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On the Three-Dimensional Instability of Thermocapillary Convection in
Arbitrarily Heated Floating Zones in Microgravity Environment

A.Yu. Gelfgat1, A. Rubinov2, P.Z. Bar-Yoseph 2 and A. Solan 2

Abstract: The three-dimensional instability of the
thermocapillary convection in cylindrical undeformable
floating zones heated laterally is studied numerically.
Different types of the boundary conditions, including ra-
diation heating, linearized radiation and prescribed heat
flux are used in the calculation. Stability diagrams
showing the Prandtl number dependence of the critical
Marangoni numbers that represent the thermocapillary
forcing for different heating conditions are reported. It
is shown that the primary instability of initially axisym-
metric thermocapillary flows is defined mainly by the to-
tal amount of heat supplied through the heated side sur-
face. The way in which the heat is supplied has a less
significant effect on the onset of instability.
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1 Introduction

Crystal growth from a melt in the space environment in
the absence of gravity-driven buoyant convection is re-
garded as a promising method to achieve more stable
and uniform crystal growth conditions that would result
in better crystal quality. When the buoyancy force be-
comes negligibly small, convection may be driven by the
thermocapillary force that results from a surface tension
gradient due to temperature difference. The instability
of such thermocapillary flows in floating zone and liquid
bridge crystal growth configurations, in particular in re-
lation to the space-flight environment, is a widely known
phenomenon studied extensively experimentally and nu-
merically (Lappa 2004). The amount of literature on this
subject is very extensive and cannot be reviewed within
the present paper. Generally, the problems considered
by different authors can be divided into two categories.
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The first group of studies considers the thermocapillary
convection between two differentially heated isothermal
disks with adiabatic sidewall. The experimental studies
of this configuration were performed by Preisser et al.
(1983), Albanese et al. (1995), Muehlner et al. (1997),
Sumner et al. (2001), Majima et al. (2001), Hibiya et al.
(2002), Kamotani et al. (2003), Nishimura et al. (2005)
and numerical studies by Shen (1990), Kuhlmann & Rath
(1993), Wanshura et al. (1995), Chen et al. (1997), Lev-
enstam et al. (2001), Imaishi et al. (2001), Sumner et
al. (2001), Lappa et al. (2001), Yasuhiro et al. (2004),
Melnikov et al. (2005), and Zeng et al. (2005), and other
works referred in these papers. This model is the sim-
plest possible, but cannot completely simulate the float-
ing zone process where the liquid zone is heated from
the side. Some of the authors argued that this model de-
scribes a ”half-zone” model, however this would imply
unphysical boundary conditions at the midplane of the
whole liquid zone.

Experimental studies of thermocapillary convection with
side heating of the liquid zone are more difficult, es-
pecially for non-transparent low-Prandtl-number fluids
like molten semiconductors. These studies are usually
restricted to the measurements of the temperature (e.g.,
Hsieh & Lan, 1996; Yang & Kou, 2001), or a-posteriori
analysis of grown crystals (e.g., Cröll et al., 1998; Dold,
2004; Kimura et al., 2004). The correct thermal bound-
ary condition at the side surface of the floating zone
should account for the heating by radiation. This bound-
ary condition was accounted for by Munakata & Tana-
sawa (1999), Lan & Chian (2001), and Lan (2003). The
non-linearity introduced by the radiation boundary con-
dition causes numerical difficulties, and other authors
tried to simplify it either by linearization (Minakuchi et
al., 2004) or by imposing a given heat flux at the side
surface (Kasperski et al., 2000; Bennacer et al., 2002;
Lappa, 2003 & 2005). In particular, Bennacer et al.
(2002) studied how different axial profiles of the heat flux
affect the flow patterns and transition from axisymmetric
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steady to axisymmetric oscillatory flow.

