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Abstract

The global Galerkin or weighted residuals method applied to the incompressible Navier–Stokes equations is consid-
ered. The basis functions are assumed to be divergence-free and satisfy all the boundary conditions. The method is for-
mulated for an arbitrary inner product, so that the pressure cannot be eliminated by Galerkin projections on a
divergence-free basis. A proposed straightforward procedure for the elimination of the pressure reduces the problem
to an ODE system without algebraic constraints. To illustrate the applicability and the robustness of the numerical
approach and to show that numerical solutions with unit and non-unit weight functions yield similar results the driving
lid cavity and natural convection benchmark problems are solved using the unit and Chebyshev weight functions. Fur-
ther implications of the proposed Galerkin formulation are discussed.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This study addresses the global Galerkin or weighted residuals method for the incompressible Navier–
Stokes equations, when the weight function defining the inner products is arbitrary. Assuming that the
velocity basis is divergence free, and that the basis functions satisfy all the boundary conditions, it is pro-
posed to eliminate the pressure by a direct inverse of the pressure Poisson equation operator. After this
elimination the resulting dynamical system becomes explicit and does not contain any algebraic constraints.
The proposed numerical procedure is tested on several benchmark problems. Results obtained with the use
of unit or Chebyshev weight function are compared.
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It is well-known that the pressure gradient can be eliminated from the Navier–Stokes equations by
orthogonal projections on a divergence-free velocity basis, which satisfies non-penetrating boundary con-
ditions at all boundaries. The possibility to eliminate the pressure is considered to be one of the main
advantages of global spectral methods when these are applied to the calculations of incompressible flows.
A way to construct the divergent-free bases in Cartesian and cylindrical coordinates was proposed in [1–3],
and the corresponding global Galerkin approach yielded benchmark-quality results for several model prob-
lems of convective [3–5] and swirling [6,7] flows. It must be emphasized, however, that the pressure is elim-
inated only if the inner product of two vector functions u and v is defined with a unit weight, i.e.,
hu; vi ¼

R
V u � v dV , where V is the flow region. The use of any weighted inner product, i.e., hu; vi ¼R

V qðx1; x2; x3Þu � v dV , where q(x1, x2, x3) is a positive non-unit function of the coordinates, will not exclude
the pressure. Thus, for example, the basis functions in [1–7] were defined using Chebyshev polynomials
while the inner products there were defined with the unit, but not with the Chebyshev, weight function. This
altered the orthogonal properties of the polynomials and led to dense matrices. It can be expected that the
use of the Chebyshev weight in the definition of the inner products, which exploits the orthogonal proper-
ties of the polynomials and yields better resolution of boundary layers, will improve the convergence of the
method. However, it will require a solution for the pressure. In the framework of spectral and pseudospec-
tral methods the pressure is usually decoupled during numerical integration in time by, for example, the
influence matrix technique [8] or by the pressure-correction projection scheme [9]. Here we propose to ex-
clude the pressure by the direct inverse of the Galerkin projection of the pressure equation operator. This
allows for a direct elimination of the pressure. Taking into account that the continuity equation and the
boundary conditions are satisfied analytically by an appropriate choice of the basis functions, the pressure
elimination reduces the numerical model to an explicit system of ODEs without further algebraic con-
straints, thus preserving the important features of the global spectral methods.

The procedure of explicit pressure elimination can be important for the development of effective pseudo-
spectral solvers based on divergent-free bases that satisfy all the boundary conditions. Such methods were
applied in [10–13]. However, the difficulties related to pressure calculation led to the use of the fourth-order
stream function formulation together with the Chebyshev weight [10], or to the redefinition of the basis or
trial functions in a way that leads to the elimination of the non-unit weight function, so that the unit weight
is enforced [11]. Suslov and Paolucci [12,13] proposed to incorporate the Chebyshev weight into the pro-
jection system keeping the unit weight function in the inner product and making the basis and projection
functions orthogonal. The possibility to eliminate the pressure explicitly can allow for development of other
pseudo-spectral formulations, which will not contain any implicit pressure-calculation steps. Furthermore,
if the pressure can be eliminated for an arbitrary weight function, one can adapt the weight function to a
specific problem that is being considered. The problem of the adaptation of the weight function was never
considered before. We illustrate this possibility for the Burgers equation in Appendix A. A similar adapta-
tion for the Navier–Stokes equation is more complicated and is beyond the scope of present study. The
numerical procedure described here is necessary to proceed further with the adaptation problem.

In the following, we describe the pressure elimination scheme and illustrate its applicability and robust-
ness on several well-known benchmark problems. We use basis functions defined as linear superpositions of
the Chebyshev polynomials [1–3] and compare results computed with the use of unit and Chebyshev weight
functions in the inner products. It is emphasized that at this stage we only establish a possibility of the pres-
sure elimination procedure by showing the similarity of results obtained using the unit and non-unit weight
functions. An improvement in the computational costs will be achieved, e.g., after the weight adaptation
will be carried out for a certain problem, so that one will be able to reach a desired accuracy using shorter
Galerkin series.

