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The three-dimensional axisymmetry-breaking instability of axisymmetric flow between a rotating
lid and a stationary cylinder is analyzed both numerically and experimentally for the case of tall
cylinders with the height/radius aspect ratio between 3.3 and 5.5. A complete stability diagram for
the primary three-dimensional instability is obtained experimentally and computed numerically. The
instability sets in due to different three-dimensional disturbance modes that are characterized by
different azimuthal wavenumbers. The critical Reynolds numbers and associated frequencies are
identified for each mode. The onset of three-dimensional flow behavior is measured by combining
the high spatial resolution of particle image velocimetry and the temporal accuracy of laser Doppler
anemometry. The results are compared to the numerical stability analysis. The measured onset of
three dimensionality is in a good agreement with the numerical results. Disagreements observed in
supercritical regimes can be explained by secondary bifurcations that are not accounted for by linear
stability analysis of the primary base flow. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3133262�

I. INTRODUCTION

Many flows generated by rotation or natural convection
in axisymmetric enclosures with axisymmetric boundary
conditions break into nonaxisymmetric patterns above a cer-
tain threshold of the governing parameters. Such
axisymmetry-breaking instabilities are of interest in stability
analysis and are of major importance in applications.

Swirling flows in a closed cylindrical container with a
rotating lid has been the subject of a large number of experi-
mental and computational studies for more than 3 decades. A
wide interest to this configuration was triggered by experi-
ments of Escudier1 that were followed by dozens of experi-
mental and numerical studies. Apart from single lid rotation,
different variations of the basic configuration, including, e.g.,
simultaneous rotation of the other end wall or the introduc-
tion of different secondary control mechanisms, have been
extensively studied in the past years. Unfortunately, all these
studies were never properly reviewed in a single review pa-
per. The reader can be addressed to several well known,2–9 as
well as recently published10–14 studies and references therein.
The emphasis of the present work, however, is on the “clas-
sical” problem of a cylinder with one rotating lid, which
probably is the simplest configuration for studying transition
and onset of unsteady modes in rotating flow.

The rotating lid drives the fluid around the cylinder axis.
The nonuniform centrifugal force pushes the fluid adjacent to
the lid away from the center, which results in a meridional
circulation. The fluid then descends along the outer wall and
turns inward near the fixed bottom. Close to the center axis it

ascends vertically, forms a concenterd vortex structure due to
the conservation of angular momentum, and returns to the
rotating lid. At a slow lid rotation the flow is axisymmetric
and steady. Depending on the rotation rate and aspect ratio
the flow may experience vortex breakdown in the form of
recirculating bubbles appearing at the axis of the cylinder.1

With an increase in the rotation rate, depending on the aspect
ratio, the flow is subject to a complicated transition process
in which it becomes unsteady and three dimensional. This
process is followed by the development of various three-
dimensional structures that differ both in space and in time.
Changes in the flow structures depend on two parameters:
the aspect ratio h �ratio of the container height to the disk
radius H /R� and the Reynolds number Re=�R2 /�, where �
is the angular velocity of the disk and � is the kinematic
viscosity of the working fluid.

In the paper by Gelfgat et al.6 a detailed analysis of the
onset of nonaxisymmetric instabilities as a function of Rey-
nolds number was performed for aspect ratios in the range
1�h�3.5. The analysis was carried out using a spectral
Galerkin method combined with an eigenvalue analysis to
detect the azimuthal wave numbers, k, associated with mar-
ginal and critical modes. The marginal and critical Reynolds
numbers and associated critical frequencies of the perturba-
tions were computed and several individual instability modes
were identified.

To supplement the visualizations of Escudier1 and the
analysis of Gelfgat et al.,6 a series of experiments aiming to
detect critical modes in the rotating cavity by quantitative
and nonintrusive experimental techniques was performed in
the paper of Sørensen et al.9 A combination of the high spa-
tial resolution of particle image velocimetry �PIV� with the
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temporal accuracy of laser Doppler anemometry �LDA� al-
lowed us to extract modes of the dominant azimuthal waves
and to map the transition from steady axisymmetric to un-
steady three-dimensional flow. We observed that depending
on the aspect ratio, with a gradual increase in the Reynolds
number, the flow becomes unsteady and nonaxisymmetric.
At a Reynolds number beyond 4500 the oscillations become
nonperiodic, which makes it impossible to extract distinct
modes and frequencies, as well as to distinguish small-scale
fluctuations from noise.