In the present paper we study how different boundary
conditions defined on the lateral surface of the float-
ing zone can affect the three-dimensional instability of
initially axisymmetric flow. This problem was not ad-
dressed in the previous studies and is essential for the un-
derstanding how the non-linear radiative boundary con-
dition can be simplified without a loss of essential flow
features. The three-dimensional instability of liquid
bridges located between isothermal differentially heated
disks was addressed by several authors (Shen, 1990;
Kuhlmann & Rath, 1993; Wanshura et al., 1995; Chen et
al., 1997; Levenstam et al., 2001), however for the side
heated zones the axisymmetry – three-dimensional tran-
sition was addressed mainly by the time-dependent solu-
tions of fully 3D problems (e.g., Lappa, 2003 and 2005).
The only stability study for the side-heated zones was
performed by Walker et al. (2003) for a parabolic heat
flux at the side wall. Here we report stability diagrams for
the axisymmetric – three-dimensional transition of the
side heated undeformable floating zones, and consider
fully radiative, linearized and heat flux boundary condi-
tions. We compare the onset of the three-dimensional
instability for the three types of the boundary condition,
and for heat fluxes of different shape defined at the side
surface. These comparisons lead us to the conclusion that
the instability of such a thermocapillary flow is defined
mainly by the total amount of heat supplied through the
side surface. The shape of the heat flux profile, as well
as more precise accounting for the radiative heating can
only slightly change the flow patterns and stability limits.

The study is performed numerically using the finite vol-
ume discretization. The steady state and stability analy-
sis are performed in the same way as in Rubinov et al.
(2004) and Gelfgat et al. (2005).

2 Formulation of the problem.

We consider the three-dimensional stability of an ax-
isymmetric thermocapillary flow in an undeformable
cylindrical floating zone. The fluid is located in a cylin-
drical domain 0≤z≤H and 0≤r≤R. The upper and lower
boundaries z=0 and z=H are rigid and isothermal. The
side boundary r=R is exposed to an external heater,
whose properties will be defined below, and to the action
of the thermocapillary force. The problem is sketched in
Fig. 1.
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melting 
temperature 

heater 

melting
temperature 

heater 

 

Figure 1 : Sketch of the problem

The flow is governed by the dimensionless momentum,
continuity and energy equations in the Boussinesq ap-
proximation written in the cylindrical coordinates (r,θ,z)

∂v
∂t

+(v ·∇)v = −∇p+∆v, (1)

∇ ·v = 0, (2)

∂T
∂t

+(v ·∇)T = Pr−1∆T (3)

with the no-slip boundary and isothermal boundary con-
ditions at the lower and upper boundaries

v = 0, T = 0 at z =0 and A (4)

and the tangent stress balance at the side boundary

vr = 0,
∂vz

∂r
= −Mn

∂T
∂z

,
∂vθ

∂r
= −Mn

∂T
∂θ

at r = 1 (5)

Here v=(vr,vθ,vz), p, and T are the velocity, pressure
and temperature of the fluid, respectively; Pr=ν/κ is
the Prandtl number, Ma = −γ

(
T̃h − T̃m

)
R
/

νκ is the
Marangoni number and the dimensionless parameter
Mn=Ma/Pr is interpreted sometimes as thermocapillary
Reynolds number; ν is the kinematic viscosity, κ is
the thermal diffusivity, T̃h is the characteristic tempera-
ture of the heater, which is defined here by the heater
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hottest point, and T̃m is the melting temperature. It is
assumed that the surface tension coefficient α decreases
linearly with the increase of the temperature, so that
γ = ∂α

/
∂T̃ is a negative constant (T̃ is the dimensional

temperature). The temperature is rendered dimension-
less by T =

(
T̃ − T̃m

)/(
T̃h − T̃m

)
. The aspect ratio of the

zone is defined as A = H/R. The characteristic scales of
length, time, velocity and pressure are R, R2/ν, ν/R, and
ρν2/R2, respectively.

The thermal boundary conditions at the side surface of
the fluid is imposed by a radiative heater whose tempera-
ture T̃heater(z̃) can be a function of z̃, where z̃ is a dimen-
sional coordinate. In dimensional form, where r̃ and z̃ are
dimensional coordinates

−λ
∂T̃
∂r̃

= σεFε (z̃)
[
T̃ 4

R − T̃ 4
heater (z̃)

]
, T̃R = T (R,θ, z̃) (6)

where λ is the thermal conductivity, ε is the absorbtivity
coefficient and σ is the Stefan-Boltzmann constant. The
shape factor Fε (z̃) is defined by the location of a surface
point with respect to the heater. Since the present analy-
sis is not related to any specific configuration we assume
Fε (z̃) = 1. In the dimensionless form the boundary con-
dition (6) reads

∂T
∂r

=−Rd

[(
T +

Tm

Th −Tm

)4

−
(

T̃heater (z)
Th −Tm

)4
]

at r=1

(7)

where Rd = εσR(Th −Tm)3
/

λ is the radiation number.

