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A spatial instability of parametrically excited stratified mixing layer flows is considered
together with the related temporal instability problem. A relatively simple iteration
procedure yielding solutions of both temporal and spatial problems is proposed. Using
this procedure a parametric analysis of the temporal and spatial Kelvin–Helmholtz
and Holmboe instabilities is performed and characteristic features of the instabilities
are compared. Both inviscid and viscous models are considered. The parametric
dependence on the mixing layer thickness and on the Richardson and Reynolds
numbers is studied. It is shown that in the framework of this study the Gaster
transformation is valid for the Kelvin–Helmholtz instability, but cannot be applied to
the Holmboe one. The neutral stability curves are calculated for the viscous flow case.
It is found that the transition between Kelvin–Helmholtz and Holmboe instabilities
is continuous in the spatial case and in the temporal case occurs via the codimension-
two bifurcation at which a complex pair of the leading eigenvalues merges into a
multiple real eigenvalue. It is also found that for the same governing parameters
the spatial upstream and downstream Holmboe waves have different amplification
rates and different absolute phase velocities, with larger difference observed at larger
Richardson numbers. It is shown that at large Richardson and small Reynolds
numbers the primary temporal and spatial instabilities set in as a three-dimensional
oblique Holmboe wave.

1. Introduction
Most computational modelling of instabilities and nonlinear supercritical regimes

developing in initially parallel shear flows is performed using the so-called temporal
formulation, in which the spatial flow periodicity is fixed and temporal evolution of the
perturbations is studied. On the other hand, most experiments, as well as similar flows
appearing in nature and technical applications, relate to so-called spatial instability.
Here flow originates at a certain point and the instability develops in space, in the
direction of mean velocity. In the present paper we consider a case in which the spatial
instability of a plane parallel shear flow is excited parametrically by a time-oscillating
perturbation having a certain frequency. Considering this particular case of instability
excitation, we describe a novel procedure that allows computation of both temporal
and spatial instabilities, and, consequently, for the comparison between them.

To distinguish between the spatial and temporal instabilities or, to be more
precise, between spatially and temporally growing disturbances, we consider the basic
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plane-parallel flow U (y) and the general form of its perturbation A(y) exp[i(αx +
αzz − ωt)]. Assuming that Squire’s theorem applies (Yih 1955; Koppel 1964), it is
sufficient to consider only two-dimensional perturbations, i.e. the perturbations with
αz = 0. The parameters α =αr + iαi and ω = ωr + iωi are generally complex. The
temporal instability corresponds to fixed real α =αr , which then plays the role of the
spatial wavenumber of the perturbation, and complex ω such that ωi > 0. Here ωi is
the amplification rate of a temporally growing disturbance and ωr is the circular
frequency of the disturbance. The spatial instability corresponds to fixed real ω = ωr

and complex α such that αi < 0. Here, –αi is the amplification rate of a perturbation
growing in the positive direction of the axis x.

The first attempt to study the relation between spatial and temporal instabilities
was made by Gaster (1962). Considering a general form of the relations α =α(ω) and
ω = ω(α) in the complex plane, assuming them to be analytical functions and their
derivatives ∂ωi/∂αr and ∂αi/∂ωr to be small, he showed that that if ωr,spatial = ωr,temporal

(or αr,spatial =αr,temporal) is explicitly chosen then αr,spatial ≈ αr,temporal (or ωr,spatial ≈
ωr,temporal), and then the temporal and spatial amplification rates are connected by
the group velocity cg

ωi,temporal

αi,spatial

= −cg, cg =
∂ωr

∂αr

. (1)

Nayfeh & Padhye (1979) derived a similar transformation using the method of
multiple scales and illustrated its applicability to the Blasius velocity profile. However,
it was shown that relation (1) is not applicable in many other cases. Thus, Betchov &
Criminale (1966) considered a jet profile and showed that the dispersion relation can
become singular when the wave speed is equal to the group velocity. These singularities
were discussed in Gaster (1968). Peng & Williams (1987) argued that the error of
both transformations grows with the increase of the ratio αi/αr . Roychowdhury &
Sreedhar (1992) showed that the Gaster transformation (1) remains valid only in the
vicinity of the point αr =αi = 0.

The restrictions on the Gaster transformation were partially removed by
Monkewitz & Huerre (1982). They considered expansions of the dispersion relation
in a power series of the velocity ratio parameter λ=(Umax − Umin)/(Umax +Umin),
which was assumed to be small. Here Umin and Umax are the minimal and the
maximal values of the basic velocity profile U (y). In the power series derived by
Monkewitz & Huerre (1982) the Gaster transformation (1) appears as a zero-order
term and therefore is applied only to small λ. Peltier & Scinocca (1990) found
a significant difference between the temporal and spatial instabilities, which they
attributed to the breakdown of the Gaster transformation (1). Ortiz, Chomaz &
Loiseleux (2002) studied the validity of Gaster’s transformation for inviscid stratified
mixing layer flow with piecewise velocity and stepwise density profiles and showed
that it “predicts remarkably well the spatial instability except close to the absolute-
convective thresholds”. In this study we propose a way to compare quantitatively the
temporal and spatial instabilities, which also allows us to check the applicability of
the Gaster transformation.

The linear stability characteristics of the spatial modes appear to be important far
beyond the small disturbance limit. Freymuth (1966) for boundary layer flow and
Gaster, Kit & Wygnanski (1985) for the mixing layer showed that the experimentally
measured amplitude and phase of the first Fourier harmonic of developed
parametrically excited turbulent flow coincides with the amplitude and phase of the
leading spatially growing eigenfunction. These results were confirmed in experimental
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studies of Wygnanski, Champagne & Marasli (1986), Cohen & Wygnanski (1987) and
Weisbrot & Wygnanski (1988) for wakes, axisymmetric jets, and mixing layers,
respectively. The numerical results of Ghoniem & Ng (1987) and Soh (1994) support
this for the spatial formulation, and the results of Smyth, Klaasen & Peltier (1988)
and Scinocca (1995) for the temporal one. Smyth, Moum & Caldwell (2001) provided
additional arguments showing that turbulent flows in the ocean can be caused by
shear instability similar to one observed in mixing layers.

The stability analysis for the spatially growing perturbations results in a nonlinear
eigenvalue problem for the complex spatial wavenumber (spatial amplification rate).
The temporal problem, however, can be reduced to a linear eigenproblem, which can
be treated by standard means of linear algebra. The amplification rates and patterns
of spatially developing perturbations were calculated by Michalke (1965), Monkewitz
& Huerre (1982), Gaster et al. (1985), Lie & Riahi (1988), Sutherland & Peltier
(1992), Wilson & Demuren (1996), and Ortiz et al. (2002). It is not quite clear how
the parameters should be chosen to compare quantitatively between the two types
of the instability. Therefore, most comparisons reported (e.g. Michalke 1965; Miksad
1972) were mainly qualitative. Ortiz et al. (2002) made a quantitative comparison
using the analytical dispersion relation known for ideal fluid flow with a piecewise
velocity profile; however a certain lack of clarity still remains if more general models
(e.g. continuous profiles of density and velocity, viscous flow) are considered. This lack
of clarity can be resolved if one considers a parametric excitation of an instability,
in which the spatial instability is excited by a single-frequency perturbation. Then,
the perturbation frequency for the spatial formulation is fixed. The mean velocity of
the mixing layer multiplied by the temporal period of the excitation yields the initial
spatial period of the iteration procedure. The temporal problem formulated for this
spatial period can be directly and quantitatively compared with the spatial one. Such
a comparison is one of the goals of the present study.

Our motivation to compare the temporal and spatial instabilities quantitatively
follows, in particular, from a necessity to compare experimental and numerical results.
The temporal problem can be studied in two-dimensional (e.g. Patnaik, Sherman
Corcos 1976; Smyth et al. 1988; Mallier 1995; Staquet 1995; Reinaud, Joly &
Chassaing 2000; Miller, Harstad & Bellan 2001; Smyth 2003, 2004), as well as
in three-dimensional formulations (e.g. Smyth & Peltier 1990, 1991, 1994; Knio &
Ghoniem 1991; Comte et al. (1989); Scinocca 1995; Cortesi, Yadigaroglu & Banerjee
1998; Cortesi et al. 1999; Caulfield & Peltier 2000; Staquet 2000; Smyth & Moum
2000a, b; Balaras, Piomelli & Wallace 2001; Peltier & Caulfield 2003; Smyth &
Winters 2003; Smyth 2004). Stability of finite-amplitude two-dimensional Kelvin-
Helmholz billows and their transition to a three-dimensional state was studied by
Klaassen & Peltier (1995). Numerical modelling of the spatial problem requires much
longer computational domains to allow the spatial development of the flow. Such
studies, e.g. Ghoniem & Ng (1987), Korczak & Wessel (1989), Pruett (1989), Comte
et al. (1989), Peltier & Scinocca (1990), Soh (1994), Wilson & Demuren (1996),
Reinaud et al. (2000), have been carried out only in the two-dimensional formulation.
Three-dimensional numerical studies of spatially developing instabilities are extremely
difficult because a combination of long computational domains with high numerical
accuracy leads to enormously large computations. An attempt to approach this
problem using the technique of large-eddy simulation (LES) was made by Vreman,
Guerts & Kuerten (1997).

One of the goals of this paper is a parametric study of the dependence of the spatial
and temporal instabilities on the governing parameters of the problem. Such studies
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have been conducted earlier (e.g. Davis & Peltier 1977; Balsa 1987; Nishida & Yoshida
1987, 1990; Smyth & Peltier 1989; Peltier & Scinocca 1990; Chen & Jirka 1998; Ortiz
et al. 2002; Hogg & Ivey 2003 and references therein); however not all possible
questions were answered, especially regarding the spatial instability. Here we study,
in particular, how transitions between the Kelvin-Helmholtz (K-H) and Holmboe
instabilities take place in the temporal and spatial problems and how the features
of the instabilities depend on the Reynolds and Richardson numbers. According
to our findings the transition from temporal K-H to temporal Holmboe instability
takes place via the codimension- two Takens–Bogdanov bifurcation (Kuznetsov 2004),
which is in agreement with the earlier analytical (e.g. Holmboe 1962; Ortiz et al. 2002)
and numerical (e.g. Smyth & Peltier 1989) results. This bifurcation is characterized
by a merging of two monotonic K-H modes with the simultaneous appearance of
a conjugated pair of Holmboe modes. We show additionally that in the space of
Richardson number, Reynolds number and layer thickness, there exists a parametric
surface across which this Takens–Bogdanov bifurcation takes place.

