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INVESTIGATION OF THERMOGRAVITATIONAL~THERMOCAPILLARY STEADY-STATE
CONVECTIVE FLOW STABILITY AT LOW PRANDTL NUMBERS

A. Yu. Gel'fgat and B. Ya. Martuzan UDC 532.5.013.4:536.25

The stability of gravitationalstapillary flow in a square cavity with
isothermal vertical and adiabatic horizontal boundaries is investigated.
The region of stable regimes in the Grashof number—Marangoni number
plane is determined for a fluid with a Prandtl number equal to 0.02.

In [1) the stability of steady-state thermogravitational convection re-
gimes in a laterally heated square cavity was numerically investigated.
The Galerkin method with a system of coordinate functions constructed
as proposed in [2] was used to solve the system of equations of free
convection in the Oberbeck—Boussinesq approximation. Below, the
variant of the Galerkin method described in [2] is used to investigate
the stability of steady-state regimes of free convection flow developing
under the combined influence of thermogravitational and thermocapillary
forces.

We will consider thermal convection in a square cavity whose vertical boundaries
are maintained at constant and different temperatures. The horizontal boundaries are
considered to be adiabatic. It is assumed that the upper boundary is a free surface,
while the other boundaries are rigid. The flow is described by a system of convection
equations in the Oberbeck—Boussinesq approximation with the corresponding boundary con-
ditions
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Here, v is the fluid velocity, T is temperature, p pressure, g the free-fall accelera-
tion, B the coefficient of volume expansion, % the length of the cavity, v the kinematic
viscosity, x thermal diffusivity, o surface tension, p the density of the fluid, and e,
the unit vector in the direction of the y axis.

The solution of the problem (1)—(4) is sought in the form:
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The functions @i @*. and qj; are constructed of linear combinations of Chebyshev
polynomials of the first and second kinds so as to satisfy the continuity equations and
all the boundary conditions except for that containing the Marangoni number. This con-
dition is satisfied numerically, as a result of which the coefficients fqo(t) are expressed
in terms of the coefficients dj;(t). Following the application of the Galerkin method the
problem reduces to a system of Iirst-order ordinary differential equations of the form:

Xi(t) =aeX, (8) +banX, () Xa(t) HFy (7)
where Xy is one of the coefficients cjj or djj.

The steady-state solutions of system (7) (X; = 0), which with the aid of sums (5)
and (6) determine the steady-state solutions of the problem (1)—(4), were calculated
by Newton’s method. For investigating the stability of the steady-state solutions we
used the traditional procedure described in [3, 4]..

In the calculations described below we used nine functions in the x direction, four
functions in the y direction, and ten functions for satisfying the second of conditions
(4) (Ny =Ky =9, Ny =Ky = 4, M = 10). As shown in [5], the numerical method employe§
makes it possible to obtain results which are in good agreement with the various numerical
and experimental data.

In all the calculations the Prandtl number was taken equal to 0.02, which is typical
of molten metals and semiconductors. For a fixed Prandtl number the stability of the
‘steady convective flows is determined by the Grashof and Marangoni numbers. The results
of our numerical stability investigation are shown in the (Gr, Ma) plane (Fig. 1). The
region of stability is shaded. The points of intersection of the region and the coor-
dinate axes correspond to the critical numbers obtained in the absence of thermocapil-
lary (Ma = 0, Gr = 2.1-10%) or thermogravitational (Gr = 0, Ma = +1.14-10%) forces.

}

The variation of the critical Grashof number with gradual increase in the Marangoni
number is characterized by the upper boundary of the region of stability. Let us consider
"the case Ma > 0. An increase in the Marangoni number from 0 to 8-10“ causes only a slight
decrease in the critical Grashof number Gr*, from 2.1-10° to 1.9-10°. A further increase
in Ma is accompanied by the rapid growth of the critical value of the Grashof number,
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which when Ma = 3.2-10° reaches a value of 9.1-10%, Similar growth of the critical value
of the Marangoni number, characterized by the lower boundary of the region of stability,
is observed as the Grashof number gradually increases. The variation of Gr from 0 to
8-10° leads to an increase in the critical value of the Marangoni number from 1.1-10°%

to 3.2-108%.