Equation (7) can be easily rewritten as

∂T
∂r

= −Rd
[(

T + T̂m
)2 + T̂ 2

heater (z)
]
×

[(
T + T̂m

)
+ T̂heater (z)

][(
T + T̂m

)− T̂heater (z)
] (8)

where T̂m = Tm
/
(Th −Tm) and T̂heater (z) =

T̃heater (z)
/
(Th −Tm). Assuming that

(
T + T̂m

) �
T̂heater (z) the non-linear boundary condition (8) can be
replaced by

∂T
∂r

= Rd T̂ 4
heater (z) = q(z) at r =1 (9)

On the other hand, assuming that the temperature of the
heater and of the melt surface change slowly along the
z-direction we can introduce

T 3
e f f ≈

[(
T + T̂m

)2 + T̂ 2
heater

][(
T + T̂m

)
+ T̂heater

]
(10)

and consider a linearized boundary condition considered
by Minakuchi et al. (2004)

∂T
∂r

= −Bi
[(

T + T̂m
)− T̂heater (z)

]
at r =1 (11)

where Bi = Rd T̂ 3
e f f is the effective Biot number.

In the following we calculate the axisymmetric steady
flows governed by equations (1)-(5) and the boundary
conditions (7), (9) or (11). Then we study the linear
stability of the calculated flows with respect to infinites-
imal three-dimensional perturbations. Assuming that
V(r, z) = {U (r, z) ,V (r, z) ,W (r, z)}, P(r, z) and T (r, z) is
the calculated axisymmetric basic flow and taking into
account the periodicity in the azimuthal direction the per-
turbations of the velocity, pressure and the temperature
are represented as

{v, p,τ}=
k=∞

∑
k=−∞

{vk (r, z) , p(r, z) ,τ(r, z)}exp(Λt + ikθ).

(12)

Here Λ is the growth rate and k is the azimuthal
wavenumber, which plays the role of an additional inte-
ger parameter. It is a well-established fact that the linear
stability problem separates for each value of k. Thus the
stability problem reduces to the sequence of the eigen-
value problems

Λvk = −(vk ·∇)V− (V ·∇)vk −∇pk +∆vk, (13)

∇ ·vk = 0, (14)

Λτk = −(vk ·∇)T − (V ·∇)τk +Pr−1∆τk (15)

with the corresponding linearized boundary conditions,
which should be solved sequentially for each value
of k. The basic axisymmetric flow is unstable when
Real(Λ) > 0. The equation Real [Λ(Mnm,k)] = 0 defines
the marginal values of the parameter Mn for each k. The
critical value of the governing parameter is defined by
Mncr = min

k
[Mnm (k)].

3 Numerical technique

The governing equations are discretized using the finite
volume approach. The basic steady axisymmetric flows
are calculated by Newton iteration with complete calcu-
lation of the Jacobian matrix. The BICGstab(2) algo-
rithm is used to solve the system of linear equations at
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each Newton iteration. The parameter continuation is ap-
plied where necessary.

Assuming that the flow region is mapped onto a certain
grid and that the discretization at a grid node (ri, z j) is
known, the eigenvalue problem (13)-(15) is reduced to a
generalized algebraic eigenvalue problem, which can be
expressed in the following form

Λvi j = − [(v ·∇)V]i j − [(V ·∇)v]i j − [∇p]i j +[∆v]i j ,

[∇ ·v]i j = 0,

Λτi j = − [(V ·∇)τ]i j − [(v ·∇)T ]i j +Pr−1 [∆τ]i j .

(16)

Here [·]i j denote the discretization at a node. Equations
(16) apply to all the inner nodes. Additional equations
discretizing the boundary conditions must be supplied at
all the boundary nodes.