Our results related to the spatial instability show that conversely to the temporal
case, the transition between spatial K-H and spatial Holmboe instabilities is
continuous. This is consistent with the observation of Pawlak & Armi (1998) who
noticed that there is no clearly defined criterion that allows one to distinguish between
the spatial K-H and Holmboe modes. Our results show that both instabilities are
excited by the same perturbation mode, which changes parametrically with a certain
governing parameter, e.g. Richardson number or layer thickness. Defining the absolute
phase velocity as the difference between the actual phase velocity and the average
velocity of basic flow we observe a steep increase of the absolute phase velocity from
very small, characteristic of the K-H modes, to the significantly larger absolute phase
velocity of the Holmboe modes. Such continuous transitions of the spatial instabilities
were observed before for inviscid flow with the neglected density diffusion by Pawlak
& Armi (1998) and by Ortiz et al. (2002) and the transition region was attributed to
so-called ‘hybrid modes’. Here we show that the transition remains continuous also
for viscous flows with accounting for the density diffusion.

Another interesting observation relates to the amplification rates and absolute
phase velocities of the two spatial Holmboe modes. Conversely to the temporal case,
the growth rates of the upstream and downstream modes differ (Ortiz et al. 2002).
Our results show that at small Reynolds numbers the downstream mode grows, while
the upstream mode remains stable. With the increase of the Reynolds number the
upstream mode destabilizes and attains a significantly larger growth rate than the
downstream one. Comparing the phase velocities of the two Holmboe modes in
the reference frame moving with the mean velocity of the base flow we find that
these absolute phase velocities are different. The difference tends to increase with the
increase of the Richardson number.

In case of a viscous flow we also compute the critical values of the Reynolds
number at which the temporal and spatial instabilities of the hyperbolic tangent
velocity profile set in. We also study their dependence on the mixing layer thickness
and the Richardson number. A similar problem was studied by Defina, Lanzoni &
Susin (1999) for the flow in a tilted tube, but was not addressed before for the
stratified mixing layer with tanh velocity and density profiles. In particular we show
that the critical Reynolds number corresponding to the K-H instability is the same
for both temporal and spatial instabilities.

Finally, following the findings of Smyth & Peltier (1990) and Haigh (1995), we
study the possibility that the onset of Holmboe instability may take place as a
three-dimensional oblique wave. It is found that, in complete agreement with the
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predictions of Smyth & Peltier (1988, 1990), three-dimensional Holmboe modes
become most unstable at large Richardson and low Reynolds numbers. We have
found this three-dimensional instability not only for the temporal, but also for the
spatial case.

In the following (§ 2) we formulate the spatial problem for the parametrically
forced stratified mixing layer and define the temporal problem related to the spatial
formulation. We propose a relatively simple iteration procedure, which yields the
solution of the spatial stability problem. The first iteration of this procedure yields
the solution of the temporal problem as well. Thus, the solutions of both problems can
be compared just by comparison of results obtained at the first and the last iterations
of the same iteration procedure. The results are described in the § 3. The description
of results begins with a comparison of the temporal and spatial perturbation profiles
and amplification rates. We continue by studying the dependence of the amplification
rates, spatial periods and temporal frequencies of perturbations on the Reynolds
and Richardson numbers, and the layer thickness. This is followed by a discussion
of applicability of the Gaster transformation. Then we discuss the neutral stability
curves calculated for the viscous mixing layer flow. Finally we discuss the possibility
of primary three-dimensional instability onset. Conclusions are presented in the § 4.

2. Problem formulation and numerical methods
Consider the flow of a Boussinesq incompressible fluid in a thermally stratified mix-

ing layer. The flow is described by the momentum, energy and continuity equations:

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p + ν�v + gγ (T − T̄ )ey,

∇ · v = 0,
∂T

∂t
+ (v · ∇)T = k�T .


 (1)

Here v, p and T are the fluid velocity, pressure and temperature, respectively; ρ is
the density, ν is the kinematic viscosity, γ is the thermal expansion coefficient, κ is
the thermal diffusivity, g is the gravitational acceleration, ey is the unity vector in
the y-direction and T̄ is defined below.

2.1. Spatial problem

The spatial problem is defined in accordance with mixing layer experiments, e.g. Gaster
et al. (1985), Weisbrot & Wygnansky (1988), Rajaee & Karlsson (1992), Hajj (1997),
and Estevadeordal & Kleis (2002). These experiments can be described schematically
as follows. Two fluid layers having different temperatures T1 and T2 and moving with
different horizontal velocities U1 and U2 meet at a certain point, e.g. at the end of
a splitter plate. A flapper or a loudspeaker introduces a time-periodic perturbation
with a constant circular frequency ω0. This perturbation triggers the instability, which
develops spatially in the streamwise direction.

We consider this problem in a domain 0 � x � ∞, −∞ � y � ∞, 0 � z � 2π/αz, where
αz is the spanwise wavenumber. The boundary conditions are

at y = −∞: vy = 0, vx = U1, T = T1; (2)

at y = +∞: vy = 0, vx = U2, T = T2; (3)

and periodicity conditions are implied in the z-direction. The initial velocity and
temperature profiles are defined as

U0(y) = U1 + 1
2
(U2 − U1)[1 + f (y)], (4)

T0(y) = T1 + 1
2
(T2 − T1)[1 + g(y)], (5)
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where functions f (y) and g(y) vary between −1 and 1 and describe initial velocity
and temperature profiles, for example tanh or piecewise-linear profiles.

In the following we assume that the instability is excited with a harmonic
perturbation of frequency ω0. To render the equations dimensionless we follow
Gaster et al. (1985) and use the spatial wavelength of the exciting perturbation,
i.e. [L] = (U1 + U2)/2ω0, for definition of the length scale. The following scales are
introduced for the velocity, time, pressure and temperature, respectively: [v] = U2 − U1,

[t] = L/[v], [p] = ρ[v]2, and [T ] = T2 − T1. The mean values of the velocity and the
temperature are defined as U = (U1 +U2)/2 and T = (T1 +T2)/2. The scales are chosen
in such a way that the dimensionless length over which the exciting perturbation
is advected by the mean velocity U during one period of oscillation τ =2π/ω0 is
xτ = Uτ/[L] = 2π. This yields the spatial wavenumber of the exciting perturbation
α0 = 2π/xτ = 1. The length scale can also be expressed using the mean velocity or
the velocity ratio λ as [L] = U/ω0 = [v]/2λω0. Equations (1) in dimensionless form
become

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
�v + Ri(T − T )ey,

∇ · v = 0,
∂T

∂t
+ (v · ∇)T =

1

Pe
�T,


 (6)

where Re= [v][L]/ν is the Reynolds number, Pe= [v][L]/κ is the Péclet number
and Ri = gγ [T ][L]/[v]2 is the bulk Richardson number. In the stability studies
for the spatial problem we assume that the perturbations behave proportionally to
exp[i(αx + αzz − ω0t)] and look for the complex spatial wavenumber α, which yields
the fastest spatial growth of the perturbation having the fixed temporal frequency ω0.
The dimensionless value of αz plays the role of an additional governing parameter.

2.2. Temporal problem

For the temporal problem we consider two fluid layers moving at y = ±∞ with
opposite velocities Umax and –Umax at y = ±∞. This problem is also described
by equations (6), but is considered in a domain 0 � x � Xt = 2π/α0, –∞ � y � ∞,
0 � z � 2π/αz where α0 is the fixed spatial wavenumber of the temporal problem. The
boundary conditions for the temporal problem are:

at y = −∞: vy = vz = 0, vx = −Umax, T = T1; (7)

at y = +∞: vy = vz = 0, vx = Umax, T = T2; (8)

and periodicity conditions in the horizontal direction:

v(x = 0) = v(x = Xt ), p(x = 0) = p(x = Xt ), T (x = 0) = T (x = Xt ),[
∂v

∂x

]
x=0

=

[
∂v

∂x

]
x=Xt

,

[
∂p

∂x

]
x=0

=

[
∂p

∂x

]
x=Xt

,

[
∂T

∂x

]
x=0

=

[
∂T

∂x

]
x=Xt

.


 (9)

Similar periodicity conditions are posed in the z-direction. The initial velocity profile
is defined as

U (y) = Umaxf (y) (10)

and the initial temperature profile is the same as for the spatial problem. The function
f (y) is the same as in (4).

Similarly to the spatial problem, we choose the length scale of the temporal problem
such that its dimensionless wavelength becomes equal to 2π. The following scales of
length, velocity, time, pressure and temperature are chosen for the temporal problem:
[L] = α−1

0 , [v] = 2Umax, [t] = 1/α0[y], [p] = ρ[v]2, and [T ] = T2 − T1. Obviously, the
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Spatial problem Temporal problem

Scales:
[L], length (U2 + U1)/2ω0 1/α0

[v], velocity U2 − U1 2Umax

[t]= [L]/[v], time L/(U2 − U1) = 1/2λω0 L/2Umax = 1/2α0Umax

[p]= ρ[v]2, pressure ρ(U2 − U1)
2 4ρU 2

max

[T ], temperature T2 − T1 T2 − T1

Governing parameters:
Reynolds number, Re= [v][L]/ν (U2 − U1)(U2 + U1)/2ω0ν 2Umax/α0ν

Richardson number, Ri = gβ[T ][L]/[v]2 gβ(T2 − T1)/2(U2 − U1)ω0λ gβ(T2 − T1)/4U 2
maxα0

Péclet number, Pe= [v][L]/κ (U2 − U1)(U2 + U1)/2ω0κ 2Umax/α0κ

Table 1. Scales and governing parameters chosen to render the temporal and spatial problems
dimensionless. The perturbations are defined as exp[i(αx − ω0t)] and exp[i(α0x − ωt)] for the
spatial and temporal problems, respectively, where ω0 and α0 are real and positive. The velocity
ratio is defined as λ= (U2 − U1)/(U2 + U1).

dimensionless temporal problem is also described by equations (6). Its dimensionless
x-coordinate varies from zero to 2π, so that the dimensionless spatial wavenumber
is unity. The perturbation is assumed to be proportional to exp[i(α0x + αzz − ωt)]
and we look for the complex temporal amplification rate ω, which yields the fastest
temporal growth of the perturbation having the fixed x-wavenumber α0. As in the
spatial formulation, the dimensionless value of the z-wavenumber αz plays the role
of an additional governing parameter.