When Ma > 0 the liquid moves along’ the free surface under the influence of the thermo-
capillary force in the same direction as under the influence of the thermogravitational
forces. Therefore an increase in either of the numbers Gr or Ma leads to an intensifica-
tion of the convective heat transfer. The observed growth of the critical value of one
of the parameters as the other increases shows that the intensification of the convective
heat transfer by the combined action of the thermogravitational and thermocapillary forces
may lead to stabilization of the motion. Obviously, when Gr or Ma exceeds a certain
value, it will not be possible to stabilize the flow by increasing the other parameter.
According to Fig. 1, these values of Gr and Ma are equal to 9.1-10% and 3.2-108%, respec-
tively. : '

When Ma < 0 the thermocapillary force acts along the free surface in a direction
opposite to that of the thermogravitational flow. The different directions of action
of the surface and volume forces may lead both to a weakening of the intensity of the
convective flow and to the appearance of two convective eddies (see Fig. 5 below), one
predominantly thermocapillary and the other predominantly thermogravitational. The sta-
bilization of the flow with increase in the absolute value of one of the parameters Gr
or Ma, which takes place in this case also (see Fig. 1), can be attributed to the de-
crease in the integral intensity of the flow as a result of the growth of Gr or Ma. On
the other hand, the interaction of several convective eddies may create the conditions
for destabilization of the flow. The presence of stabilizing and destabilizing factors
explains the more complex (as compared with the case Ma > 0) shape of the neutral curve
which, in Fig. 1, separates the regions of stable and unstable convection regimes. When
—1.8+10° s Ma s —1.5-10%, as the Grashof number increases repeated alternation of stable
and unstable steady convective flow’regimes is observed. When Gr = 4.25:10° the region
of stable regimes approaches the axis Ma = 0, without crossing it: in this case the
flow is already stabilized at Ma = —280. When the Grashof number reaches the value 8.75-
10°, the convective flow will be unstable for any negative Marangoni number. The flows
will also be unstable for any Grashof number if Ma < —1.8-10%5.

To each continuous interval of the boundary of the region of stability (see Fig. 1)
there corresponds a particular physical mechanism causing instability of the steady con-
vective flow. An idea of the physical instability mechanism can be obtained by analyzing
the spatial structure of the most dangerous infinitesimal perturbation. The latter is
determined by the eigenvector, calculated for the critical values of the parameters,
of system (7) linearized in the neighborhood of the steady-state solution. Together
with the sums (5) and (6), the eigenvector of the linearized system (7), which corre-
sponds to an eigenvalue with non-negative real part, determines (correct to multiplica-
tion by a constant) the most dangerous infinitesimal perturbation whose exponential growth
destroys the steady convective flow. As the calculations show, to each smooth interval
of the boundary of the region of stability there corresponds a particular spatial struc-
ture of the most dangerous perturbation. : :

Figures 2—6 show the steady convective flows and the corresponding most dangerous
infinitesimal perturbations for values of Gr and Ma lying on different smooth intervals
of the boundary of the region of stability. The continuous curves in Figs. 2—6 repre-
sent the streamlines (a) and isotherms (b) of the steady flows, the broken curves the
isolines of the most dangerous perturbations of the stream function (a) and temperature
(b). The Grashof and Marangoni numbers determining the flows and perturbations in Figs.
2—-6 are equal to: 0, 1.87-10%, 3.5-10°, 4-10%, 2.1-10° and 1.14:10%, 105, —7-10%,
—=1.1-10%, o, respectively.