The complete set of the linearized equation leads to the
generalized algebraic eigenproblem

Ax = λBx (17)

where x is the vector of unknowns, and A and B are
complex matrices. Due to the continuity equation and
the boundary conditions the matrix B is singular, so
that problem (17) cannot be transformed into a standard
eigenvalue problem. It is solved by the Arnoldi iteration
in the shift-and inverse-mode

(A−βB)−1 Bx = µx, µ = 1
/
(Λ−β) (18)

where β is a complex shift. It should be noted that this
approach succeeds when the shift β, which can be com-
plex, is chosen close to the leading eigenvalue Λ. It is
an easy task for those problems for which the estimate
of Λ is known. However, it is an additional difficulty for
each new problem where no information on the stability
properties of the flow is available.

Each Arnoldi iteration requires the solution of the lin-
ear equations system (A–βB)x=b. The usual approach is
an iterative solution of these equations. The iterative so-
lution usually requires too many iterations, because the
right hand side vector b changes completely from one it-
eration to another, so that no good initial guess for the
solution can be supplied. As in Gelfgat et al (2005) we
use another approach, in addition to the iterative one,

which constructs the LU decomposition of the sparse ma-
trix (A–σB). This consumes much more computer mem-
ory and a certain amount of CPU time for the calculation
of the LU decomposition. At the same time, the con-
sequent Arnoldi iterations become fast, which allows us
to calculate quite many leading eigenvalues. The num-
ber of the eigenvalues in different runs varies from 10
to 100. This approach can fail when the matrix is ill-
conditioned. Since the iterations can diverge as well, the
use of two different linear solvers makes our numerical
approach more flexible. In all the calculations the finite
volume grid was stretched near the side, upper and lower
boundaries. Examples of the test calculations are shown

Table 1 : Convergence study A = 2, Pr = 1, Mn=3000,

with the boundary conditions (9), q(z) =
[
1− (1− z)2

]2
.

Nz ×Nr Tmax Wmax

45×30 0.2937 109.65
60×35 0.3039 106.28
80×40 0.3036 104.20
120×60 0.3034 103.01
180×90 0.3034 102.81

Result of Bennacer
et al. (2002), grid 0.3034 102.77

300×150

in Tables 1 and 2. Table 1 shows the convergence and
the comparison with the calculation of Bennacer et al.
(2002). In this case we consider the liquid bridge with
aspect ratio A =2 and the boundary conditions (9). Fol-
lowing Bennacer et al. (2002) the dimensionless heat flux

is defined as q(z) =
[
1− (1− z)2

]2
. It follows that the

use of the grid with 120 nodes in the axial and 60 nodes
in the radial direction yields a satisfactory result, which
compares well with the results of Bennacer et al. (2002)
obtained on the much finer grid 300×150. As a rule, finer
grids are needed to reach the convergence of the critical
numbers. Thus, for the following stability calculations
with the aspect ratio A =1 we use a 100×100 grid.

Table 2 shows the comparison of the calculated criti-
cal Mn numbers and the corresponding critical frequen-
cies for a rather popular problem that considers a liquid
bridge between two differentially heated isothermal disks
with a thermally insulated sidewall. The comparison is
made with the works of Chen et al. (1997), Wanshura
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Table 2 : Critical parameters for Marangoni convection in a liquid bridge with differentially heated end boundaries,
A =1. [1] – Chen et al., (1997), [2] – Wanshura et al. (1995), [3] – Levenstam et al. (2001). [4] – Imaishi et al.
(2001)

Pr k
Mncr ωcr

present [1] [2] [3] [4] present [1] [2] [3] [4]
0 2 1784 1784 1793 1793 1958 0 0 0 0 0

0.01 2 1896 1892 1899 1901 2080 0 0 0 0 0
0.02 2 2057 2054 2062 2062 2202 0 0 0 0 0
0.05 2 3520 3528 3434 3522 - 0 0 0 0 -
0.06 3 13270 - - 13251 - 171 - - 179 -
0.07 2 18319 - - 18302 54.8 - - 54.3 -
0.1 2 16130 16201 - 16094 - 74.9 450(3) - 74.2 -
0.2 3 13290 13278 - 13275 - 396 391 - 393 -
0.7 3 7575 7566 9608 7570 - 187.4 187.1 197.7 187 -
1.0 2 2533 2532 2539 2551 - 64.2 64.7 63.2 65.0 -
4.0 2 997 995 1047 1002 - 28.3 28.3 27.9 28.5 -

et al. (1995), Levenstam et al. (2001) and Imaishi et al.
(2001) for different Prandtl numbers and shows a good
agreement, especially with the results of Levenstam et
al. (2001).

