distance between them, were obtained
recently in Ref. [7]. It should be noticed that the
radial component of the electromagnetic force (Eq.
(4)) is potential and therefore does not affect the
flow velocity. However, it is not small compared to
the axial component and should be taken into
account if correct pressure distribution is needed.
The electromagnetic force (Eq. (4)) is defined by

three non-dimensional parameters: amplitude Ft,
the parameter g and the dimensionless axial
wavenumber a: For the following, we need to
estimate the values of the dimensionless parameter
g; which can be interpreted as a dimensionless
circular frequency of TMF. Note that in Ref. [4]
and other papers K ¼

ffiffiffi
g

p
is called ‘‘skin depth’’

parameter. It follows from Eq. (4) that depth of
the skin layer is defined by |b|, which is the
function of both a and g; so that parameter g alone
is not enough to conclude about the skin layer
depth (see also Fig. 1). Following the crystal
growing experiments [10] and model RMF experi-
ments [14], we estimate the characteristic length R

to be 30 cm and the frequency of magnetic field to
be 50Hz. Then the parameter g is approximately
0.426 for silicon melt (s  1:2� 106 O�1 m�1) and
1.17 for InGaSn alloy (s  3:3� 106 O�1 m�1).
Thus, a characteristic value of the parameter g can
be taken as g ¼ 1: An increase of the parameter g
can be easily achieved by an increase of the TMF
frequency. In the following, we also study the
effect of variation of g between the values 1 and 20
for the fixed value of a ¼ 1:
The value of dimensionless wavenumber is equal
to a ¼ 2pR=L; where L is the TMF wavelength.
Obviously, at large L the wavenumber a tends to
zero. If the parameter g is also small, so that
|b|51, the expression for the z-component of the
electromagnetic force (Eq. (4)) can be approxi-
mated asymptotically as

f z ¼ Ftajbj2 r2

4 ¼ Fb r2

4 ; Fb ¼ B2
0
os~aR5

2rn2 , (5)

where B0 ¼ A0jbj=R: This expression was used for
the stability analysis in Ref. [11] and parameter Fb
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Table 1

Critical parameter Fbcr and critical circular frequency ocr for the case of flow driven by the axial force (Eq. (5))

A ¼ 1; k ¼ 4 A ¼ 2; k ¼ 3 A ¼ 4; k ¼ 2

Nr�Nz Fbcr� 10�6 ocr Fbcr� 10�5 ocr Fbcr� 10�5 ocr

20� 20 1.5673 634.20 4.8356 219.89 2.3167 105.15

30� 30 1.5660 633.99 4.8184 219.06 2.3198 0

40� 40 1.5660 633.98 4.8168 219.00 2.3200 0

50� 50 1.5660 633.90 4.8168 218.97 2.3199 0

Result of Ref. [11] 1.5660 633.99 4.8176 219.03 2.3199 0

Table 2

Critical parameter Ftcr and critical circular frequency ocr for

the case of flow driven by the axial force (Eq. (4))

a ¼ 1; k ¼ 3 a ¼ 5; k ¼ 2 a ¼ 10; k ¼ 1

Nr�Nz Ftcr� 10�5 ocr Ftcr� 10�4 ocr Ftcr� 10�4 ocr

20� 20 2.1799 217.45 1.1072 55.618 0.99309 86.225

30� 30 2.1730 216.74 1.1072 55.618 0.99310 86.229

40� 40 2.17245 216.71 1.1072 55.618 0.99310 86.229

50� 50 2.17240 216.72 1.1072 55.618 0.99310 86.229

A ¼ 2:
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is equal to the doubled parameter F defined in Ref.
[11]. In the following, we study the parametric
dependence of the solution on the parameters a
and g: Therefore, we prefer to use the governing
parameter Ft, which is independent of a and g;
instead of Fb.
In Fig. 1, we compare the force fz for g ¼ 1 and