In the following, we consider the lid-driven cavity problem and three benchmark problems related to the
natural convection flows. Note, that the global Galerkin approach of [1–7] was used to analyze the linear
stability of numerically calculated flows. It was concluded by different authors that such an analysis
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requires a good numerical resolution of both the basic steady state flow and the most unstable perturbation
that triggers the instability. Consequently, in this study we focus on the convergence of steady state flows
and the critical parameters corresponding to the onset of the oscillatory instability in these flows.
2. Formulation

Consider the momentum and continuity equation describing the flow of an incompressible fluid
ov

ot
þ ðv � rÞv ¼ �rp þ 1

Re
Dvþ f; ð1Þ

r � v ¼ 0; ð2Þ
where v is the velocity p the pressure, f the volumetric force and Re is the Reynolds number. The equation
for the pressure field is derived by applying the divergence operator to (1):
Dp ¼ �r � ½ðv � rÞv� þ r � f. ð3Þ

The boundary conditions for the pressure are defined as in [14]:
op
on

� �
C

¼ n � 1

Re
Dvþ f � ov

ot
� ðv � rÞv

� �
; ð4Þ
where n is the normal vector to the boundary C. The boundary condition (4) is a limit of the component of
the momentum equation normal to a boundary. It is emphasized that the use of this boundary condition for
the correct determination of the pressure is crucial. We have tried simpler boundary conditions as well,
however all of them led to wrong results.

Eqs. (3) and (4) define the pressure to within an additive constant. The solution can be made unique by
the addition of a Dirichlet point or by fixing the value of one coefficient in the Galerkin series. Then the
Laplacian operator in Eq. (3) can be inversed, and the pressure is obtained formally as
p ¼ D�1 �r � ½ðv � rÞv� þ r � ff g; ð5Þ

where D�1 is the inverse Laplacian operator. Substitution of (5) into (1) yields
ov

ot
þ ðv � rÞv ¼ �r D�1 �r � ½ðv � rÞv� þ r � ff g

� �
þ 1

Re
Dvþ f; ð6Þ
which defines a formal way of excluding the pressure from Eqs. (1) and (2).
The derivation of Eq. (3) from Eqs. (1) and (2) assumes that the continuity Eq. (2) is always satisfied.

This is not the case for most of the numerical methods dealing with the incompressible flows, since the con-
tinuity equation is satisfied at a certain stage of the whole numerical procedure (e.g., fractional time step
and projection schemes) or is satisfied only approximately throughout the numerical procedure (e.g., pen-
alty methods). It was argued also [15] that the numerical solution of the pressure problem (3) and (4) to-
gether with the momentum equation (1) does not yield a divergence free solution for velocity. The global
spectral methods with divergence-free velocity basis functions do not have this problem, because the con-
tinuity equation is satisfied analytically before the numerical process starts. Thus, any approximation of a
solution is analytically divergence free. This gives a theoretical opportunity to define a numerical analog of
Eq. (6), so that the pressure will be excluded from the numerical scheme.

Assume that velocity and pressure are approximated by truncated series as
v ¼
XIv
i¼1

aiðtÞuiðx1; x2; x3Þ; p ¼
XIp
i¼1

biðtÞqiðx1; x2; x3Þ; ð7Þ
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where xi are orthogonal coordinates, ui and qi are basis functions in the corresponding functional spaces,
and ai(t) and bi(t) are unknown time-dependent scalar coefficients. Assume also, that $ Æ ui = 0, so that the
approximation of the velocity is always divergence-free. Assume additionally that the basis functions ui sat-
isfy all the velocity boundary conditions, which are assumed to be linear and homogeneous. Note that
orthogonality of the basis functions is not required. Substitution of (7) in (1), (3) and (4), and projection
of the residuals on the bases ui and qi, respectively, reduces the problem to a system of ordinary differential
and algebraic equations, which can be expressed as
Sij _aj ¼Gijbj þ Lijaj þ Nijkajak þ F i; i ¼ 1; . . . ; Iv; ð8Þ
Qijbj ¼Bij _aj þ Cijaj þMijkajak þ Ri; i ¼ 1; . . . ; Ip; ð9Þ
Here repeating indices denote summation and the dot denotes the time derivative. Eq. (8) contain projec-
tions of Eq. (1). Eq. (9) consist partially of the projections of Eq. (3) and partially of the projections of the
boundary condition Eq. (4).