An additional comparison based on from the study of
Cröll et al. (1998). The calculations were performed
for Pr=0.04, A =0.8 and the boundary condition (9)
with q(z) = z

(
1− z

/
A
)
. The axisymmetric – three-

dimensional transition was found by Cröll et al. (1998)
using a fully 3D calculation to take place for Ma> 100 so
that the resulting three-dimensional flow remains steady.
The present result is a steady bifurcation at Macr=112
and kcr=2.

4 Results

The present calculations were performed for the fixed
value of the aspect ratio A =1. The range of the Prandtl
number values was chosen as 0 <Pr≤0.1, which covers
the Prandtl numbers that are typical for liquid semicon-
ductors. Examples of steady axisymmetric flow patterns
are given in Fig.2. It is seen that independently of the
type of thermal boundary condition imposed at the side
surface the flow inside a symmetrically heated zone con-
sists of two main vortices located near the surface and
two weak recirculation vortices located closer to the axis.
Note, that in all the cases shown the shape of the stream-
lines remains similar. At larger Prandtl numbers (Fig.
2c) convection makes the temperature along the surface

almost uniform which is followed by a noticeable defor-
mation of the isotherms inside the fluid volume. This
change of the temperature distribution is characteristic
for all the boundary conditions considered.

Figure 3 illustrates how the stability analysis is per-
formed. In the reported case we considered the bound-
ary condition (11) with the parabolic outside temperature
profile T̂heater (z)− T̂m = 4z (1− z) similar to the one con-
sidered by Gelfgat, Bar-Yoseph and Solan (2000). The
marginal stability curves are calculated subsequently for
different values of the azimuthal wavenumber k. The
four of these that have minimal marginal values of Mn
are shown in Fig. 3. The stability limit is given by the
lower envelope of all the marginal curves. It is seen that
the most unstable azimuthal mode at low Prandtl num-
bers corresponds to k =3. This mode is steady, i.e., the
imaginary part of the leading eigenvalue of the linear sta-
bility problem is zero. At larger Prandtl numbers, ap-
proximately at Pr=0.07, it is replaced by the oscillatory
mode k =1. The dimensionless circular frequency of the
perturbation varies between 410 and 430. At Pr> 0.1 the
mode k =2 tends to be the most unstable.

The lower envelopes of the marginal stability curves,
which form the neutral curves of the stability diagram,
are shown in Figs 4 and 5. Transitions between the az-
imuthal modes k =1 and k =3 are shown by hairlines.
Figure 4 shows the neutral curves for different Biot num-
bers of the boundary condition (11). Figure 5 shows the
neutral curves for three different heating laws.
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Figure 2 : Examples of the flow patterns, A =1. (a)
Pr=0.01, Mn=6200, boundary condition (9) with q(z) =
4z (1− z); (b)Pr=0.05, Mn=2×105, boundary condition
(9) with Theater=1, (c) boundary condition (11) Pr=0.08,
Mn=2.4×105with T̂heater (z)− T̂m = 4z (1− z).

The values of Mncr strongly differ for different Biot num-
bers (Fig. 4), as well as for different heating laws (Fig.
5). At the same time, we observe that at each neutral
curve the azimuthal mode k =3 is the most unstable for
low Prandtl numbers and is replaced by the mode k =1
when the Prandtl number is increased. Moreover, the
modes k =3 are always steady, while the modes k =1
are oscillatory. A closer look at the most unstable per-
turbations (not shown here) reveals a similarity between
the perturbations belonging to the same azimuthal mode.
All this allows us to assume that there is a strong simi-
larity in the axisymmetric – three-dimensional transition