The scales and governing parameters defined for the spatial and temporal problems
are summarized in table 1. It follows that both problems are described by the
same governing parameters if Umax = (U2 − U1)/2 and α0 = 2ω0/(U1 + U2). Thus, we
associate the spatial parametrically excited problem with the temporal problem whose
spatial period coincides with 2π/α0. The temperature profiles of the two problems
must coincide and the velocity profiles must have the same velocity difference and be
described by the same shape function f (y).

2.3. Linear stability problem

Consider spatial and temporal problems that are associated as described above.
Assume also that the parametrically excited spatial instability occurs with the
dimensionless spatial wavenumber αs , which slightly diverges from unity (recall that
α0 is exactly one). We observe the development of the instability (e.g. growth of a K-H
billow in a mixing layer) in the reference frame moving with the mean velocity U and
compare it with the instability developing in the temporal problem having the fixed
spatial wavenumber exactly equal to one. We wish to study the difference between the
spatial and temporal instabilities. Assuming that the spatial stability problem yields a
complex value of α, a measure of the difference between the wavenumbers of spatial
and temporal instabilities will be the difference between the dimensionless value of
Re(α) and unity. We will also compare spatial and temporal amplification rates. This
comparison will require a rescaling, which is defined below.

In the following we describe a simple iterative procedure which yields both spatial
and temporal fastest growing perturbations, and a method to compare them. We
assume that the basic flow is decribed by the same dimensionless temperature profile
and by the dimensionless velocity profiles Us(y) and Ut (y) for the spatial and the
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temporal problems, respectively:

T (y) =
T1

T2 − T1

+
1

2
[1 + g(y)], US(y) =

U1

U2 − U1

+
1

2
[1 + f (y)], Ut (y) =

1

2
f (y).

(11)

The perturbations are defined as A(y) exp[i(αx + αzz + ωt)], where A(y) is the ampli-
tude, and α, ω and αz are as defined above. For the spatial problem, we assume that
α is complex and ω has a prescribed real value, while for the temporal problem α is
real (according to our scaling α = 1) and ω is complex. Note that, according to the
scales chosen for the spatial problem,

ω = ω0[t] =
1

2

U1 + U2

U1 − U2

=
1

2λ
, where λ =

U1 − U2

U1 + U2

. (12)

It is emphasized that (12) holds only for the spatial case. The new parameter λ is
zero when U1 = U2 (no shear) and is infinite for the classical temporal case where
U2 = −U1 = Umax. Note also that λ< 1 corresponds to the cases where the two fluid
layers of the spatial problem move in the same direction, while λ> 1 means that the
directions of motion are opposite.

The linearized stability problem for both spatial and temporal cases is described
by the non-isothermal Orr–Sommerfeld equations (w and θ are perturbations of the
vertical velocity and the temperature respectively) as

−iω(w′′ − a2w) = iα[a2U (y)w − U (y)w′′ +wU ′′(y)]

− 1

Re

[
w(4) − 2a2w′′ + a4w

]
− Ria2θ, (13)

−iωθ = −[iαU (y)θ + T ′(y)w] +
1

Pe
[θ ′′ − a2θ], (14)

with a2 = α2 + α2
z and the above assumptions for α and ω. The profile U (y) must be

replaced by one of the profiles (11) depending on the problem considered.

2.4. The iteration procedure

We illustrate our approach for the case of inviscid and isothermal fluid. In this case
eq. (13) reduces to the Rayleigh equation (assume αz = 0)[

U (y) − ω

α

]
(w′′ − α2w) − U ′′(y)w = 0 (15)

which can be considered as a linear eigenproblem for ω or a nonlinear eigenproblem
for α. For the temporal case U = Ut (y) = f (y), α = α0 = 1, and (15) becomes[

1
2
f (y) − ω

]
(w′′ − w) − 1

2
f ′′(y)w = 0. (16)

For the spatial case we have to account for (12) and profile Us(y). We assume
additionally that for the spatial case α =1 + β , where β is a complex correction to
the unity wavenumber of the exciting perturbation. Using (11) and (12) we note that
Us(y) − ω/α = β/2λ(1 + β) + f (y)/2), and (15) reduces to[

1

2
f (y) +

1

2λ

β

1 + β

]
(w′′ − (1 + β)2w) − 1

2
f ′′(y)w = 0. (17)

Similarity of the equations (16) and (17) allows us to define the following iterative
procedure: [

1

2
f (y) +

1

2λ

βk+1

1 + βk

]
(w′′

k+1 − (1 + βk)
2wk+1) − 1

2
f ′′(y)wk+1 = 0 (18)
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where β0 = 0 and each successive βk+1 is chosen as the leading eigenvalue of the (k +
1)th eigenvalue problem (18). Note that the eigenvalue problem is linear with respect
to βk+1, so that standard methods for linear eigenproblems can be applied at each
iteration. Apparently, the converged iterative process yields the spatial amplification
rate, αi = βi , the spatial wavenumber αr = 1 + βr and the eigenvector of the spatial
stability problem. Furthermore, comparison of equation (18) for β1 and (16) shows
that the first iteration yields the eigenvalue of the temporal problem, i.e.

ω = −β1/2λ (19)

as well as the corresponding eigenvector.
It can be easily shown that for the general three-dimensional case taking into

account also viscosity, heat conduction, and stratification, a similar iterative process
can be constructed. The resulting equations are[

1

λ

βk+1

1 + βk

+ f (y)

] (
w′′

k+1 − a2
kwk+1

)
= f ′′(y)wk+1

− 2i

Re (1 + βk)

[
w

(4)
k+1 − 2a2

kw
′′
k+1 + a4

kwk+1

]
+ 2iRi

a2
k

(1 + βk)
θk+1, (20)

[
1

λ

βk+1

1 + βk

+ f (y)

]
θk+1 =

2i

1 + βk

T ′ (y) w − 2i

Pe (1 + βk)

[
θ ′′
k+1 + a2

k θk+1

]
, (21)

where a2
k = (1 + βk)

2 + α2
z and (19) holds for the temporal case.

The proposed iterative procedure yields solutions for both the temporal and the
spatial stability problems, which are linked by taking their length and velocity scales
to be equal as described above. Using the iterations (20), (21) we can compare
the eigenvectors of the two problems. The dimensionless temporal and spatial
amplification rates can also be compared via (19). In fact, it is necessary to compare
values of β1 and the converged β . Furthermore, since at the converged value of β it
is possible to control the whole spectrum of the spatial problem, including the fastest
growing mode, it is possible to calculate the critical values of the Richardson and
Reynolds numbers corresponding to Im(β) = 0.

Recall that according to the chosen time scale and (12) ω0 = 0.5(U1 + U2)/(U1 − U2),
i.e. the dimensionless frequency of the excitation is equal to the dimensionless
mean velocity U . Taking into account that the phase velocity of a perturbation
is vf =Re[ω0/(1 + β)] we can distinguish between perturbation modes with vf > −U ,
which propagate downstream with respect to the mean velocity of the basic flow, and
the modes with vf <U which propagate upstream. The results on spatial instability

reported below show that, as a rule, vf �= U .

2.5. Numerical methods

Equations (20) and (21) are solved by two independent numerical approaches. The
first one is based on centred finite differences, employing stretching of the grid where
necessary. The second method is based on the global Galerkin technique with the
basis functions constructed as linear superpositions of Chebyshev polynomials that
analytically satisfy all the boundary conditions (Gelfgat 2001). The two methods are
employed to cross-validate each other.

The application of the global Galerkin method requires decomposition of the basic
flow profiles U (y) and T (y) in series of Chebyshev polynomials. In the case of
hyperbolic tangent profiles (∼ tanh(y/ξ ), see below) the convergence of these series
appears to be rather slow, especially for values of ξ below 0.1. For this reason the
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majority of the results described below have been obtained using the finite difference
method with the number of nodes varying between 500 and 2000. The computational
domain was defined as an interval −W � y � W . The value of W is chosen to ensure
the independence of the results of further increase of its value, which sometimes
requires W of the order of 100ξ . The grid was stretched near the centreline y = 0
using the function tanh(sy/W )/tanh(s), where s was varied between 2 and 4 depending
the value of ξ .

The boundary conditions for the mixing layer problem are defined using the
asymptotic behaviour of the perturbations at y → ±∞, as described in Michalke
(1965) and Lie & Riahi (1988).

To validate the codes we carried out the following comparisons with independent
results. First, we considered the Rayleigh equation (15) and reproduced the results
of Michalke (1965) on spatial instability of an inviscid mixing layer flow. Our results
obtained on the 300-node grid coincide with those of reported in table 1 of Michalke
(1965) to within the fourth decimal digit. Then, to validate the inviscid stratified case
we use the result of Smyth & Peltier (1989). For the gradient Richardson number
J = 0.6, R = 3 (defined in § 3) and the spatial period scaled by the velocity layer depth
α/δ = 0.3 they reported the phase speed of the Holmboe wave c =0.505467 −
i0.083320. Our result obtained for the 1000-node grid with s =3 is c = 0.505486 −
i0.0833. To validate the viscous term we reproduced the critical Reynolds number
corresponding to the two-dimensional linear instability of the plane Poiseuille flow
(our converged result is Recr = 5772.2414, αcr = 1.022725, ωcr = 0.2702383) and the
linear stability results for the stratified mixing layer published recently by Hogg &
Ivey (2003) (their figure 4). Additionally, we monitored the convergence of both
numerical methods and for several control cases checked that both methods yield
same results.