The matrix Qij in Eq. (9) is the projection of the Laplacian operator of Eq. (3) with the Neumann bound-
ary conditions (4) and the Dirichlet point mentioned above. This matrix is non-singular and can be
inverted. Thus, using Eq. (9), the pressure coefficients bi can be expressed as
bi ¼ Q�1
ij Bij _aj þ Cijaj þMijkajak þ Ri

� �
; i ¼ 1; . . . ; Ip; j; k ¼ 1; . . . ; Iv. ð10Þ
Clearly, Eqs. (10) are projections of Eq. (5). Now, substituting bi from (10) into Eq. (8) we obtain a system
of ODEs for the velocity coefficients ai:
Sij _aj ¼GijQ
�1
jm Bmn _anþCmnanþMmknakanþRm½ �;þLijajþNijkajak þF i; i;j;k;n¼ 1; . . . ; Iv; m¼ 1; . . . ; Ip;

ð11Þ

which are the Galerkin projections of Eq. (6). Thus, the velocity coefficients ai can be calculated directly
from Eqs. (11) with no need of any information regarding the pressure coefficients bi. The pressure can
be obtained using Eqs. (7) and (10) after the velocity is calculated. At this stage, assuming that the velocity
is calculated with a sufficient accuracy, the truncation number of the pressure Galerkin series (7) Ip can be
increased, if necessary. This will require a recalculation of Eq. (9), but no recalculation of the velocity aj will
be needed.

The inner products are defined as
hf ; gi ¼
Z
V
qðx1; x2; x3Þf ðx1; x2; x3Þgðx1; x2; x3ÞdV ; qðx1; x2; x3Þ > 0 ð12Þ
for scalar, and
hu; vi ¼ hu1; v1i þ hu2; v2i þ hu3; v3i ð13Þ

for vector functions. In the case of the unit weight function, q(x1, x2, x3) ” 1, the matrix Gij usually vanishes,
since Æ$p,uæ = 0 for any scalar function p if u is divergence free and satisfies non-penetration boundary con-
ditions on all boundaries. In these cases Gij = 0 and Eq. (11) become significantly simplified. This simplified
form of Eq. (11) was treated in [1–7]. The computational cost of calculations with a non-unit weight func-
tions is connected with the calculation of the bilinear term Mmknakan, which is approximately the same as
calculation of another bilinear term Nijkajak, which never vanishes.

In the following, we consider several benchmark problems for flows in rectangular domains 0 6 x 6 1,
0 6 y 6 A. For these flows we describe the elimination of pressure using the basis functions defined in [1–3].
The velocity and the pressure are approximated by the Galerkin series
v ¼ Wðx; yÞ þ
XNx

i¼0

XNy

j¼0

aijðtÞwijðx; yÞ; p ¼
XMx

i¼0

XMy

j¼0

bijðtÞT iðxÞT j
y
A

� �
; ð14Þ
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where 8 9

wijðx; yÞ ¼

A
2

P4
m¼0

aim
ðiþmÞ T iþmðxÞ

P4
l¼0

bjlUjþl�1
y
A

� �

�
P4
m¼0

aimUiþm�1ðxÞ
P4
l¼0

bjl
2ðjþlÞ T jþ1

y
A

� �
>>><
>>>:

>>>=
>>>;
; ð15Þ
and Ti,Uj are Chebyshev polynomials of the first and the second kind. It can be easily shown that $ Æ wij = 0
[1–3]. The coefficients aim and bjl are defined to satisfy the velocity boundary conditions. The expressions
defining aim and bjl for the no-slip and stress-free boundary conditions, as well as other technical details
regarding numerical implementation of the method, can be found in [1–3]. The divergence free vector func-
tion W(x,y) is needed to make all the boundary conditions for the functions wij homogeneous (see below).
The basis functions wij defined by Eq. (15) were introduced by Gelfgat and Tanasawa [1], and are used also
as the projection system in [1–7] and here. The same basis functions for the Galerkin series (14) were used
by Suslov and Paolucci [12,13], however their projection system was different and incorporated Chebyshev
weight to allow for the functions orthogonality and an efficient implementation of the pseudo-spectral
approach.

For the convection benchmark problems we consider the Boussinesq approximation of the momentum,
energy and continuity equations. The system of equations reads
ov

ot
þ ðv � rÞv ¼ �rp þrvþ Grhey ; ð16aÞ

r � v ¼ 0;
oh
ot

þ ðv � rÞh ¼ 1

Pr
Dh; ð16b; cÞ
where h is the temperature, Gr and Pr are the Grashof and Prandtl numbers, respectively. The Galerkin
approximation and the basis functions for the temperature are defined as in [1].

Below we test the pressure elimination procedure that was described above considering three different
numerical cases, which are defined in the following. The ‘‘unit weight’’ case assumes that all the Galer-
kin projections are defined with the unit weight, so that the pressure is eliminated by the orthogonal
projections on the divergence free velocity basis, i.e., Gij = 0. The ‘‘Chebyshev weight’’ case assumes
that all the Galerkin projections are defined with the Chebyshev weight, which for the intervals
0 6 x 6 1, 0 6 y 6 A read
hf ; gi ¼
Z A

0

Z 1

0

ðx� x2Þ�1=2 y
A
� y

A

� �2
	 
�1=2

f ðx; yÞgðx; yÞdxdy. ð17Þ
Finally, the ‘‘mixed weight’’ case assumes that the Chebyshev weight is used for the momentum equation,
while the unit weight is used for the pressure equation (3) and the energy equation (16c). In all non-isother-
mal calculations we use equal truncations in the velocity and the temperature Galerkin series. The trunca-
tion numbers for the pressure series are defined as Mx = Nx + 4, My = Ny + 4. Our numerical experiments
showed that further increase of Mx and My does not alter the accuracy of the calculated velocity field. It is
emphasized once more that the Chebyshev weight here serves as an example of an arbitrary weight
function.