The development of instability was studied experimen-
tally by Naumov et al.10 Two scenarios of the instability
development in which the amplitude of velocity pulsations
grows or decays with increasing swirl of the flow have been
observed. It was established that the instability evolution de-
pends on the appearance of secondary perturbations and on
their frequency. Another experimental study considering the
increasing aspect ratio was performed by Okulov et al.11

These experiments determined the boundary of transition to
unsteadiness arising as a result of the equilibrium rotation of
self-organized vortex multiplets �triplet, double triplet,
double doublet, and quadruplet� depending on h considered
in a wider interval than that studied previously.

To the best of our knowledge, no detailed analysis of
nonaxisymmetric instability for aspect ratio h�3.5 has been
performed. The main purpose of this study is experimental
and numerical investigation of the onset of nonaxisymmetric
instabilities in a closed cylinder with rotating lid for aspect
ratios 3.3�h�5.5. The use of PIV allows for accurate si-
multaneous measurements of the whole velocity field in a
two-dimensional plane normal to the cylinder axis. At the
same time LDA allows one to measure onset of an unsteady
flow and to determine its frequency. Thus, combination of
the two techniques yields both the frequency and the azi-
muthal periodicity of appearing unsteady flow. In the present
paper the marginal Reynolds number, Rem�h ,k�, is defined as
the lowest Reynolds number at which a particular mode with
azimuthal wave number k starts to grow. A marginal fre-
quency denoted as �m�h ,k� is associated with each mode
having a particular wavenumber k. The critical Reynolds
number was defined as Recr�h�=mink Rem�h ,k� so that the
most unstable mode can be recognized as one corresponding
to the lowest Rem�h ,k�. We begin by determining the mar-
ginal and critical Reynolds numbers at which the basic
steady and axisymmetric state loses its stability. Then we
perform thorough measurements in which different azi-
muthal modes and frequencies are detected as function of
wave number, Reynolds numbers, and aspect ratio.

The experimental setup, the measurement techniques
and data processing methods used in this work were de-
scribed in Ref. 9 and the numerical simulation method was
presented in Ref. 15. Below we report a detailed mapping of
critical Reynolds numbers, characteristic frequencies, and
azimuthal modes, depicted as functions of aspect ratio. A
good agreement between the experimental and numerical re-
sults yields the validation of numerical technique, as it was
recently pointed out by Roache.16

II. ONSET OF AZIMUTHAL MODES
AND CHARACTERISTIC FREQUENCIES

The LDA measurements were systematically carried out
in the range h� �3.3,5.5�, starting from h=3.3 with an in-
crement of �h=0.1, and in the range Re� �2000,5000�,
starting from Re=2000 and with an increment � Re=100.
The experimentally observed transitions are summarized in
Table I, which displays the occurrence of marginal and criti-
cal Reynolds numbers and associated frequencies, as func-
tion of the aspect ratio h� �3.3,5.5� and the wave number
k� �0,5�. The frequency �k is scaled by the rotational fre-
quency of the lid �. The linear stability analysis defines a
signed value of �k, for which positive or negative values
correspond to the co- or counterpropagation of azimuthal
traveling wave with respect to rotation of the lid. The nu-
merical study predicts that the modes k=0 and 1 correspond
to the copropagation, while higher modes cause the counter-
propagation of azimuthal wave. In the LDA measurements
the sign of �k is indefinite so that only absolute value of �k

can be used for comparison. To distinguish between marginal
and critical Reynolds numbers, the critical values are desig-
nated in Table I by bold numbers. Based on the information
gained from the LDA-measured time histories, the time
ranges for averaging of instantaneous velocity fields are de-
termined for the PIV method. The resulting perturbed veloc-
ity fields were derived by averaging over a series of realiza-
tions at divisible time periods and then subtracting the mean
flow field. Since a mode with the same wavenumber may
appear with different frequencies at different Reynolds num-
bers, the table in some cases displays two modes for the
same mode number, e.g., 3 and 3�.