Pr

M
n m

0 0.02 0.04 0.06 0.08 0.1

104

105

106

k=1
k=2
k=3
k=4

Figure 3 : Marginal stability curves for different az-
imuthal modes. Calculation for A=1, boundary condition
(11) with Bi=1 and T̂heater (z)− T̂m = 4z (1− z).
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k=3

k=
3

k=
3

k=3
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Figure 4 : Stability diagrams for A =1, and boundary
conditions (11) with T̂heater (z)− T̂m = 4z (1− z) for dif-
ferent Biot numbers.

of such thermocapillary flows, which occurs due to the
same physical mechanism independently of the heating
law prescribed at the side surface. Apparently, a critical
amount of heat needs to be supplied to trigger the in-
stability, however the way in which this heat is supplied
seems to be less important.
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Figure 5 : Neutral stability curves for A =1 and differ-
ent thermal boundary conditions at the surface: radia-
tion boundary condition (8) with T̂heater = 1, linearized
boundary condition (11) with Bi=1 and T̂heater (z)− T̂m =
4z (1− z), and prescribed heat flux (9) with q(z) =
4z (1− z).

To argue further we notice that the Marangoni number is
defined by the temperature difference between the hottest
point on the heater and the melting point at the crystal-
lization front. The actual maximal temperature of the
fluid volume, which is obviously located on the side sur-
face, is unknown and can be found only after the whole
calculation is done. Presumably, the critical numbers re-
calculated on the basis of the actual temperature differ-
ence, i.e., the difference between the hottest and coldest
points of the liquid volume, will be not as different as
they are in Figs. 4 and 5.

To check the above assumption we perform the follow-
ing series of calculations. First, to define a character-
istic example, we take the material heating parameters
for the floating zone growth of silicon from Munakata
& Tanasawa (1999), i.e., Pr=0.011 and Rd=0.00602, and
calculate the critical Marangoni number for the radiation
boundary condition (8) with T̂m = 0 and T̂heater = 1. This
calculation yields Mncr=4.06×104. Recalculating the di-
mensional temperatures using the thermophysical prop-
erties of silicon and taking into account that its melting
temperature is Tm=1700K, we estimate the heater tem-
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0

0.25

0.5
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(a)
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Figure 6 : (a) different profiles of the heat flux defined
for the boundary condition (11). (b) surface temperature
distribution resulting from the heat flux profiles shown in
Fig. 7a.

perature to be Theater ≈2500K, which is a realistic value.
After the computation of Mncr is done we calculate the
Nusselt number at the side surface of the liquid zone

Nu =
1
A

A∫
0

[
∂T
∂r

]
r=1

dz (19)
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Table 3 : Results for calculations with different heating profiles

q(z) Mncr×10−4 Tmax qmax =
[
∂T

/
∂r

]
max Nu T̃heater (K) Mne f f×10−4

0.1864 3.98 0.083 0.186 0.186 2507 4.05

0.1953
[
1−

(
1− (1−2z)20

)]
3.97 0.087 0.195 0.186 2567 4.05

1.1184z (1− z) 3.40 0.107 0.279 0.186 3041 4.08

0.3495
[
1−

(
1− (1−2z)2

)]2
1.96 0.121 0.349 0.186 3361 4.12

0.4710exp
[
−5(1−2z)2

]
1.32 0.139 0.471 0.186 3819 4.16

1.0516exp
[
−25(1−2z)2

]
1.01 0.190 1.052 0.186 5270 4.33

For the calculation described above we obtain
Nu=0.1864. Now, we define a series of heat flux profiles
for the boundary condition (9) as

q1 (z) = 0.1864

q2 (z) = 0.1953
[
1−

(
1− (1−2z)20

)]
q3 (z) = 1.1184z (1− z)

q4 (z) = 0.3495
[
1−

(
1− (1−2z)2

)]2

q5 (z) = 0.4710exp
[
−5(1−2z)2

]
q6 (z) = 1.0516exp

[
−25(1−2z)2

]
(20)

All these profiles are shown in Fig.6a. The ampli-
tudes of the functions qi(z) are chosen such that Nui =
1∫
0

qi (z)dz = 0.1864. We start from the constant heat flux

q1. The profile q2 vanishes at z=0 and 1 but remains al-
most constant far from the end points. It is almost equiv-
alent to the profile q1, but removes the discontinuities of
the thermocapillary boundary condition (5) for ∂vz

/
∂r at

the end points. The profile q3 is the same as was used
by Walker et al. (2003). The three last profiles are taken
from Bennacer et al. (2002) with the amplitudes adjusted
to keep the Nusselt number unchanged.