Together with the formulation (1)–(3) one can consider the so-called divergent form of the momentum
equation
ov

ot
þ ðr � vÞ � v ¼ �r~p � 1

Re
r�r� vþ f; ~p ¼ p þr � v2

2

	 

; ð18Þ
which yields instead of Eqs. (5) and (6)
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~p ¼ D�1f�r � ½ðr � vÞ � v� þ r � fg; ð19Þ
ov

ot
þ ðr � vÞ � v ¼ �r½D�1fr � ½ðr � vÞ � v� þ r � fg� � 1

Re
r�r� vþ f. ð20Þ
With the use of this formulation the general form of Eqs. (8)–(11) does not change, but the matrices are
composed of different inner products. Additionally, it is possible to consider the stream function formula-
tion (vx = ow/oy, vy = ow/ox):
oDw
ot

� ow
ox

oDw
oy

þ ow
oy

oDw
ox

¼ 1

Re
DDwþr� f. ð21Þ
The basis functions for the stream function w can be easily derived from (15):
wijðx; yÞ ¼ A
X4

m¼0

aim
2ðiþ mÞ T iþmðxÞ

X4

l¼0

bjl
2ðjþ lÞ T jþl

y
A

� �
. ð22Þ
Using Green�s integral theorems it can be easily shown that for the divergent-free velocity basis functions
(15) and the unit weight function, Eqs. (1), (18) and (21) yield identical Galerkin projections. However, if a
non-unit weight is applied the three formulations lead to different results. Our numerical experiments with
the Chebyshev weight (17) showed that the formulations (18) and (21) do not give any advantage in the
convergence of the accuracy compared with the formulation (1). An example of that is given below. Clearly,
this conclusion cannot be applied to other weight functions.
3. Results

3.1. Lid-driven cavity flow

One of the widely used benchmark problems is the lid-driven cavity flow (see [16–24] and references
therein). The flow in a square cavity (i.e., A = 1) whose upper boundary moves with constant velocity is
considered. The velocity boundary conditions are
vx ¼ �1; vy ¼ 0 at y ¼ 1; ð23aÞ
vx ¼ vy ¼ 0 at y ¼ 0 and x ¼ 0; 1. ð23bÞ
The boundary conditions (18) are discontinuous at the upper corners of the cavity, and are not homoge-
neous at y = 1. To exclude the inhomogeneity and to smooth the discontinuity we define the divergence free
function W(x,y) in Eq. (14) as the solution of the problem:
DW ¼ 0; W xðx; y ¼ 1Þ ¼ ð2x� 1Þn�1; W yðx; y ¼ 1Þ ¼ 0; Wðy ¼ 0Þ ¼ Wðx ¼ 0; 1Þ ¼ 0. ð24Þ

The value of the power n is assumed to be large (in our calculations n P 20), so that the value of Wx at
y = 1 is close to �1 everywhere except near the corners, where it quickly vanishes. The problem (24) is
solved using the Galerkin series with ~Nx � Ny basis functions (15) with the coefficients aim and bjl chosen
to satisfy the homogeneous boundary conditions of (24). Apparently, the condition $ ÆW = 0 is also sat-
isfied. ~Nx � ðNy � 1Þ equations for calculations of the coefficients of the series of W are obtained by the
Galerkin projections of the residual of the equation DW = 0 on the same basis functions. The remaining
~Nx equations are derived from the boundary condition at y = 1, which is satisfied in ~Nx Chebyshev collo-
cation points at this boundary. Once the function W(x,y) is calculated, the boundary condition for the
remaining Galerkin series in Eq. (14) are homogeneous. In the following calculations we used ~Nx ¼ 100.

The calculated flow pattern for Re = 1000 is illustrated in Fig. 1. The calculations were done with the
truncation N = Nx = Ny = 60, unit weight and n = 60 in the smoothing function (24). The pressure field
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Fig. 1. Lid-driven cavity flow at Re = 1000. (a) Streamlines, (b) Isolines of the pressure.
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is calculated using Eqs. (7) and (10) as the Galerkin projection of Eq. (5), using the calculated velocity field.
The streamlines in Fig. 1(a) are equally spaced between wmin = �1.7281 · 10�3 and wmax = 0.11886, and
three more streamlines for w = 0,�0.56 · 10�3 and �0.76 · 10�4 are added to illustrate the reverse circula-
tions located in the lower corners. Levels of the isobars shown in Fig. 1(b) correspond to the levels shown in
Fig. 3 of [16]. Comparison with that figure shows a good agreement in the pressure field calculated in both
studies.