different a (Fig. 1a), as well as for a ¼ 1 and
different g (Fig. 1b), using expressions (4) and (5).
For the exact comparison, the function r2/4 shown
in Figs. 1a,b must be multiplied by |b|2. It is clearly
seen that with the increase of a (Fig. 1a) the curves
strongly differ by their shape. The difference in
shapes is not so obvious in Fig. 1b; however,
taking into account the factor |b|2 we can conclude
that expression (5) yields overestimated values of
the TMF force at large values of g (e.g., at g ¼ 10
the curve must be multiplied by

ffiffiffiffiffiffiffiffi
101

p
). At the

same time, Eq. (5) still gives a good approximation
when both a and g are close to unity. Eq. (4) must
be accounted for already at a ¼ 2 (Fig. 1a). For
a43; the force is characterized by a rapid growth
near the cylinder wall (r ¼ 1), i.e. the well-known
skin-effect is observed. Assuming that the TMF
wavelength is of the order of the cylinder radius
the value of a can be estimated as 2p; and exceeds
10 for LoR=2: The latter was the case of
experiment [2].
For the present calculations, we consider

1pap20 for a fixed value g ¼ 1; which allows us
to study the influence of the skin-effect on both
flow patterns and their stability. Then we fix the
wavenumber to be a ¼ 1 and vary the parameter g
in the interval 1pgp20: For ap1 and gp1 the
results of Ref. [11] apply. As in Ref. [11] we pose
the no-slip boundary conditions on all the
boundaries.
3. Numerical method

The problem is solved by the global Galerkin
method. We applied the same numerical technique
as was used in Refs. [15,16]. The flow is decom-
posed in the Fourier series

hv; pi ¼
Xk¼þ1

k¼�1

hvkðr; z; tÞ; pkðr; z; tÞi expðikyÞ, (6)

so that the term corresponding to k ¼ 0 describes
both the axisymmetric base flow and the axisym-
metric perturbation, and the terms with ka0 are
used to describe all possible non-axisymmetric
perturbations. Thus, the azimuthal wavenumber k

plays a role of an additional integer parameter.
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Fig. 2. Flow patterns for A ¼ 2; g ¼ 1; and Ft ¼ 104. (a, b) Patterns of the stream function, radial and axial velocities for a ¼ 1 and 10,

respectively; (c) dependence of the maximal and minimal values of the radial (dash lines) and axial (solid lines) velocities on the TMF

wavelength a; (d) dependence of the minimal values of the stream function on the TMF wavelength a:
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The three-dimensional stability problem is con-
sidered for all non-negative values of k, and the
critical forcing Ftcr is defined as the minimum of
all Ftm(k) that correspond to a marginal stability
limit for a given k. The functions vk(r,z,t), defined
in the meridional plane, are computed using the
global Galerkin method. The pressure is excluded
by the orthogonal Galerkin projections on the
divergence-free velocity basis. The details on
numerical method can be found in Ref. [12]. As
in Refs. [15,16], the steady axisymmetric flow
states were calculated by the Newton iteration.
The eigenvalue problem related to the linear
stability analysis of the calculated base states was
solved using QR-decomposition algorithm. The
critical parameters Ftcr are followed by the values
of critical circular frequency ocr, which is the
imaginary part of the leading eigenvalue of the
linear stability problem. The zero value of ocr

corresponds to a monotonically growing perturba-
tion and indicates on a transition from one steady
flow state to another. The non-zero value corre-
sponds to a perturbation, whose amplitude growth
is modulated by oscillations. In this case, one can
expect a transition from steady to oscillatory flow
state.
To ensure the correctness and the convergence,

the present results were compared with those of
Ref. [11] (Table 1), and then the convergence of the
critical parameters for a ¼ 1; 5 and 10 was
examined for the force defined by Eq. (5)
(Table 2). The tables show that the present results
converge up to the third or fourth decimal digit
already with the use of 30� 30 basis functions, and
are in full agreement with the results of Ref. [11].
Therefore, the results reported below were
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computed using 30� 30 basis functions in the r-

and z directions.
4. Results

Flow patterns at A ¼ 2; g ¼ 1; a ¼ 1 and 10 are
shown in Figs. 2 and 3 for Ft ¼ 104 and 105,
respectively. In all cases, the flow rises along the
cylindrical sidewall and descends along its axis. All
the isolines are equally spaced between the
minimal and maximal values of the stream
function c; radial velocity vr and axial velocity
vz. The maximal and minimal values of the
velocities and the stream function are shown in
the frames (c) and (d) as functions of the TMF
wavenumber a: Obviously, for negative values of a;
the flows can be obtained by turning over the
frames.
At a moderate amplitude of the electromagnetic