Results of the calculations with the different heat flux
profiles (20) are shown in Table 3. For each of the pro-
files we calculate the critical value of Mn, which is shown
in the second column of Table 3. When the critical point
is calculated the resulting surface temperature is used for
the further evaluations. The resulting surface tempera-
ture profiles are shown in Fig. 6b. The maximal tem-
perature Tmax and the maximal values of the heat flux
qmax =

[
∂T

/
∂r

]
max at the surface are reported in Table

3. On the basis of Tmax and the thermophysical prop-
erties of molten silicon we can estimate also the max-
imal temperature of the heater, which is also reported
in Table 3. It is seen that when the boundary heat flux
sharpens so that it grows in the middle and reduces to-
wards the ends the maximal surface temperature grows
(cf. Figs. 6a and 6b and the 3rd and 4th columns of Table
3). The maximal heater temperature also grows, so that
it reaches an unrealistic value of 5270K for the heat flux
profile q6. This means that in this case when the flow
reaches the critical point and undergoes the axisymmetry
– three-dimensional transition, a too sharp profile cannot
be a good modeling representation of the correct radia-
tive boundary condition modeling. However, it still can
be used to elaborate the following result.

Using the calculated maximal surface temperature we
rescale the calculated critical number Mncr by the actual
temperature difference of the liquid volume, i.e.,

Mne f f = Mncr
Tmax−

�

T m

T̂heater −
�

T m

. (21)

Note, that Mae f f =Mne f f Pr is the actual Marangoni num-
ber, which one would define considering the surface tem-
perature profiles shown in Fig. 7b. The values of Mne f f

are shown in the last column of Table 3. For all the
heat flux profiles they differ slightly, grow slowly with
the sharpening of profiles, but at the same time remain
close to the value of Mne f f =4×104. In general, the val-
ues of Mne f f vary negligibly as compared to the values
of Mncr. Taking into account, that all the heat flux profile
are characterized by the same Nusselt number we reach
the following conclusion: the three-dimensional thermo-
capillary instability inside the liquid zone considered is
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defined mainly by the integral amount of heat supplied
through the surface and is almost independent of the way
the heat is supplied.

5 Concluding remarks

The three-dimensional instability of undeformable float-
ing zones heated from the side was carried out for the
fixed zone aspect ratio A =1 and the Prandtl number var-
ied between 0 and 0.1. The primary instability of ini-
tially axisymmetric thermocapillary flows was found to
take place due to three-dimensional perturbations in all
the cases considered. It was shown that for A =1 and
small Prandtl numbers the instability sets in due to the
azimuthal mode with the wavenumber k =3. With the
increase of the Prandtl number the primary instability
switches to the azimuthal mode with k =1 and with fur-
ther increase of Pr to the mode with k =2 .

We have shown that the axisymmetric – three-
dimensional transition in the laterally heated floating
zones takes place in a similar manner for the three types
of the heating boundary conditions applied. The ther-
mal radiation boundary condition can be simplified by
a linearization or by imposing an axially distributed heat
flux under the condition that the total amount of heat sup-
plied through the surface is kept unchanged. This condi-
tion seems to be obvious, however such a replacement
leads to a redefinition of the Marangoni number, so that
resulting critical Marangoni numbers obtained for differ-
ently formulated boundary conditions can significantly
diverge. This diverging is caused by the necessarily dif-
ferent definition of the characteristic temperature differ-
ence in the definition of the Marangoni number, and can
be removed by a redefinition of the Marangoni number
using the actual calculated temperature difference of the
liquid volume. At the same time it is emphasized that
the values of the Prandtl number at which the different
most unstable modes replace each other can differ signifi-
cantly for different types of the boundary conditions (Fig.
5), which means that the simplification of the boundary
conditions can lead to a wrong most unstable mode and
should be done with necessary precautions.
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