The characteristic features of the flow are compared with the results of [16] in Table 1 in terms of the max-
imal andminimal values of the stream function and their locations. A comparisonwith the very precise results
of [16] shows that the solution obtained using 60 · 60 basis functions and unit weight is correct to within the
fourth decimal digit. The calculationwith themixedweight yields the identical result. The result obtainedwith
the use of Chebyshev weight is slightly worse. A slight difference between the present results and the results of
[16] can be caused by the smoothing of the discontinuity in the boundary conditions. Apparently, different
numerical methods smooth the discontinuity in different ways. This issue is discussed below in more details.

Fig. 2 shows the convergence of the critical Reynolds number and the critical circular frequency of oscil-
lations (i.e., the imaginary part of the leading eigenvalue) corresponding to the oscillatory instability of the
two-dimensional flow with respect to purely two-dimensional perturbations. The critical parameters are
compared with several published results in Table 2. The calculations are done for different weight functions,
as well as for different values of the smoothing parameter n = 20, 40 and 60. It is known that the primary
instability of the lid-driven cavity flow is three-dimensional and sets in at Recr < 1000 [17,18]. Here we are
motivated by a convergence study rather than by physically meaningful results and therefore choose the
Table 1
Results of the calculation of steady lid-driven cavity flow at Re = 1000

Property Present result
60 · 60 basis functions,
n = 60, unit weight

Present result
60 · 60 basis functions,
n = 60, mixed weight

Present result
60 · 60 basis functions,
n = 60, Chebyshev weight

Result of [16]
160 · 160
Chebyshev polynomials

wmax 0.11886 0.11885 0.11890 0.1189366
xmax 0.4691 0.4691 0.4691 0.4692
ymax 0.5652 0.5652 0.5652 0.5652

wð1Þ
min �1.7281 · 10�3 �1.7281 · 10�3 �1.7254 · 10�3 �1.729717 · 10�3

xð1Þmin 0.1359 0.1359 0.1360 0.1360

yð1Þmin 0.1118 0.1118 0.1117 0.1118

wð2Þ
min �2.3317 · 10�4 �2.3335 · 10�4 �2.3525 · 10�4 �2.334528 · 10�4

xð2Þmin 0.9167 0.9167 0.9164 0.9167

yð2Þmin 0.07809 0.07810 0.07805 0.07810
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purely two-dimensional instability, for which the critical Reynolds number is approximately 8000 [19–24]
and the calculations are more difficult. As noted above, the convergence of the critical parameters means
the convergence of both the steady state flow and the leading eigenvalues/eigenvectors of the linearized sta-
bility problem.

The results reported in Fig. 2 and Table 2 show that the critical parameters depend on the choice of the
weight functions and smoothing of the boundary conditions. The difference is caused, in particular, by the
different weight function used for the solution of (24). The resulting function W is slightly different when it
is calculated using the unit or Chebyshev weight. This difference is caused by the sharp change of the func-
tion, even when it is smoothed, near the upper right corner of the cavity. This difference causes a slight dif-
ference in the calculated steady flow state at Re = 1000, which can be seen in the fourth decimal digit (Table
1). A more pronounced difference is observed, as expected, when the calculation is carried out for a signif-
icantly larger critical Reynolds number. Fig. 2 shows that the difference between the critical parameters cal-
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Fig. 2. Lid-driven cavity flow. Convergence of the critical Reynolds number and the critical frequency for different weight functions
and different smoothing parameter n. N = Nx = Ny.

Table 2
Critical Reynolds number and critical oscillation frequency for lid-driven cavity flow

Reference Discretization Recr xcr

[19] 57 · 57 finite biquadratic elements 7763.4 2.8634
[20] Unstructured finite element grid with 27890 degrees of freedom 8040 2.829
[21] 60 · 60 finite biquadratic elements 8000 2.8356
[22] 160 · 160 Chebyshev collocation points 8018 2.8249
[23] 200 · 200 uniform grid 7704 3.707
[24] 257 · 257 stretched grid 8069.76 2.8251

Present

n = 20, unit weight 60 · 60 basis functions 8037 2.791
n = 20, Chebyshev weight 60 · 60 basis functions 8036 2.791
n = 40, unit weight 60 · 60 basis functions 8019 2.814
n = 40, Chebyshev weight 60 · 60 basis functions 8004 2.817
n = 60, unit weight 60 · 60 basis functions 8017 2.821
n = 60, Chebyshev weight 60 · 60 basis functions 7975 2.829
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culated with different weights also increases with increasing n, i.e., when the smoothing function in (24) be-
comes steeper. This is a clear sign of the occurrence of the Gibbs phenomenon near the corner. Apparently,
the Gibbs phenomenon is more pronounced for the Chebyshev weight, which grows sharply near the
boundaries. Thus, we conclude that the calculation of the function W using the unit weight is preferable.

Fig. 2 shows that the unit and mixed weight functions yield almost identical results, while the use of
the Chebyshev weight everywhere leads to slightly different results. When the discontinuity of the bound-
ary condition is strongly smoothed, i.e., n = 20, there is no visible difference in the convergence rate of
the three cases considered. When the smoothing function is steep, i.e., n = 60, it is clearly seen that the
critical values converge better in the unit weight case. In addition to the Gibbs phenomenon mentioned
above, this can be explained by the conservative properties of the Galerkin method with the unit weight
function [2], which are altered when the Chebyshev or other non-unit weight is used. The absence of any
numerical viscosity, even for the steep velocity gradients, can be a reason for the better convergence of
unit weight discretization.