force Ft ¼ 104 (Fig. 2), the shape of flow pattern
remains almost unchanged with the growth of the
wavenumber a; except a growing concentration of
isolines of c and vz near the cylindrical sidewall
due to the skin-effect. The examination of the
minimal and maximal values (Fig. 2c,d) shows that
the flow intensity grows with the increase of the
wavenumber up to a  6 and then starts to
decrease. The decrease can be explained by the
decrease of the average force, which can be defined
as

R 1

0 f zðrÞdr (see Fig. 1).
At larger electromagnetic force amplitude

Ft ¼ 105 (Fig. 3), the shape of flow patterns start
to change with the wavenumber. For aX6; the
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axial velocity attains a rather sharp minimal value
near the sidewall midpoint (Fig. 3b), however
does not change its positive sign, so that the
flow retains its upward direction along the
sidewall. As in the previous case, the intensity of
the flow grows with the increase of the wavenum-
ber (Fig. 3c,d), and then, starting from the value
a ¼ 10; decreases. Note that according to the
stability results described below steady flows at
Ft ¼ 105 and a41:2 are unstable with respect to
steady or oscillatory three-dimensional perturba-
tions.
Fig. 4a depicts the flow pattern for a ¼ 1 and

g ¼ 10: The flow pattern does not change sig-
nificantly compared to the patterns at g ¼ 1 and
larger a: Figs. 4b and c show how the maximal
values of the velocity components and the stream
function change with the increase of the parameter
g: Similar to the increase of a the flow intensity
increases when g grows starting from the value
g ¼ 1 and then slowly decreases beyond the value
g ¼ 10:
The three-dimensional instability of the base

axisymmetric flows was studied for the aspect
ratios A ¼ 1; 2, 3 and 4. In the first series of
calculations, the value of parameter g was fixed at
g ¼ 1 and the TMF wavenumber a was varied
from 1 to 20. Then the wavenumber was fixed at
a ¼ 1 and the parameter g was varied between 1
and 20. As mentioned above, the stability analysis
is carried out separately for different values of the
azimuthal wavenumber k.
The marginal stability curves for the considered

values of the aspect ratio, g ¼ 1 and the wave-
number k varying from 0 to 6 are shown in
Fig. 5. For all considered values of A and k,
the dependencies Ftm(a) are characterized by a
rapid decrease of Ftm when the wavenumber
a is varied from 1 to approximately 6 and a
slow increase after reaching the minimal value.
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Most marginal curves are smooth. At the
same time there are several marginal curves
containing turning points, e.g. curves correspond-
ing to k ¼ 3 and 6 in Fig. 5b. This non-monotonic
behavior does not necessarily affect the stability
limits, but can lead to a complicated non-linear
dynamics in the unstable three-dimensional
regimes.
The critical values of Ft correspond to the lower

envelope of the marginal curves corresponding to
different k. It is seen (Fig. 5) that the most critical
perturbation is never axisymmetric, so that the
onset of instability always leads to a transition
from an axisymmetric to a three-dimensional flow.
The lower envelopes are shown in Figs. 6–8. For
the cases of oscillatory instability, the critical
circular frequencies ocr are shown in Figs. 6–8 as
insets.
At A ¼ 1 (Fig. 6) and small values of the TMF

wavenumber, ao4; the critical mode is oscillatory
and corresponds to the azimuthal wavenumber
k ¼ 4: With the increase of a; at the point S in
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Fig. 6, the critical mode switches to a stationary
one with k ¼ 2:
The non-monotonic behavior of the critical

curve is observed for A ¼ 2 and 1pap2 (Fig. 7).
Here, close to the value of TMF wavenumber a ¼