3. Results
We consider a mixing layer flow with hyperbolic tangent velocity profiles. Assuming

that the thicknesses of the velocity and temperature layers are δ and δt , respectively,
the basic profiles are defined by

f (y) = tanh

(
y

ξ

)
, g(y) = tanh

(
y

ξt

)
(22)

where the coordinate y is dimensionless, ξ and ξt are the dimensionless thicknesses
δ and δt scaled by the length scales introduced above. The different thicknesses
of the velocity and temperature layers define an additional governing parameter
R = δ/δt = ξ/ξt . Based on the Miles–Howard semicircle theorem (Miles 1961; Howard
1961) Hazel (1972) showed that an instability of an inviscid stratified mixing layer
can be expected for R > 2. For the non-isothermal case considered here we use the
fixed values of the Prandtl and R numbers, Pr= 9 and R = 3, which approximately
correspond to δ and δt of stratified water.

Note that if, according to a traditional scaling, the thickness of the velocity layer δ is
chosen as the length scale, then the ratio between the two scales is given by δ/[L] = ξ .
It is easy to see that the dimensionless parameter ξ is equal to the wavenumber of
the temporal problem αt scaled by 1/δ: ξ = δ/(1/αt) = αt/(1/δ) . It is emphasized also
that we describe our stability results in terms of β1 and β , and not α and ω. Such
a description allows us to compare directly the temporal and the spatial problems.
Thus, for example, the spatial and temporal instabilities correspond to Im(β) < 0 and
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Im(β1) < 0, respectively. The values of α and ω can be recalculated as α = 1 + β , and
ω = −β1/2λ.

Following Hazel (1972) we calculate a gradient Richardson number J corresponding
to the profiles (22) and express it as a function of Ri, R, ξ , and y. For the temporal
case this yields

J = −g
ρ ′(y)

ρ0

δ

[U ′(y)]2
=

Rβ(T2 − T1)g

2U 2
maxα0

ξ 2 cosh4(y/ξ )

cosh2(Ry/ξ )
= 2RiRξ 2 cosh4(y/ξ )

cosh2(Ry/ξ )
(23)

which at large y can be approximated as

J = 2RiRξ 2 exp

[
2
y

ξ
(2 − R)

]
. (24)

This means that if R > 2 (i.e. the result of Hazel 1972) we can always choose y large
enough to satisfy the condition of the Miles–Howard theorem J < 1/4. Therefore, for
the tanh-profiles we expect to observe instabilities at significantly large Richardson
numbers. Also Ortiz et al. (2002) noticed that in inviscid fluid with a piecewise linear
velocity profile and stepwise density profile the Holmboe instability never vanishes
with the increase of the bulk Richardson number. On the other hand, and according
to the result of Hazel (1972), at R < 2 the Holmboe instability is not expected. This
conclusion is supported by the experimental observations of Zhu & Lawrence (2001).

The value of the velocity ratio λ was varied in the interval 0 < λ� 1. As mentioned
above, λ> 1 means that the two flows of the spatial case move in opposite directions.
It is unclear how such a system might be realized experimentally. On the other hand,
the iterative procedure (20) and (21) can be applied to larger values of λ. To check
this point we performed a series of calculations up to λ= 5 (not shown here).

Since the Squire transformation always holds (Yih 1955; Koppel 1966) and, as
explained by Smyth et al. (1988), the three-dimensional primary instability is a quite
exceptional case, in most of the computations we set αz = 0. Non-zero values of αz

are considered in § 3.5.

3.1. Isothermal inviscid flow

In this case we solve the Rayleigh equation (15) using the iterative procedure (18).
According to Drazin (1958), unstable temporal modes of (15) exist for 0<α δ < 1.
These modes correspond to the K-H instability with ω = 0. This implies that in the
present formulation the unstable K-H modes exist for 0 <ξ < 1. For ξ � 1 all the eigen-
modes are neutral. Since equations (16) and (17) coincide for ω = β = 0, all the
eigenmodes of the spatial problem are also neutral for ξ � 1.

Figure 1 illustrates profiles of the streamwise velocity perturbation for different
values of ξ at λ= 1. The values of β1 and the converged β are shown below the
corresponding frames. It is seen that the spatial (solid lines) and temporal (dashed
lines) perturbation patterns are similar. The amplitudes of temporal perturbations
are symmetric with respect to the axis y =0, and their phases possess rotational
symmetry around their value at y = 0. Clearly, these symmetries reflect the symmetry
of the temporal problem and disappear in the spatial case (cf. dashed and solid lines
in figure 1). This is the main qualitative difference between the temporal and spatial
perturbation patterns. Our results show that at relatively small velocity ratio, e.g.
λ= 0.5, the dimensionless spatial and temporal amplification rates rescaled by λ (as
in (19)) differ only by a few per cent. For λ= 1, however, this difference exceeds 35 %
at ξ = 0.2 and is even larger at smaller values of ξ .
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Figure 1. Amplitudes and phases of the temporal (dashed lines) and spatial (solid lines)
perturbation of x-component of velocity for inviscid isothermal mixing layer flow. λ=1.

The difference between the temporal and spatial instabilities for this case is
summarized in figures 2(a) and 2(b), where β1 (temporal instability) and converged β

(spatial instability) are shown as functions of ξ for different λ. Only real parts of β

are included in figure 2(b) since in the temporal case the K-H instability is monotonic
and Re(β1) = 0. The temporal case is independent of λ, so that β1/λ remains constant.
Thus, to compare spatial cases characterized by different λ with the temporal case we
report values of Im(β)/λ in figure 2(a).

In the spatial and temporal cases the imaginary parts of β1 and β are close for
λ� 0.5 (figure 2a). When λ approaches unity the difference between them becomes
noticeable at small ξ , and the dependence β(ξ ) for the spatial case becomes non-
monotonic. Note that λ= 1 corresponds to Umin = 0, i.e. a motionless lower fluid layer.
The obtained dependence of the amplification rate on the parameter λ shows that the
temporal and spatial instabilities are similar when the two layers move with similar
velocities and become different when the velocities diverge.

3.2. Isothermal viscous flow

Viscous flow differs qualitatively from inviscid flow, since the neutral perturbation
modes characteristic of the inviscid fluid turn out to be decaying at any viscosity.
Apparently, at sufficiently large viscosity (sufficiently small Reynolds number) the
flow is stable. The critical values of parameters are discussed in § 3.6. Here we are
only interested in the effect of viscosity on the parameters β1 and β , and on the
profiles of the most unstable perturbations.

The same calculations as in the § 3.1 were repeated for isothermal viscous fluid at
Re= 100. This value of the Reynolds number is beyond the critical value (see below),
but is small enough to illustrate the influence of viscosity. The calculated values of
β1 and β are reported in figures 2(c) and 2(d). As expected, the amplification rates of
perturbations in the viscous fluids are smaller. The range of the layer thickness for
which the instability is observed is also smaller, so that for ξ > 0.9 all the perturbations
decay. The difference between the temporal and spatial wavenumbers also decreases.
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Figure 2. Dependence of the parameter β on the dimensionless thickness of the velocity
layer, αz = 0.

Wilson & Demuren (1996) studied how the spatial growth rate varies with the
excitation frequency ω0 for a fixed mixing layer thickness. Using the definition of
ξ , i.e. ξ = 2δω0/(U1 + U2), figures 3(a) and 3(b) can be easily transformed into the
dependences αi(ω0), from which a qualitative agreement with the result of Wilson &
Demuren (1996) becomes obvious.

The profiles of the x-velocity perturbations are shown in figure 3 for λ= 1, the value
for which we observe the largest differences between the inviscid and viscous cases, as
well as between the temporal and spatial perturbations. Comparison of figures 1 and
3 shows that the inviscid and viscous perturbations have similar profiles for ξ � 0.6.
The profiles become significantly different at ξ =0.8.

3.3. Effect of stratification: inviscid flows

It is well-known that in a stratified mixing layer, together with the K-H instability
there also exists a so-called Holmboe instability (Holmboe 1962). In the temporal
case the Holmboe instability sets in through a pair of conjugate eigenvalues with
Re(ω) �= 0 and corresponds to the appearance of two waves travelling in opposite
directions. Transitions between the two instabilities for the temporal case for inviscid
fluid with heat conduction neglected were studied by Smyth & Peltier (1989). Here
we show how the transition takes place in both the temporal and spatial cases and
study the effect of both viscosity and heat conduction.

Figures 4 and 5 illustrate the transition between the K-H and Holmboe instabilities
for the temporal and spatial cases, respectively, for inviscid fluid with heat conduction
neglected. The calculations were carried out for Ri = 0.2, R = 3 and λ= 0.5. In the
temporal case (figure 4) we observe a single steady K-H mode when the mixing layer
is thin (ξ < 0.2). This mode is shown by triangles and a dash-and-dot line. Another
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Figure 3. Amplitudes and phases of the temporal (dashed lines) and spatial (solid lines)
perturbation of x-component of velocity for viscous isothermal mixing layer flow. λ= 1,
Re= 100, αz =0.
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second K-H mode; �, Holmboe modes. The inset shows the dependence of Re(β1) on ξ for
the two Holmboe modes.

steady K-H mode appears when the dimensionless thickness ξ exceeds 0.2 (squares
and a dashed line in figure 4). These two steady modes merge at ξ = 0.2196 and do not
exist beyond this point. Two oscillatory modes (diamonds and a solid line in figure 4)
appear at the point of merging, so that at larger ξ only these oscillatory modes
exist. The real parts of parameter β1 (or real parts of ω in (19)) of these two modes
are non-zero and have opposite signs, which is illustrated in the inset of figure 4.
This is a clear sign of the Holmboe instability. Thus, we observe the replacement of
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two steady K-H modes by two conjugated oscillatory Holmboe modes, which is a
well-known Takens–Bogdanov codimension-two bifurcation point (Kuznetsov 2004).
Smyth & Peltier (1989) obtained similar results for other values of R and Ri. An
analytical dispersion relation obtained for a stepwise density profile contains a similar
bifurcation point (Lawrence, Broward & Redekopp 1991; Caulfield 1994; Haigh &
Lawrence 1999; Ortiz et al. 2002 and references therein). The origin of the Takens–
Bogdanov point in this dispersion relation is quite obvious and corresponds to a
square root the argument of which changes its sign. Our results show that this point
is also retained for continuous velocity and density profiles and for the complete
model that accounts for viscosity and diffusion (see below).