Several results obtained by other authors using other numerical methods (Table 2) also show a consid-
erable disagreement. In our opinion the reason for the disagreement is the same, i.e., the discontinuity of the
boundary conditions. This makes all the results dependent on the discretization of the flow region, as well
as on the numerical scheme. Corresponding examples can be found in [21,23]. Note that for natural con-
vection benchmarks reported below the agreement between different numerical methods, as well as between
results computed with the different weight functions, is much better.

3.2. Convection of air in a square differentially heated cavity

This is one of the earliest CFD benchmark problems [25]. The first formulation considered steady con-
vection of air (Pr = 0.71) in a square cavity whose horizontal walls are thermally insulated and vertical
walls are maintained at different temperatures. The early benchmark exercise considered steady flow states
for Rayleigh number Ra = GrPr values ranging from 103 to 106. Later the range of the Rayleigh number
was increased up to 108 [26–28] and to the calculation of the critical Rayleigh number corresponding to the
onset of the oscillatory instability [10,29,30]. Here, we report results mainly for Ra = 108 and critical
parameters corresponding to the onset of oscillatory instability. Results obtained by the described method
for lower values of the Rayleigh number can be found in [1,4].

The streamlines and the isotherms of steady flow calculated at Ra = 108 are the same as in [26] and are
not reported here. The pressure calculated using Eq. (5) is shown in Fig. 3 for the Rayleigh number varying
from 103 to 108. The isobars are qualitatively similar to those reported in [26,28], however quantitative com-
parison is not possible, since no numerical values were reported in these papers. The isobars are equally
spaced. The minimal and maximal values of the pressure are shown on the corresponding graphs. Other
characteristic values chosen for the comparison in [25] are shown in Table 3, where the present results
are compared with other data. The reader is referred to [25] for the description of all the parameters com-
pared. A comparison with the very precise results of [26] shows that there is no advantage in the accuracy of
solution if the divergent (18) or stream-function formulation (21) with the Chebyshev weight applied. Com-
parison of the results obtained with the unit, mixed and Chebyshev weight functions does not show a sig-
nificant difference in the properties calculated in the central part of the cavity. However, the Chebyshev
weight function yields the values of Vmax and Nu which are in better agreement with the results of [26], than
the values calculated with the unit weight. This is the effect of the Chebyshev weight function, which grows
rapidly near the boundaries, and therefore yields better approximation of thin boundary layers located near
the vertical boundaries.

The effect of the Chebyshev weight near the boundary is illustrated in Fig. 4 showing the convergence of
the Nusselt number with increasing number of the basis functions for Ra = 106, 107 and 108. It is seen that
at these rather large values of the Rayleigh number the approximation yielded by a smaller number of the
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basis functions is better when the Chebyshev weight is applied. The use of Chebyshev weight leads to a
slightly faster convergence. Obviously, the converged results obtained with a large number of the basis
functions do not differ. No visible difference in the results obtained with the unit or mixed weight is
observed (Fig. 4).

The better convergence of the Nusselt number with the use of the Chebyshev weight should be attributed
to the projections of the energy rather than the momentum equation. This was checked by making the pro-
jections of the momentum equation with the unit weight and projections of the energy equations with the
Chebyshev weight. The calculated Nusselt numbers coincided to within the fifth decimal digits with those
calculated with the use of the Chebyshev weight in all the equations. However, the effect of the Chebyshev
weight on the momentum equation is clearly seen when other properties of the flow are studied. An example
of that is given in Fig. 5 showing the convergence of the maximal value of the stream function at Ra = 108.
Note, that the maximum of the stream function is located close to the sidewall boundary layer, but not in-
side it (Table 3). For this property the convergence yielded by the mixed weight is the most monotonic.
Thus, for this particular case, the use of the Chebyshev weight for the momentum equation and the unit
weight in the pressure and energy equations yields a better approximation of the flow field.

The critical Rayleigh number and the critical oscillation frequency calculated with 64 · 64 basis func-
tions are compared with the results of [10,30] in Table 4. Following the definitions used in [29,30] the fre-
quency is made dimensionless by H 2=a

ffiffiffiffiffiffi
Ra

p
, where a is the thermal diffusivity. Similar to the characteristic

values of the steady flows, the use of the Chebyshev weight yields results, that are closer to those calculated



Table 3
Results for convection of air in a square cavity with adiabatic horizontal walls. Ra = GrPr = 108, Pr = 0.71

Present results, 60 · 60 basis functions Independent results

(v,p)-Formulation,
unit weight

(v,p)-Formulation,
mixed weight

(v,p), Chebyshev
weight, v Æ $v

(v,p)-Formulation
Chebyshev weight,
v · [$ · v]

w-Formulation,
Chebyshev weight

[27], 70 · 70
non-uniform
bilinear finite
element grid

[26], 72 · 72
Chebyshev
pseudospectral
modes

[28], h-adaptive
finite element
grid

w 1
2 ;