The existence of qualitatively different structures of the most dangerous perturba-
tion indicates that instability of the convective flow may be caused by different phys-
ical mechanisms which, as the calculations show, abruptly replace each other on transi-
tion from one smooth interval of the stability limit to another (see Fig. 1). At the
Same time, on each smooth interval the spatial structure of the most dangerous perturba-
tion yaries continuously.
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In the absence of thermogravitational forces when Gr = 0 and Ma = 1.14-10% (Fig. 2)
the maxima of the most dangerous perturbation of the stream function are distributed
around the perimeter of the convective eddy. The maximum values of the most dangerous
temperaturg perturbation are located along the horizontal walls of the cavity, which
may be associated with the intense motion of the liquid along the free boundary.

An example of a stability-losing steady convective flow with Gr = 1.87-10%, Ma = 1053,
associated with the upper boundary of the region of stability, is given in Fig. 3. This
case corresponds to the same branch of the neutral curve as that on which the point
Ma = 0, Gr = 2.1°10° is located, thus making it possible to compare Figs. 3 and 6. The
comparison shows how the shape of the thermogravitational flow and the structure of the
disrupting perturbation are affected by the thermocapillary force. The presence of a
thermocapillary convection mechanism leads to the disappearance of the small back eddies
which when Ma = 0 (see Fig. 6) are located in the upper left and lower right corners
of the cavity. The maxima of the stream function perturbation are displaced from the
boundaries into the center of the flow region. When Ma = 10° the greatest values of
the temperature perturbation (Fig. 2b) are located in the middle of the vertical bound-
aries. The relative values of the maxima of the temperature perturbations near the lower
left and upper right corners of the cavity decrease with increase in the Marangoni number.

Figures 4 and 5 show examples of the steady flows and corresponding perturbations
for Ma < 0. Obviously, as a result of the symmetry of the problem the case Gr = 0, Ma =
—1.14-10°% will correspond to Fig. 2a reflected about the straight line x = 0.
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Figure 4 shows the flow and perturbations for Gr = 3.5-10° and Ma = —7-10“. This
case corresponds to the same branch of,the neutral curve as the stability-losing flows
shown in Figs. 3 and 6. A comparison of Figs. 3 and 4 indicates that in these two cases
the flow and perturbation structures are similar. In the latter case the velocity per-
turbations have a simpler structure, and in the temperature perturbation diagram the
maxima located near the corners of the cavity in Figs. 3 and 6 are missing.

As already noted, when Ma < 0 the interaction of the thermogravitational and thermo-
capillary forces may lead to a decrease in the intensity of the convective flow. There-
fore on the branch of the neutral curve in question the values of the critical Grashof
number in the neighborhood of Ma = 0 increase when Ma < 0 and decrease when Ma > 0.

When Gr = 4:10°, Ma = —1.10-105 (Fig. 5) the flow consists of two eddies, one due to the
predominance of the thermocapillary force at the free surface and the other due to the action
of the thermogravitational force in the part of the flow remote from the boundary y = 1.
The distribution of the velocity perturbation isolines shows (see Figs. 3 and 5) that
after loss of stability the upper (thermocapillary) eddy retains its shape, while the
lower (thermogravitational) eddy is heavily deformed. The convective transport of hotter
fluid from the heated to the cooled boundary due to the action of the top of the lower
eddy and the bottom of the upper eddy (Fig. 5) leads to a sharp deflection of the isotherms
and the displacement of the temperature perturbation maxima towards the cooled wall.

It should be noted that the most interesting result of investigating the stability
of steady thermogravitational-thermocapillary convection regimes is the flow stabiliza-
tion effect associated with an increase in the absolute value of the Grashof or Marangoni
number. However, in practice it is difficult to make use of this effect because of the
comparative narrowness of the region of stable flow (Fig. 1). Further investigation
is required to determine the dependence of the shape and size of the stability zone on
the Prandtl number or the geometric parameters of the flow region.
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