In the spatial case the transition between the K-H and Holmboe modes is
qualitatively different (figure 5). In this case we also observe a single K-H mode
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for ξ < 0.2 shown by triangles and a solid line. Another unstable mode appears
when the thickness ξ exceeds 0.2, similarly to the temporal case (squares and dashed
line in figure 5). When the second mode appears its value of Re(β) is small, which
indicates that this is another K-H mode. At a certain value of ξ , which is close to
the Takens–Bogdanov point of the temporal case, the real parts of β for both modes
start to grow rapidly (figure 5b). However, we observe a continuous change of each
mode rather than an abrupt switch from one (K-H) mode to another (Holmboe).
The latter is illustrated in the insets of figure 5, in which the area of the rapid growth
of Re(β) is enlarged. For ξ > 0.22 we observe two unstable modes with large Re(β),
which apparently correspond to the two Holmboe modes of the temporal case. Thus,
conversely to the temporal problem, in the spatial case the K-H and Holmboe modes
continuously transform one into the other.

As mentioned above, the two Holmboe waves propagate upstream and downstream
with respect to the mean velocity of the base flow Ū . To compare the phase velocity
of the two modes in the reference frame moving with the mean velocity Ū we define
the absolute phase velocity as uf = |Ū − vf |. Taking into account the definition of the
phase velocity vf = Re(ω0/α) it is easy to see that

uf =
1

2λ

∣∣∣∣Re

[
β

1 + β

]∣∣∣∣. (25)

An additional inset in figure 5(b) shows uf of the two Holmboe modes. It is seen that
although the velocities are very close, they do not coincide. This is in a qualitative
agreement with the results of Ortiz et al. (2002) obtained for piecewise velocity and
stepwise density profiles.

An additional illustration of the similarity of the spatial and temporal modes is
shown in figure 6, where temporal and spatial perturbations corresponding to two K-H
modes at ξ =0.215 and two Holmboe modes at ξ = 0.6 are compared. The amplitude
profiles, as well as the values of β1 and β of the corresponding temporal and spatial
K-H perturbations are close at ξ = 0.215. In the case of Holmboe instability (ξ = 0.6)
profiles of perturbations remain similar; however the difference in the values of β1

and β is more pronounced. Note that although the profiles of the Holmboe modes
are shifted with respect to the centreline y = 0, they retain the shape of the K-H
modes. Values of Re(β) show that the difference between the spatial periods of the
temporal and spatial cases is small for the K-H instability. However, this difference
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will be significantly increased in the wavelength of the Holmboe instability, for which
Re(β) reaches the value of 0.5 (figures 5 and 6).

On studying the transition from the K-H to the Holmboe instability we observe two
important facts. First, the perturbation profiles (figure 6) of both instabilities have
similar shapes and differ mainly by the location of the maximum: at the midplane
for K-H instability and above and below the midplane for the Holmboe instability.
The location of the maximum yields a criterion to distinguish between the spatial
K-H and Holmboe modes. Another criterion is the deviation of the phase velocity
vf from the mean velocity Ū ; however it can be applied only far from the transition
region. The second fact is that the spatial K-H and Holmboe modes continuously
transform one into the other. Apparently, both instabilities are driven by an interplay
of destabilizing shear and stabilizing buoyancy forces. A different ratio of these factors
leads to either K-H or Holmboe instability that continuously transform one into the
other. It would thus be natural to assume that the main driving mechanisms of both
instabilities are the same, but depending on the ratio between shear and buoyancy
the instability develops as a K-H or a Holmboe wave. Therefore, the explanations of
the physics of instability for non-stratified (e.g. Batchelor 1967; Drazin & Reid 1984)
and for stratified shear flow (e.g. Holmboe 1962; Baines & Mitsudera 1994; Caulfield
1994) must continuously transform one into another. Indeed, if it is assumed that
the mechanism changes abruptly then an abrupt change of the leading eigenvalue
and the perturbation profile would be observed, which does not happen. Therefore,
we conclude that both K-H and Holmboe instabilities are driven by the same
physical mechanism. Baines & Mitsudera (1994) arrived at a similar conclusion: “We
emphasize that all of the instabilities described above may be interpreted in terms of
one mechanism alone, namely the mutual forcing of two stationary, otherwise free,
waves. This suggests that shear instability in general is due to this single mechanism,
rather than a family of different processes”.

The maximum of the perturbation profile of the K-H mode is always located at
the plane where inflection point occurs. Assuming that the layer is stably stratified
with the tanh-profile (22) we introduce the stabilizing buoyancy force. The location of
its maximum coincides with the maximum of the density gradient, i.e. is also located
at the plane y = 0. When the stratification is large enough the maximum of the
perturbation profile shifts towards the area where the density gradient is small while
the shear still is large. The temporal velocity profile is antisymmetric with respect to
the plane y = 0, and the instability appears due to two symmetric shifts above and
below the interface as two antisymmetric waves travelling in the opposite directions.
In the spatial case the symmetry is broken, which leads to different growth rates and
phase velocities of the two traveling waves. It is clear also why the width of the
density layer must be smaller than that of the velocity layer: only in this case can
the maximum of the perturbation profile be shifted into the region where the density
gradient is small while the shear is still large. The maximal values of perturbations
shown in figure 6 for ξ = 0.6 are located at y ≈ ±0.327. The gradient Richardson
number (23) calculated at this location is J ≈ 0.11, which is significantly below the
value of 0.25.

3.4. Effect of stratification: viscous flows

Figures 7–9 illustrate the effect of viscosity on the transition between K-H and
Holmboe instabilities. Figure 7 corresponds to the temporal and figures 8 and 9
to the spatial cases. At Re= 104 (figures 7a and 8), when the viscosity is small,
the transitions are similar to those observed for inviscid fluid. With the increase of
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Figure 7. Dependence of the time amplification rate Im(β1) on the depth of velocity layer ξ .
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viscosity and the corresponding decrease of the Reynolds number (Re =103, figures 7b

and 9) the temporal and spatial amplification rates decrease, as expected. The
Takens–Bogdanov point (figure 7b) shifts into the region of decaying perturbations
corresponding to Im(β) > 0. However, the transitions remain qualitatively the same.
Note that in such case the two instabilities arise in separate intervals of ξ : the K-H
modes are unstable for ξ � 0.224, while the Holmboe modes are unstable for ξ � 0.23.
With further increase of viscosity the distance between the two intervals appears to
increase. A laboratory or direct numerical simulation of such cases would reveal two
instabilities setting in at different layer thicknesses, so that the K-H instability will
decay at a certain layer thickness, while the Holmboe instability will start at a larger
thickness. In this case the continuous transition between the K-H and Holmboe
instabilities could be overlooked and incorrect conclusions drawn.
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Figure 8. Dependence of parameter β on the depth of velocity layer ξ for the spatial
instability. Viscous non-isothermal flow, Re= 104, Ri= 0.2, Pr = 9, R = 3, λ= 0.5, αz =0. �, first
K-H–Holmboe mode; �, second K-H–Holmboe mode. The insets zoom in on the transitions
from K-H to Holmboe type of instability. An additional inset in frame (b) shows the absolute
difference between the phase velocity of Holmboe modes and average velocity of the base flow.

At relatively large viscosity (small Reynolds number) the behaviour of one of
the spatial modes changes qualitatively (figure 9). The imaginary part of β of the
mode shown by the solid line does not grow monotonically, as it did in the cases
of inviscid and low-viscosity fluids, but rather changes abruptly at the point of the
K-H–Holmboe transition. Comparison with the temporal case (figure 7b) shows that
this abrupt change is a reflection of the sharp angle at which the temporal Holmboe
mode is attached to the merging K-H modes. Note also that the difference between
the absolute phase velocities (insets in figures 8b and 9b) remains rather small and is
slightly larger at smaller Reynolds number.

Figures 10 and 11 show how the parameter β depends on the Richardson number
for inviscid and viscous fluids, when the thickness of the mixing layer is constant.
Considering the temporal instability, the Takens–Bogdanov points also exist in the
plane Im(β)–Ri (figure 10). The transition between the K-H and the Holmboe modes
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Figure 9. As figure 8 but for Re=103.

takes place similarly to the fixed Ri and variable ξ cases (cf. figures 5, 7 and 10): two
K-H modes merge at a certain value of Ri and two conjugate Holmboe modes exit the
merging point. Again, these are the Takens–Bogdanov codimension- two bifurcation
points, which were observed earlier by Smyth & Peltier (1989).

In the spatial case also (figure 11), the dependence β(Ri) is similar to the dependence
β(ξ ) described above (figures 5 and 9), i.e. the transitions between the K-H and
Holmboe modes are continuous. The spatial branches of Im(β) have no intersections
in the inviscid fluid case (not shown here). In the viscous fluid case these curves
intersect (figure 11a) and have close amplification rates for 0.1 � Ri � 0.2. Note that
maxima of the two Holmboe modes are shifted above and below with respect to the
centreline y = 0 (figure 6). This means that in a fully nonlinear regime both Holmboe
modes can grow simultaneously with rather weak interaction between them. The latter
is most likely when their amplification rates are close. Note also that the absolute phase
velocities grow with the increase of the Richardson number (inset in figure 11b). The
curves corresponding to the two phase velocities intersect close to Ri = 0.2. Possibly,
these intersections explain the small difference in the phase velocities observed in
figures 8(b) and 9(b).

Similar continuous transformations were observed by Pawlak & Army (1998) for
inviscid flow with the density diffusion neglected for tanh velocity and density profiles
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Figure 10. Dependence of the time amplification rate Im(β1) on the Richardson number.
Viscous non-isothermal flow. Pr = 9, λ= 0.5, R = 3, ξ =0.45, αz = 0. (a) Inviscid flow,
(b) Re =103. �, first K-H mode; �, second K-H mode; �, Holmboe modes. The insets
show the dependence of Re(β1) on Ri for the two Holmboe modes.

and by Ortiz et al. (2002) for piecewise linear velocity and stepwise density profiles. It
was noticed in both these works that there is no distinct difference between the K-H
and Holmboe modes and the transition region was attributed to so-called “hybrid
modes”. It is shown here that the continuous transformation of the K-H modes
into the Holmboe modes takes place also in viscous fluid with the density diffusion
accounted for. Furthermore, we show that this transition takes place due to a pair of
continuously changing eigenmodes, which means that the spatial K-H or Holmboe
modes are, in fact, two possible patterns of the same continuously changing eigenmode
(figures 5–11).