1
2

� �
52.3223 52.3181 52.3221 52.3221 52.3245 52.3223

wmax 53.8482 53.8440 53.8480 53.8479 53.8504 53.8475
Xmax (wmax) 0.048266 0.048269 0.048265 0.048265 0.048266 0.048
Ymax (wmax) 0.552531 0.552594 0.552587 0.552587 0.552504 0.553
Umax 321.8615 321.8710 321.5864 321.514 321.8210 315.2603 321.875 283.0689
Ymax (Umax) 0.927834 0.9278503 0.9277077 0.9277000 0.9277994 0.9389 0.928 0.9455
Vmax 2222.2892 2222.0324 2222.3879 2222.3855 2222.5000 2241.1841 2222.39 2223.4424
Xmax (Vmax) 0.012000 0.012000 0.012000 0.012000 0.012000 0.0136 0.012 0.0130
Nu (x = 0) 30.22748 30.22503 30.22561 30.22561 30.22585 30.1901 30.225 29.6256
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in other studies. The convergence of critical parameters for the four variations of the weight functions is
shown in Fig. 6. It should be noted that the correct perturbation pattern can be obtained only for
NP 40. The converged second decimal digit of the critical parameters can be obtained only for N P 50,
and the third for NP 58. The values of Racr shown for N < 40 correspond to the perturbations with incor-
rect spatial pattern. The values of the corresponding critical frequencies for N < 40 are beyond the value of
0.05 and are not shown.

It can be concluded that the effect of the Chebyshev weight will be most noticeable in flows containing thin
boundary layers. This is illustrated by the two following examples. In the first example we consider again the
53.84
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Fig. 5. Convection of air in differentially heated square cavity with adiabatic horizontal walls. Convergence of the maximal value of
stream function and the Nusselt number. Ra = 108, Pr = 0.71, N = Nx = Ny.



Table 4
Critical Rayleigh number and critical oscillation frequency for convection of air in a square cavity with adiabatic horizontal walls

Reference Discretization Racr · 10�8 fcr

[10] 54 · 56 Galerkin basis functions 1.83 0.04645
[30] 72 · 72 pseudospectral modes 1.84 0.045

Present

Unit weight 64 · 64 basis functions 1.824 0.04655
Chebyshev weight 64 · 64 basis functions 1.828 0.04650
Mixed weight 64 · 64 basis functions 1.824 0.04655
Chebyshev weight in the energy equation only 64 · 64 basis functions 1.827 0.04650
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convection of air in a laterally heated square cavity, but we replace the perfectly insulating boundaries by
perfectly conducting ones. This leads to elimination of the boundary layers [1,29], and as a result, to much
faster convergence of the Galerkin method. The calculations with the unit weight converge slightly faster,
but beyondN = 24 the results obtained with different weight functions coincide to within the fourth decimal
digit, and beyond N = 46 seven decimal digits remain unchanged with the further increase of the number of
the basis functions. The converged result for this case is Racr = 2.108077 · 106 and fcr = 0.2136605.
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Fig. 6. Convection of air in laterally heated square cavity with adiabatic horizontal walls. Convergence of the critical Reynolds number
and the critical frequency. Pr = 0.071, A = 1. N = Nx = Ny.
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An opposite example is shown in Fig. 7. Here, we consider the convection in a laterally heated square
cavity with the perfectly insulated horizontal walls and increase the Prandtl number by a factor of 10 to
Pr = 7, which corresponds to water. The increase of the Prandtl number leads to a thinning of the bound-
ary layers adjacent to the vertical walls. As a result the Galerkin method converges extremely slowly. Fig. 7
shows that in this case the Chebyshev weight yields a significantly faster convergence. The implementation
of the Chebyshev weight is more crucial for the energy equation since thermal boundary layers are thinner
than the hydrodynamic ones. This is clearly seen from the comparison of the results obtained with the use
of the Chebyshev weight for the whole problem and for the energy equation only with two other cases
where the unit weight was used for the projections of the energy equation. For this case we were unable
to calculate the converged value of the critical Rayleigh number.

3.3. Other natural convection benchmarks

Other benchmark problems dealing with the natural convection flows were formulated in [31,32]. Both
benchmarks considered the onset of the oscillatory instability of convective flows in laterally heated rect-
angular cavities. Here we briefly report results of the calculations for these benchmarks using the unit
and Chebyshev weight functions.

The benchmark problem of [31] was formulated for convection of a low-Prandtl-number fluid in a long
horizontal cavity with length over height aspect ratio Ah = L/H = 4. Details on the results for this bench-
mark can be found in [1,4,31] and references therein. The present calculations were done for N = Nx = 2Ny

basis functions, where N was varied from 32 to 60. The flow under study has no boundary layers, thus the
use of the Chebyshev weight does not improve the convergence. We observe that beyond N = 50 the results
obtained with the Chebyshev and unit weight coincide. At smaller truncation numbers the results obtained
with the unit weight are slightly better.