The observed marginal and critical Reynolds numbers,
and associated frequencies, are plotted in Figs. 1 and 2 and
compared to the numerical results. It follows from Fig. 1 that
the azimuthal mode k=3 is the dominant one in the range
3.3�h�4.2. In the range 4.2�h�5.2 our measurements
show that k=2 is the most unstable mode and that k=4 is the
most unstable mode for 5.2�h�5.5. Thus, for the range of
the aspect ratios considered the instability is three dimen-
sional. Note that Serre and Bontoux7 found numerically that
at h=4 the instability sets in as an axisymmetric �k=0� mode
at Re=3500. This result agrees with the marginal Reynolds
number calculated here for the axisymmetric mode; however,
there exist four more unstable modes with k=2, 3, 4 and 5,
which are observed here both experimentally and numeri-
cally and were overlooked in the calculations in Ref. 7. The
reason for that can be either an unsuccessful attempt to find
the correct instability threshold by time-dependent calcula-
tions, which cannot include all possible perturbations, or in-
sufficient spatial resolution as is discussed in Ref. 15.

Comparison between the experimental and numerical re-
sults must be divided into two parts: comparison of the criti-
cal values for critical modes and comparison of the marginal
Reynolds numbers and associated frequencies corresponding
to other azimuthal modes. The experimental and numerical
results for critical Reynolds numbers �Fig. 1�, as well as
critical frequencies �Fig. 2�, exhibit an excellent agreement.
The critical curve is zoomed in Fig. 3. There we observe that
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TABLE I. Critical and marginal Reynolds numbers and associated nondimensional frequencies for varying azimuthal wavenumber and aspect ratio. The
critical numbers are shown in bold.