The dependence of the parameter β on the Reynolds number for various Richardson
numbers and fixed layer thickness is shown in figures 12–14. Figure 12 corresponds to
the K-H instability. The values of Im(β1) describing the time amplification rates are
shown by open symbols and dashed lines in figure 12(a). The spatial amplification
rates Im(β) are shown by filled symbols and solid lines. The values of the imaginary
part of β that correspond to the temporal and spatial instabilities are rather close.
The distance between them decreases with the increase of the Richardson number.
Since for the K-H instability Re(β1) = 0 these zero values are not shown on the graph.
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Figure 11. Dependence of parameter β on the Richardson number for the spatial instability.
Viscous non-isothermal flow, Re =103, Pr = 9, R = 3, λ= 0.5, ξ = 0.45, αz = 0. �, first
K-H–Holmboe mode; �, second K-H–Holmboe mode. The inset in (a) zooms in on the
transitions from K-H to Holmboe type of instability. An inset in (b) shows the absolute
difference between the phase velocity of Holmboe modes and average velocity of the base flow.

The real parts of β are shown in figure 12(b). Here we observe a rather unexpected
behaviour: at zero and small Richardson numbers (Ri � 0.01) the values of Re(β)
have a sharp maximum at rather small values of the Reynolds number, Re ≈ 50. With
the increase of the Richardson number this maximum is smoothed and for Ri � 0.5
the dependence is monotonic. It is seen (figures 12a and 12b) that at large Reynolds
numbers the values of β approach a limiting value, which corresponds to the inviscid
fluid case.

Figures 13 and 14 show how the parameter β changes with the Reynolds number
for the Holmboe instability. Here we must account for the two different Holmboe
modes that appear in the spatial case. To differentiate between the two modes, we
refer to the one with Re(β) > 0 as ‘the first’ and the other with Re(β) < 0 as ‘the
second’ (figures 13b and 14b). Note that if Im(β) � Re(β), which holds for the values
shown in figures 13 and 14, a rough estimate of the phase velocity is given by vf = Ū/

[1+Re(β)]. Therefore, according to our notation, the first Holmboe mode tends to pro-
pagate upstream, while the second tends to propagate downstream, with respect to the
mean velocity Ū . In the temporal case the two Holmboe modes are conjugate, so that
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Figure 12. Dependence of parameter β on the Reynolds number for the temporal (open
symbols) and spatial (filled symbols) K-H instability. Viscous non-isothermal flow, Pr = 9,
R = 3, λ= 0.5, ξ = 0.45, αz = 0. �, �, Ri= 0; �, �, Ri= 0.01; �, �, Ri=0.03; �, �, Ri= 0.04;
�, �, Ri= 0.05.

for each Re(β1) of one mode there exits another Holmboe mode with –Re(β1) and the
same imaginary part. Thus, only positive values of Re(β1) are shown in figure 14(a).

The Reynolds-number dependence of the amplification rates of the temporal
problem (figure 13a) can be described as follows. At relatively small Richardson
numbers, Ri � 0.3, the values of Im(β1) decrease monotonically and at large Reynolds
numbers reach a limit value of the inviscid fluid. Note that Im(β1) < 0 indicates
instability, so that the perturbations grow faster at larger Reynolds numbers, as
expected. However, at large Richardson numbers, Ri � 0.5, the behaviour of the time
amplification rates changes qualitatively. The amplification rates reach their minimal
values (i.e. maximal amplification) at rather small Reynolds numbers, which are of
the order 100, and then increase monotonically, also reaching their limiting values at
large Re. Thus, at large Richardson numbers the amplification rate of the temporal
Holmboe modes increases rapidly with the increase of the Reynolds number from
zero to approximately 100, and then decreases with the further growth of Re. Note
also that in the region of non-monotonic dependence the amplification rate sometimes
increases with increase of the Richardson number (cf. curves of Ri =0.4 and 0.5 in
figure 13a). The growth of amplification rates with the decrease of the Reynolds
number (increase of viscosity) and increase of the Richardson number (increase
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Figure 13. Dependence of Im(β) on the Reynolds number for the temporal (a) and spatial
(b) Holmboe instability. Numbers in brackets in (b) indicate the first and the second spatial
Holmboe modes. The results are shown for Im(β) � 0.01. Viscous non-isothermal flow, Pr = 9,
R = 3, λ= 0.5, ξ = 0.45, αz = 0. �, �, Ri= 0.14 �, �, Ri= 0.3; �, �, Ri= 0.4; �, �, Ri= 0.5; �,
�, Ri= 0.6.

of stable stratification) is quite abnormal and indicates the possibility of a three-
dimensional primary instability (Smyth & Peltier 1990). This issue is studied in § 3.5.

The spatial amplification rates of the two Holmboe modes exhibit qualitatively
different dependence on the Reynolds number (figure 13b). The magnitudes of Im(β)
of the first mode, shown by the open symbols, increase monotonically with an increase
of the Reynolds number for Ri � 0.4. At larger Richardson numbers the magnitude of
Im(β) has a weak maximum at a Reynolds number of several hundred. The values
of Im(β) of the second mode also decrease monotonically for Ri � 0.3, but at larger
Richardson numbers have a sharp minimum at Re < 70. Comparison of figures 13(a)
and 13(b) shows that the Re-dependence of the amplification rates of the second
Holmboe modes, which tend to propagate downstream, is similar to that of the
temporal modes. At the same time the Re-dependence of the amplification rates of
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Figure 14. For caption see next page.

the first Holmboe modes, which tend to propagate upstream, is different. At small
Reynolds number the first Holmboe mode is stable (figure 13b); however at large
Reynolds number its amplification rate becomes significantly larger than that of the
second mode. For each Ri there are intersection points at which amplification rates of
both Holmboe modes are equal, which can lead to an interesting nonlinear interaction
between them. In general, the nonlinear development of the Holmboe instability at
small and large Reynolds numbers is expected to be qualitatively different.

Figure 14 shows how Re(β) varies with the increase of the Reynolds number. Here
all the dependence are monotonic. The absolute values of Re(β) grow with the increase
of the Richardson number (as was observed in figures 10 and 11) and decrease with
the increase of the Reynolds number. Figure 14(c) compares the absolute phase
velocities of the two Holmboe modes, from which we again see that the difference
between the phase velocities increases with the increase of the Richardson number.
Zhu & Lawrence (2001) observed the upstream and downstream Holmboe waves
moving with different phase velocities in an experiment where the Reynolds number
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Figure 14. Dependence of Re(β) on the Reynolds number for the temporal (a) and spatial
(b) Holmboe instability. Numbers in brackets (b) indicate the first and the second spatial
Holmboe modes. Viscous non-isothermal flow, Pr =9, R = 3, λ= 0.5, ξ = 0.45, αz = 0. �, �,
Ri= 0.14 �, �, Ri= 0.3; �, �, Ri= 0.4; �, �, Ri= 0.5; �, �, Ri= 0.6, (c) Absolute difference
between the phase velocity of Holmboe modes and average velocity of the base flow. Parameters
as (a, b).

was below 5000 and ascribed the difference to the shift between the density and
velocity interfaces. Here we show that different phase velocities should be expected
in viscous flow even if the shift is completely removed.

3.5. Gaster transformation

In this Section we discuss in which cases the temporal and spatial problems considered
here are connected with the Gaster transformation. To do this we express the group
velocity of a spatial disturbance as a function of the governing parameters. Assuming
the dimensionless wavenumber α =αr + iαi of the spatial disturbance is a function of
ξ , λ, Re and Ri, we obtain the dimensional wavenumber α̃ as

α̃ = α[ξ (ω0), Re(ω0), Ri(ω0), λ]
2ω0

U1 + U2

(25)

where we emphasize that ξ , Re and Ri are also functions of ω0, e.g. ξ = δ(U1 + U2)/2ω0.
The expressions for Re and Ri are given in Table 1. Calculating the dimensional group
velocity as 1/c̃g = ∂α̃r/∂ω0 and rendering it dimensionless we obtain (recall α = 1 + β ,
and denote β = βr + iβi)

1

cg

=
U2 − U1

c̃g

= −2λ

(
1 + βr + ξ

∂βr

∂ξ
− Ri

∂βr

∂Ri
− Re

∂βr

∂Re

)
. (26)

One equality ωr,spatial = ωr,temporal is exactly satisfied for the K-H instability in
the reference frame moving with the average velocity Ū = (U1 + U2)/2 The other
equality of the Gaster transformation α̃temporal = α̃spatial is approximately satisfied for
the considered problem if |βr | � 1. However, in the case of Holmboe instability
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r.h.s. of
λ Ri Re βi

1 βr βi ∂βr/∂ξ ∂βr/∂Ri ∂βr/∂Re βi
1/βi (27)

0.5 0 inviscid −0.349 −0.0812 −0.344 0.0498 − − 1.0145 1.0384
1 0 inviscid −0.69725 −0.3594 −0.60165 1.125 − − 1.1589 1.0776
0.5 0 1000 −0.32800 −0.07220 −0.32443 0.4296 − −0.000058 1.0110 0.9665
0.5 0 100 −0.23227 −0.02960 −0.23503 0.2014 − −0.000291 0.9883 0.9809
1 0 100 −0.46455 −0.14549 −0.47961 0.7386 − −0.01360 0.9686 0.71166
0.5 0.1 inviscid −0.26946 −0.05539 −0.26733 0.51686 0.2654 − 1.0080 0.9895
0.5 0.1 1000 −0.24278 −0.04746 −0.24133 0.4390 0.2502 0.68 × 10−5 1.0060 0.9958
0.5 0.1 100 −0.12132 −0.01174 −0.12233 0.1678 0.1630 −0.000204 0.9917 0.9874

Table 2. Several examples for the check of applicability of Gaster transformation. ξ = 0.2.

the temporal case is characterized by the two values ±ωr,temporal �= 0 having equal
magnitudes and opposite signs. The computed βr are also of order 1 and far from
being small, so that in the framework of the current study we do not satisfy either
of these two equalities of the Gaster transformation. Therefore, in the case of the
Holmboe instability the Gaster transformation cannot be applied to the temporal and
spatial problems considered here.