1:25 we observe the reinstatement of stability. The
flow becomes unstable due to the stationary mode
k ¼ 3; then stability reestablishes at larger value of
Ft, and with the further increase of Ft the
instability sets in due to the oscillatory mode with
k ¼ 3: The switch between the two modes takes
place at the point Q (Fig. 7). Note that these two
modes have the same azimuthal periodicity, but
different spatial patterns and temporal behavior.
The critical curves in the cases A ¼ 3 and 4 are
smooth in the interval 1pap2 (Fig. 7). A switch
between the steady mode with k ¼ 1 and the
oscillatory mode with k ¼ 2 is observed at the
point S in the case A ¼ 3: At larger values of a we
observe several replacements of the most critical
modes, which are indicated by the letters Q, R and
S in Fig. 8. At A ¼ 3 and 4, we observe also
narrow intervals containing turning points and
reinstatement of stability, which are similar to one
discussed above for the case A ¼ 2: With the
increase of the aspect ratio these intervals shift in
the area of larger a:
The isolines of the amplitudes of the three-

dimensional perturbations, which are functions of
r and z only, are shown in Fig. 9. It should be
noted that in spite of the strong concentration of
the driving force near the cylindrical wall (Fig. 1)
the perturbations are distributed over whole flow
region. Only at a ¼ 1 the patterns are shifted
toward the wall. At large a; i.e. a ¼ 10 and 20, the
perturbation patterns cover the whole flow region,
indicating the instability of the whole vortex rather
than an instability of the boundary layer. At a ¼

10; one can observe weak maxima of the perturba-
tion amplitude adjacent to the cylindrical wall.
This can be a sequence of the skin-effect, however
these local maxima are much weaker than the
global ones.
Figs. 10–12 show the lower envelopes of the

marginal stability curves for the fixed value
a ¼ 1 and varying parameter g: As above, the
non-zero critical frequency is shown in the insets.
It is seen that the dependencies Ftcr(g) are similar
to the dependencies Ftcr(a). Starting from small
values of g; the critical values of the parameter Ft
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sharply decrease and change slowly for g410: At
A ¼ 2; we again observe a non-monotonic beha-
vior of the neutral curve with two turning points
and the reinstatement of stability (cf. Figs. 7
and 11).
5. Conclusions

The patterns and three-dimensional stability of
axisymmetric time-averaged flows driven by the
TMF were studied numerically. The dependence of
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the flows and their stability properties on the TMF
wavenumber a and the dimensionless TMF
frequency g was examined. It was shown that an
increase of a (or g) from a ¼ 1 (or g ¼ 1) to a
moderate values of a ¼ 5210 (or g ¼ 10), depend-
ing on the aspect ratio of the flow region, leads to
an intensification of the flow and reduces the
critical value of the TMF force amplitude Ftcr.
Further increase of the TMF wavenumber leads to
the flow slowdown and then to a slow increase of
Ftcr, which is observed for a410 (or g415).
It was found that the dependencies Ftcr(a) and
Ftcr(g) are not always smooth and sometimes can
contain turning points and reinstatement of
stability, so that the axisymmetric base flow can
become unstable at Ftcr

(1), then stable at Ft 2ð Þ
cr 4Ft 1ð Þ

cr ;
and finally unstable at Ft 3ð Þ

cr 4Ft 2ð Þ
cr : This can lead to

a complicated dynamics in the supercritical re-
gimes and should be taken into account if time-
dependent calculations are performed.
On the basis of the patterns of the most unstable

three-dimensional perturbations, it was concluded
that the transition from an axisymmetric to a
three-dimensional flow state takes place due to
instability of the whole TMF-induced vortex, and
not due to disturbances developing in the skin-
layer.
Obviously, when the TMF is used for the

control of melt flow in a crystal growth process,
the TMF-induced force should be considered
together with other forces, which drive the melt
flow, e.g. buoyancy, thermocapillary or centrifugal
forces. The interaction of several driving forces
can lead to drastic changes in the flow patterns and
especially in the stability properties of the flow.
The present analysis would be applicable in cases
when the TMF driving force is significantly larger
than all other forces.
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[13] J. Kr %uminš, Fundamentals of Theory and Calculation for

Devices with a Traveling Magnetic Field, Zinātne Publish-
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