The benchmark problem formulated in [32] considers convection of air in a tall vertical cavity with the
height over length ratio A = H/L = 8. The details of this benchmark can be found in [32,33], and the results
obtained by the Galerkin method used here are reported in [5]. Only unit weight was used in [5]. The cal-
culations were performed with a fixed number of the basis functions in the vertical direction Ny = 100, and
varying the number of basis functions in the horizontal direction Nx. In this case all combinations of the
unit and Chebyshev weight functions yield results that converge to the same value for Nx > 20. It can be
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shown that like in the case of the square cavity the Chebyshev weight yields slightly better approximation of
the Nusselt number calculated at the hot wall, where thermal boundary layer develops. At the same time the
unit weight yields slightly better approximation of the velocity field.
4. Concluding remarks

A numerical treatment of the incompressible Navier–Stokes equation based on the global Galerkin
method with the divergence free basis functions proposed in [1,2] for the unit weight function is
extended to an arbitrary weight in the definition of the inner products. It is shown that the pressure
can be eliminated by a straightforward procedure, so that resulting dynamical ODEs system contains
no algebraic constraints. It is shown also how the pressure field can be calculated using the previously
calculated velocity field. The approach can be extended to a more general method of weighted
residuals.

Using the proposed approach several benchmark problems were solved with the use of the unit and
Chebyshev weight functions, as well as their combinations. The results illustrate the applicability and
robustness of the proposed pressure elimination. It was shown that discontinuities of boundary conditions
make it disadvantageous to use the Chebyshev weight. At the same time the Chebyshev weight function
yields better approximations of the boundary layers, as was shown for the convection of air and water
in square cavity.

The present study can be continued in two directions. First, a successful use of the Chebyshev weight
function may allow one to formulate an efficient pseudospectral technique for the integration of the
resulting ODEs systems in time. Taking into account that no implicit pressure-calculation step is in-
volved, this can yield an effective numerical method for the modeling of three-dimensional flows in sim-
ple domains such as rectangular boxes and cylinders. Another direction is a search for an algorithm for
the adaptation of the weight function to a certain problem. An example of such an adaptation is given
in Appendix A. This can lead to a significant improvement of the convergence and, consequently, to
fewer degrees of freedom in the numerical method. This is extremely important both for stability stud-
ies and for the calculation of time-dependent 3D flows at large Reynolds numbers.
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Appendix A

Here, we illustrate how the weight function can be adopted to a certain problem. To do this we consider
the time-dependent problem for the Burgers equation [34]:
ou
ot

þ u
ou
ox

¼ m
o2u
ox2

ðA1Þ
with the boundary conditions u(0,t) = u(1,t) = 0, and the initial condition u(x,0) = sin(2px) + sin(p x)/2 as
defined in [35]. Eq. (A1) is discretized by the Galerkin method using the decomposition
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uðx; tÞ ¼
XN�1

i¼0

ciðtÞ½T iðxÞ � T iþ2ðxÞ� ðA2Þ
and the inner product defined as
hf ; gi ¼
Z 1

0

ðx� x2Þ�af ðxÞgðxÞdx � 1

M

XM
i¼1

ðxi � x2i Þ
�aþ1=2f ðxiÞgðxiÞ. ðA3Þ
The last approximate equality is the Gauss quadrature formula, which is applied over M = 300 points
xi = [1 + cos(p(2i � 1)/2M)]/2. Note, that the integral in Eq. (A3) converges for finite f(x) and g(x) if
a < 1. However, a can be larger if these functions vanish at x = 0 and 1, as in the present example. The time
integration is carried out using the ODEPACK routines [36]. Apparently, a = 0 corresponds to the unit,
and a = 0.5 to the Chebyshev weight.

For the following analysis, we solve this problem for m = 0.01 and integrate in time until t = 0.2. To ob-
tain a reference solution uref(x ) we use N = 300. For this truncation number two solutions obtained using
the unit and Chebyshev weight functions are practically indistinguishable. Then we reduce the truncation
number to N = 100 and monitor the relative residual
r ¼ max
x

uN ðxÞ � urefðxÞ
urefðxÞ

����
����; ðA4Þ
5
lative deviation from the reference solution r versus the power a of the weight function q(x) = (x � x2)�a for a solution of the
s equation with 100 basis functions
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where uN(x) is the numerical solution corresponding to the truncation number N. The result for different a
is shown in Table 5. It is seen that the residual reaches its minimum at a = 1.3, for which it is almost two
orders of magnitude less than for the Chebyshev weight at a = 0.5. Fig. 8 shows how the relative residual r
vanishes with variation of the truncation number of series (A2) for different values of a. It is seen that be-
yond N = 80 the residual corresponding to the adapted value a = 1.3 remains significantly smaller than that
of the unit (a = 0) or Chebyshev (a = 0.5) weight functions, as well as smaller than the residual correspond-
ing to a = 1. It is emphasized that the optimal value of a obtained for N = 100 remains optimal for larger
truncation numbers, at least up to N = 150.
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