The relation between amplifications rates of the Gaster transformation
ωi,temporal/αi,spatial = −cg also should be evaluated in the moving reference frame.
Recalculating c̃g in the moving reference frame and using (26) we conclude that
this equality is satisfied approximately if

βi
1

βi

≈ 1

2


1 +

1

1 + βr + ξ
∂βr

∂ξ
− Ri

∂βr

∂Ri
− Re

∂βr

∂Re


 . (27)

We can expect that the Gaster transformation will be valid for the K-H instability
in inviscid non-stratified fluid at small ξ . In this case the two last terms of the deno-
minator of (27) should be dropped. According to figure 2(b) the derivative ∂βr/∂ξ is
small for λ� 0.5, and the values of βi and βi

1 are close. This agrees with the conclusion
of Monkewitz & Huerre (1982) for small λ. However, at λ= 1 the derivative ∂βr/∂ξ

becomes large, so that validity of the Gaster transformation must be checked. It must
be checked also for the K-H instability in viscous and stratified fluid.

Several examples of valid and invalid Gaster transformation are shown in table 2
for ξ =0.2 and K-H instability. The derivatives needed for evaluation of (27) were
calculated by finite differencing. In the case of the K-H instability βr

1 = 0, so it is
necessary that |βr | � 1 and that approximate equality (27) holds. The latter can be
checked by comparison of the two last columns of table 2. We observe that at λ= 0.5
the Gaster transformation is valid for all cases of the K-H instability including
relatively large viscosity at Re = 100 and relatively large stratification at Ri = 0.1.
However, it becomes invalid at λ= 1, for which values of βr and ∂βr/∂ξ are not
small. An additional check was made for ξ = 0.6 and it was found that for λ= 0.5
the Gaster transformation remains valid for Re � 100 and Ri � 0.1, while is not valid
when λ reaches unity. Ortiz et al. (2002) explained the loss of validity of the Gaster
transformation at λ= 1 by the fact that at this velocity ratio the instability of an
inviscid piecewise linear mixing layer flow changes from convective to absolute. Our
results show that this conclusion is retained for a continuous velocity profile, as well
as for viscous mixing layer flows.
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3.6. Neutral stability curves

In a viscous flow case there exists a critical Reynolds number below which, at given
other parameters, the mixing layer is stable. It should be noted that in the viscous and
thermally conducting fluid the tanh-profiles (22) are not solutions of the governing
equations. Therefore, we assume that the amplification rates are much larger than the
rates of viscous dissipation and heat conduction even when the governing parameters
are close to their marginal stability values. On the other hand, we can formalize the
stability problem in the following way. Consider the flow governed by a volumetric
force and a heat source, which yield the solution of steady governing equations in
the form of (4), (10) and (22). Then the stability of this solution will be described
by (13) and (14) and the whole solution procedure applies without a change. In this
Section we report how the critical Reynolds number varies with the thickness of the
mixing layer ξ for several values of the Richardson number and fixed values of the
Prandtl number and the parameter R. The critical Reynolds number corresponds
to Im(ω) = Im(β1) = 0 for the temporal and Im(α) = Im(β) = 0 for the spatial cases,
respectively.

We consider first the K-H instability. In the temporal case this instability is
monotonic, so that Re(ω) = Re(β1) = 0. Therefore, at the instability threshold ω and
β1 are complex zeros. In the spatial case the value of Re(β) is not necessarily
zero. However, it is easy to see that if β1 = 0 is an eigenvalue of (20) and (21) for
β0 = 0 and other parameters given, then βk = 0 will also be an eigenvalue with the
same eigenvector for any k including k → ∞. This means that the eigenvector of the
temporal problem (16) corresponding to the eigenvalue ω = 0 is also the eigenvector of
the spatial problem corresponding to β =0, so that the critical values of parameters of
the temporal and spatial problems coincide for K-H instability. The spatial instability
starting from β = 0 (α = 1) means a continuous branching from stable to unstable
flow. It is possible that in the spatial problem there are other instabilities for which
Re(β) �=0. If such instability is of the K-H type it would mean that the branching is
not continuous and the value of β undergoes a jump. In the calculations reported,
however, all such thresholds were observed only for sufficiently large Richardson
numbers and were attributed to the Holmboe instability, rather than to the K-H
instability.

The neutral stability curves calculated for small Richardson numbers and
corresponding to the K-H instability are shown in figure 15. As explained above, these
curves describe the onset of both the temporal and spatial instabilities. The flows are
unstable below the curves at large enough Reynolds numbers and small enough layer
thicknesses. At large Reynolds numbers all the curves reach the asymptotic ξ -values
that correspond to the ξ -stability limit of the inviscid fluid.

Figure 16 shows the temporal neutral stability curves for moderate Richardson
numbers, 0.1 � Ri � 0.3. To illustrate the transition between the K-H and Holmboe
modes along the neutral curves the case of Ri = 0.1 is shown separately in figure 16(a).
At small Reynolds number and small values of ξ the instability sets in due to the K-H
monotonic mode. The Holmboe modes become unstable at larger values of ξ and
larger Reynolds number. Thus, for Ri = 0.1 the Holmboe mode becomes dominant
for ξ � 0.405 (figure 16a). For Re > 750 the instability sets in due to the K-H mode at
small ξ and due to the Holmboe mode at large ξ . Note that for 560 < Re < 750 there is
a region between the K-H and the Holmboe neutral curves in which the flow remains
stable, while it is unstable above and below this region. As shown in the previous
Section, the transition between the K-H and Holmboe modes takes place via the
Takens–Bogdanov bifurcation. The dashed line in figure 16(a) shows the calculated
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Figure 15. Neutral stability curves for the K-H temporal and spatial instability. The mixing
layer flow is unstable below the curves and is stable above them. Pr = 9, R = 3, λ= 0.5, αz = 0.

Takens–Bogdanov points, which lie very close to the straight line ξ = 0.405. Clearly,
similar lines exist at other Richardson numbers, so that there is a surface in the
Ri–R–ξ space at which the Takens–Bogdanov bifurcation takes place. The location
of such lines can be easily derived from analytical dispersion relations when they are
known (e.g. Holmboe 1962; Caulfield 1994; Ortiz et al. 2002). Here we show that the
transition remains similar also for continuous density and velocity profiles and with
the effects of viscosity and density diffusion accounted for.

When the Richardson number increases above the value of 0.1 the neutral curves
exhibit a similar behaviour (figure 16b). The distance between the K-H and Holmboe
curves grows with the growth of Ri. The points where the two modes merge are beyond
Re = 1000 and are not shown on the graph. Further increase of the Richardson number
suppresses the instability due to the K-H mode. However, as was argued above, the
Holmboe mode still can be found. This is illustrated in figure 17. Unfortunately, we
were unable to continue the calculations beyond Ri = 0.5 because of a fast slowing
down of the convergence. In general, we observe that the amplification rates decay
with the increase of Ri; however the flow never becomes definitely stable at any ξ

and Re.
To complete the description of the neutral stability curves it is necessary to show

how the frequency (or the value of Re(β1)) of the neutral Holmboe modes changes
with the Reynolds number. This is done in figure 18. It is interesting that at sufficiently
large Re the frequency remains almost constant along the upper branch of the neutral
curve, while it decreases with the increase of Re along the lower branch.

The neutral stability curves corresponding to the spatial instability are shown in
figure 19. As explained above, the spatial and temporal K-H instabilities set in at the
same Reynolds numbers, so that the neutral curves shown in figure 15 for the small
Richardson numbers correspond to both spatial and temporal cases. The neutral
curves shown in figure 16 are repeated in figure 19 as dashed lines. Since the spatial
Holmboe instability is described by the two different modes we calculated the neutral
curve for each Holmboe mode separately. The corresponding neutral curves are shown
in figure 19 by the dash-and-dot and solid lines for the first and the second mode,
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Figure 16. Neutral stability curves for the K-H (empty symbols) and Holmboe (filled symbols)
temporal instability at moderate Richardson numbers. (a) Ri= 0.1, (b) Ri= 0.2 and 0.3. The
mixing layer flow is unstable below the K-H curves and inside the Holmboe curves. Pr = 9,
R = 3, λ= 0.5, αz = 0.

respectively. It was observed that the second Holmboe mode, which corresponds to
Re(β) < 0, had already become dominant at small Reynolds numbers (figure 13b).
This is replicated in the neutral curves: the second Holmboe mode become unstable
before the first one. Thus, with the gradual increase of the Reynolds number the
Holmboe wave propagating downstream with the mean flow will be observed first.
However, at large Reynolds number the mode propagating upstream can attain a
larger amplification rate (figure 13b). The problem of nonlinear interaction of these
two modes is beyond the scope of present study.

As in the temporal case, the neutral curves of the spatial Holmboe modes (figure 19)
must be followed by the corresponding dependence of Re(β), shown in figure 20. End
points and turning points of some curves in figures 19 and 20 are indicated by letters
to show how the curves in the two figures relate to each other. Note that at the
upper parts of the Holmboe neutral curves the spatial period of the perturbation
α = 1+Re(β) is almost independent of the Reynolds number, while at their lower
parts this dependence is significant. It is also observed that with the growth of the
Richardson number the correction Re(β) to the excitation period α = 1 grows and
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Figure 17. Neutral stability curves for the Holmboe temporal instability at large Richardson
numbers. The mixing layer flow is unstable below the curves and is stable above them. Pr = 9,
R = 3, λ= 0.5, αz = 0.
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Figure 18. Values of Re(β1) of the Holmboe modes corresponding to the neutral stability
curves shown in figures 16 and 17. Upper and lower parts of the curves in this figure relate to
the upper and lower parts of the corresponding neutral curves. Pr = 9, R = 3, λ= 0.5, αz =0.

at Ri =0.3 has already reached 45 % for the first and 30 % for the second Holmboe
modes.