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

k=0 Re 3100 3100 3100 3200 2900 2900 2900 3200 3100 3000

��k� 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.12 0.12 0.11

k=1 Re 4000 4000 3900 4000 3900 4000 4200 3900 4000

��k� 0.07 0.07 0.07 0.10 0.09 0.09 0.08 0.08 0.08

k=2 Re 4000 4100 4200 4400 2800 2600 2900 2800 2800 2700

��k� 0.03 0.03 0.03 0.06 0.06 0.19 0.16 0.16 0.17 0.16

k=3 Re 2100 2100 2100 2100 2100 2200 2200 2300 2300 2400

��k� 0.31 0.31 0.29 0.28 0.27 0.27 0.27 0.27 0.27 0.26

k=3� Re 2700 2200

��k� 0.29 0.29

k=4 Re 3500 3500 3400 3400 3200 3400 2800 2600 2800 3000

��k� 0.43 0.42 0.41 0.41 0.41 0.39 0.39 0.38 0.39 0.37

k=4� Re 2900 2900 3000 3000 2800 2700

��k� 0.39 0.38 0.37 0.35 0.35 0.34

k=5 Re 3400 3100 3100 3300 3200 3200 3100 2800 3100 3200

��k� 0.54 0.53 0.52 0.52 0.54 0.52 0.52 0.47 0.49 0.49

4.4 4.6 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5

k=0 Re 3400 3600 3900 4100 3900 3900 4200 4300 4300 4400

��k� 0.10 0.10 0.09 0.10 0.11 0.11 0.07 0.07 0.10 0.07

k=1 Re 3900 4200 4200 4500 4200 4700 4700 4500 4500

��k� 0.08 0.07 0.07 0.08 0.08 0.08 0.04 0.05 0.04

k=2 Re 2600 2700 2900 2900 3000 3100 3000 3200 3200 3300

��k� 0.15 0.14 0.14 0.13 0.13 0.13 0.11 0.13 0.13 0.13

k=3 Re 2600 2800 3000 3100 3200 3200 3200 3400 3500 3400

��k� 0.27 0.25 0.25 0.25 0.23 0.24 0.23 0.23 0.23 0.23

k=3� Re 4400 4400

��k� 0.27 0.26

k=4 Re 2900 3000 3200 3200 3300 3300 3100 3100 3100 2900

��k� 0.38 0.37 0.36 0.35 0.35 0.37 0.37 0.38 0.37 0.37

k=4� Re 4100 4200 4300 4400 4000

��k� 0.31 0.32 0.31 0.31 0.31

k=5 Re 3400 3400 3500 3300 3200 3200 3200 3300 3400 3500

��k� 0.48 0.46 0.44 0.45 0.45 0.47 0.47 0.47 0.47 0.45

k=5� Re 4400 4200 4300 4500 4800

��k� 0.42 0.42 0.41 0.41 0.39
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experimentally measured critical Re for 3.5�h�5 are
slightly below those predicted numerically. This can be a
consequence of a subcritical bifurcation to three dimension-
ality, which is yet to be explored. The analysis of the bifur-
cation direction was beyond the scope of present study.

The agreement between experimental and numerical
marginal Reynolds numbers for other, noncritical modes is
also good but apparently not so striking �Fig. 1�. This is not
surprising since the onset of these modes was measured for
already unstable flow so that the base flow already was three
dimensional. In fact the experimental measurements corre-
spond rather to the secondary, tertiary, and higher bifurca-
tions, while the numerical results correspond to the primary
one. In view of this the agreement is not only good but also
surprising. Not less surprising is the agreement between the
measured and calculated frequencies �Fig. 2�. In our opinion
this agreement indicates that in spite of already developed
break of axial symmetry the asymmetric part of the flow
remains much weaker than its axisymmetric part. Thus it is
likely that the mechanisms responsible for instability of the
axisymmetric flow prevail.

In the numerical simulations only the lowest marginal
Reynolds numbers were determined for each of the analyzed
azimuthal modes. Thus, the computations did not reveal fur-

ther bifurcations within the same azimuthal symmetry that
take place with the increase of the Reynolds number. The
experimental technique, however, allows us to follow the
modes and their associated frequency as the Reynolds num-
ber is increased. Therefore, in some cases, especially at high
Reynolds numbers for 5.1�h�5.5 and for modes k=3, 4,
and 5, the measurements revealed frequencies that were not
reflected by the linear stability computations. At large Rey-
nolds numbers all the investigated modes can coexist, indi-
cating that the flow is approaching a chaotic state. Generally,
the spectral LDA plots show that the axisymmetric mode k
=0 is most energetic near the cylinder axis, and that the other
modes, k=2, 3, or 4, are most dominant near the sidewalls of
the cylinder.

An interesting phenomenon appears for h=3.3. Here the
most unstable mode, k=3, first appears at Re=2100 but sta-
bilizes at Re=2300. Hence, in the range from 2300 to 2700,
the flow again becomes steady and axisymmetric. This phe-
nomenon is observed independently by computations and ex-
periment.

III. CONCLUSION

The primary axisymmetry-breaking oscillatory instabil-
ity of the flow in a closed rotating lid cylinder for aspect
ratios h� �3.3,5.5� was investigated. The marginal and criti-
cal Reynolds numbers together with associated frequencies
of the perturbed velocity field were determined. The critical
and marginal Reynolds numbers, azimuthal periodicities, and
characteristic frequencies of the velocity were extracted and
compared to the corresponding numerical results. It is found
that the nonaxisymmetric instability dominates in whole
range 3.3�h�5.5 considered. The azimuthal mode k=3 is
the dominant one in the range 3.3�h�4.2. In the range
4.2�h�5.2 the computations and measurements show that
k=2 is the most unstable mode, while k=4 is the most un-
stable mode for 5.2�h�5.5.

Perfect agreement between calculated and measured
characteristics cross validates both experimental and numeri-
cal approaches and demonstrates the efficiency of using the
new diagnostics technique to analyze oscillatory flows.

FIG. 1. Marginal Reynolds numbers as function of aspect ratio and wave
number.

FIG. 2. Marginal frequencies as function of aspect ratio and wave number.

FIG. 3. Critical Reynolds numbers versus the aspect ratio.
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