3.7. Three-dimensional primary instability

Smyth & Peltier (1990) showed that at large Richardson and small Reynolds numbers
the primary temporal Holmboe instability can be three-dimensional. This can happen
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Figure 19. Neutral stability curves for the spatial instability. The mixing layer flow is unstable
below or inside the curves the curves. Pr = 9, R = 3, λ= 0.5. Dashed lines, K-H modes;
dash-and-dot lines, first Holmboe mode; solid lines, second Holmboe mode. (a) Ri= 0.1,
(b) Ri= 0.2, (c) Ri= 0.3, αz =0.

if the amplification rate grows either with the increase of the Richardson or decrease of
the Reynolds number. Examination of the dependence β1(Re, Ri) reported above
shows that both tendencies are observed in figure 13(a) for 0.3 � Ri � 0.5 and
30 � Re � 100. A similar behaviour is also characteristic for the second spatial
Holmboe mode in approximately the same range of parameters (figure 13b). However
the arguments of Smyth & Peltier (1990) made for the temporal amplification rate
cannot be extended to the spatial case. Therefore, it would be interesting to check
whether a primary three-dimensional instability can be observed for the spatially
growing perturbations.

To check this issue we carried out computations of the temporal and spatial growth
rates for gradually increasing αz, ξ = 0.45, and several fixed values of Ri and Re.
The results of these computations are shown in figures 21 and 22. It is seen that
there exists a rather narrow region where the most unstable perturbation is three-
dimensional. The minimal values of Im(β1) and Im(β), which correspond to the largest
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Figure 20. Values of Re(β) of the Holmboe modes corresponding to the neutral stability
curves shown in figure 19. Pr =9, R = 3, λ=0.5, αz = 0.
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Figure 21. Dependence of temporal amplification rates on spanwise wavenumber. Holmboe
modes. Pr = 9, R =3, λ= 0.5, ξ = 0.45.

three-dimensional amplification rates, smooth out rather quickly with the growth of
the Reynolds number. Furthermore, an increase or decrease of the Richardson number
leads to a disappearance of the minima (figures 21b and 22b). Note that the spatial
instability corresponds to the second Holmboe mode with Re(β) < 0 which propagates
upstream with respect to the mean velocity of the base flow.

An additional question is how the existence of the area of three-dimensional primary
instability will alter the neutral stability curves shown in figures 16, 17 and 19. To
provide a complete answer to this question it is necessary to localize the maxima of
the three-dimensional amplification rates for various values of ξ , which would require
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Figure 22. Dependence of spatial amplification rates on spanwise wavenumber. Second
Holmboe mode. Pr = 9, R = 3, λ= 0.5, ξ = 0.45.

an extremely large amount of computation. It was found that in the case of spatial
instability the area of most unstable three-dimensional perturbations lies inside the
unstable area bounded in figure 19 by the neutral curve. In the case of the temporal
instability the neutral curves corresponding to 0.3 � Ri � 0.4 will be slightly altered
in the area of small Reynolds numbers, so that the area corresponding to unstable
states will be enlarged.

4. Conclusions
A simple iterative procedure yielding the solutions of the temporal and spatial

stability problems for a parametrically excited stratified mixing layer has been
developed. Using this procedure, a parametric study of the temporal and spatial
instabilities in the stratified mixing layer with hyperbolic tangent velocity and
temperature profiles was carried out. The procedure can be used for other mixing
layer profiles (e.g. piecewise-linear profiles) and can be easily extended to other
plane-parallel shear flows with parametric excitation of instability.

We have found that in the case of inviscid isothermal fluid flow the temporal and
spatial perturbation profiles are close for modest values of the velocity ratio λ� 0.5.
The properly rescaled temporal and spatial growth rates are also close. When the
value of λ approaches unity the perturbations and growth rates differ, especially for
thin mixing layers with ξ � 0.2 (figures 1 and 2). Compared to the inviscid case, the
viscous flow problem is characterized by smaller temporal and spatial amplification
rates and narrower intervals of ξ in which the instability is observed. At the same
time, the difference between temporal and spatial perturbation patterns decreases
with the increase of viscosity (figures 2 and 3).

It was shown that the transition between the temporal K-H and Holmboe
instability modes takes place via a Takens–Bogdanov codimension- two bifurcation
(Kuznetsov 2004). Contrary to the temporal case, the spatial K-H and Holmboe
modes continuously transform into one another. Such Takens–Bogdanov points and
continuous transforms were observed in the planes Re–ξ (figures 4, 7, 10, 16) and
Re–Ri (figures 5, 8, 9, 11). We concluded that that there exists a surface in the Re–Ri–ξ
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space at which the Takens–Bogdanov bifurcation takes place. Taking into account the
results of Smyth & Peltier (1989), obtained for other values of Pr and R, we conclude
that these transitions are common for stratified mixing layers and can be expected
also for background velocity and temperature profiles different from those considered
here. For example, the lines separating the temporal K-H and Holmboe instabilities
can be easily derived from analytical dispersion relations when such relations are
known (e.g. Holmboe 1962; Ortiz et al. 2002).

In spite of the qualitative difference in the transitions between K-H and Holmboe
instabilities in the temporal and spatial formulations, the spatial and temporal
perturbations corresponding to the Holmboe modes retain similar profiles (figure
8). It is also emphasized that the Holmboe perturbation profiles are similar to those
of the K-H ones. This similarity together with the observed continuous transitions
between the two instabilities led to an important conclusion: the origin of the K-H and
Holmboe instabilities should be explained in the framework of a common physical
mechanism related to competition between shear and stratification. The interaction
between instabilities induced by shear in the upper and lower layers usually is
responsible for the K-H mode. At smaller stratification, the interaction of shear
and stratification induces the second K-H mode. With the increase of stratification
the interaction between shear and buoyancy leads to a continuous transition of
these two spatial K-H modes into two spatial Holmboe modes. In the temporal
configuration the interaction between a growing perturbation and the mean flow
leads to either monotonic growth (K-H instability) or oscillatory growth (Holmboe
travelling waves). In the spatial configuration the terms ‘monotonic’ and ‘oscillatory’
cannot be applied since oscillations along the streamwise axis are always present and
develop due to the spatial wavenumber. In the spatial case the K-H and Holmboe
modes can be distinguished either by the location of the maximum of the perturbation
of streamwise velocity or by the difference between the actual spatial wavelength and
the wavelength of the exciting perturbation: small differences correspond to K-H and
the large differences to Holmboe instability. Instead of the difference of wavelengths
one may employ the difference between the mean velocity of the base flow and the
phase velocity of the unstable mode. The definition is similar, i.e. a small difference
corresponds to K-H and a large difference to the Holmboe instability. Since the
transition between the two instabilities is continuous there is no clear criterion that
allows one to distinguish between them.

It is shown also that with the increase of viscosity the transition between the
K-H and Holmboe instabilities can shift into the region of decaying perturbations
(figure 11). This implies that with the growth of the Richardson number or layer
thickness a laboratory or numerical model will show a disappearance of the K-H
instability before the Holmboe instability sets in. This may give an impression that
the modes are separated, which is wrong according to the present results.

It is found that with the growth of the Reynolds number the K-H and Holmboe
modes exhibit different behaviour (figures 12–14). The amplification rates of the
temporal and spatial K-H modes remain close. The correction of the spatial period,
Re(β), of these modes remains small and at small Richardson numbers has a maximal
value at rather small Reynolds number (e.g. near Re ≈ 50 for ξ = 0.45). This implies,
in particular, that the phase velocity of the spatial K-H modes remains close to
the average velocity of the mean flow, at least for parameters close to the marginal
stability limit. The time amplification rates of the temporal Holmboe modes grow with
the increase of the Reynolds number when the bulk Richardson number is below 0.3.
At larger Richardson number the dependence becomes non-monotonic, so that the



224 A. Yu. Gelfgat and E. Kit

amplification rates are maximal at a certain Reynolds number and then unexpectedly
decrease with the growth of Re (figure 13a). The amplification rates of the two spatial
Holmboe modes exhibit different Reynolds number dependencies (figure 13b). An
important observation is that at small Reynolds number the amplification rate of the
Holmboe wave propagating downstream is larger, while at large Reynolds number the
upstream propagating waves begin to grow faster. It should be emphasized also that
the spatial periods of the two spatial Holmboe modes, as well as their absolute phase
velocities, are different and that their most intensive parts are located on different
sides of the mixing layer centreline. Based on these observations we expect a rather
complicated interaction of these modes in a fully nonlinear regime.

On the basis of the model of the parametrically forced mixing layer considered
we derived an expression for calculation of the group velocity. This allowed us
to check whether the two associated temporal and spatial problems considered
here are connected through the Gaster transformation. It is shown that the Gaster
transformation is valid for the K-H instability at small values of the velocity ratio
λ� 0.5. When λ approaches unity the Gaster transformation becomes invalid.

We argued that the critical parameters, e.g. the critical Reynolds number,
corresponding to the onset of instability due to the K-H modes are the same for
both spatial and temporal formulations. However, they are different for the temporal
and spatial Holmboe modes. It should be noted that with the increase of the Reynolds
number from a small value to the critical value the spatial Holmboe instability sets in
as a wave propagating downstream. Another wave, propagating upstream, becomes
unstable at larger Reynolds number and its amplification rate becomes comparable
to that of the downstream wave only with a significant increase of the Reynolds
number.

We have shown also that, along with the primary three-dimensional temporal
instability discovered by Smyth & Peltier (1989), there exists a primary spatial three-
dimensional instability. This instability can be observed at large Richardson and low
Reynolds numbers. In the spatial case it sets in as an oblique wave propagating
upstream along the streamwise coordinate.

The computations reported show that the difference between the temporal and
spatial instabilities of the stratified mixing layer flow is most pronounced at large
Richardson numbers when the Holmboe instability becomes dominant. The results of
linear stability analysis allow us, in particular, to pose the most interesting problems for
further nonlinear studies. These, in our opinion, are a study of nonlinear transitions
between spatial K-H and Holmboe modes, and a study of the interaction of two
spatial Holmboe modes at large Richardson and Reynolds numbers.

This work is supported by the Israel Science Foundation (Grant 240/01).
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