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On pressure–velocity coupled time-integration of incompressible Navier–Stokes
equations using direct inversion of Stokes operator or accelerated
multigrid technique
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a b s t r a c t

Two fully pressure–velocity coupled approaches to time-integration of two- and three-dimensional
Navier–Stokes equations discretized by finite volume method are proposed and verified. The first
approach utilizes a direct sparse matrix solver to inverse the Stokes operator. In the second approach a
multigrid iterative solver is accelerated by a modification of CLGS smoother that allows for derivation
of an analytical solution for velocity and pressure corrections belonging to a whole row or column of
finite volumes. Both approaches are tested by two- and three-dimensional natural convection benchmark
problems. It is concluded that the analytical solution accelerated CLGS technique (ASA-CLGS) can be con-
sidered as a promising tool for solution of time-dependent three-dimensional fluid dynamics problems.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Reliable and robust numerical solution of unsteady three-
dimensional fluid dynamics problems at large Reynolds numbers
remains a challenging task of modern computational fluid dynam-
ics. Most of numerical approaches to time-dependent incompress-
ible fluid dynamics utilize various forms of decoupling of pressure
and velocity calculations. Discussing possible further development
of CFD methods a recently published review paper [1] argued that
with the increase of available computer memory pressure–velocity
coupled approaches can becomemore effective. At the same time it
was stressed that development of such approaches only started
and robust fully coupled numerical procedures are yet to be
developed.

In the present study we introduce two different approaches to
time-integration of coupled incompressible Navier–Stokes equa-
tions discretized by the finite volume method. In particular, we
are interested in calculations at parameter values close to bifurca-
tion points, where correct results cannot be obtained without a
sufficient accuracy of both discretization in space and integration
in time (see, e.g. [2,3]).

The first approach is an extension of that of [3], where a direct
sparse matrix solver was used for inverse of the Jacobian matrix,
thus completing the most difficult part of solution of coupled stea-
dy Navier–Stokes equations by Newton iteration. Apparently, an
inverse of the Stokes operator can be considered as a straight-

forward way to solve unsteady Navier–Stokes equations with a full
coupling between pressure and velocity. However, to the best of
our knowledge, such a direct approach has not been yet realized
numerically. Here the direct sparse matrix solver is applied for in-
verse of the Stokes operator or, more precisely, for calculation of LU
decomposition of the matrix approximating the Stokes operator.
The consequent advancement in time is reduced to a series of
back- and forward-substitutions, which also are carried out with
utilization of the sparseness. It is shown that this approach yields
a competitive efficiency for two-dimensional problems. For
three-dimensional problems this approach is strongly restricted
by available computer memory, which did not allow us to test it
on fine enough grids.

The second approach originates from multigrid techniques pro-
posed in [4,5] and extended in [6,7]. The Collective Line Gauss–
Seidel (CLGS) approach of [6,7] considers a row (column) of finite
volumes as a main block of a Gauss–Seidel-type iteration, which
leads to a block tridiagonal linear equation system to be solved
at each sub-iteration of a multigrid algorithm. In the present paper
we show that a slight modification of the formulation of [6,7] al-
lows one to derive an analytical solution for velocity and pressure
corrections belonging to a whole row (column) of finite volumes.
As a result the CPU time needed to carry out a single sub-iteration
of the Gauss–Seidel type is significantly reduced, which speeds up
the whole multigrid procedure and reduces the computational cost
of a time step.

In the following we describe both approaches and a series of
test computations that tests their efficiency. Two- and three-
dimensional natural convection benchmarks are chosen to perform
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these preliminary tests. Characteristic CPU times and consumed
computer memory needed to perform the computations are
reported.

2. Formulation of the problem

For a benchmark problem we consider natural convection in a
three-dimensional differentially heated box of length W, height H
and width D, sketched in Fig. 1. The box aspect ratio is A = H/W
and the width ratio is B = D/W. No-slip boundary conditions are
posed on all the boundaries. Two opposite vertical walls of the
box are maintained at different constant temperatures whereas
all four remaining walls are either perfectly insulating or perfectly
conducting. The flow is described by the momentum, energy and
continuity equations in the Boussinesq approximation. Following
Ref. [2] the dimensionless governing equations are:

r � u ¼ 0 ð1Þ
@u
@t

þ ðu � rÞu ¼ �rpþ 1

Gr0:5
r2uþ hez

! ð2Þ
@h
@t

þ ðu � rÞh ¼ 1
PrGr0:5

r2h ð3Þ

where u = (u,v ,w), p, t, and h are the dimensionless velocity, pres-
sure, time and temperature, respectively, and e!z is the unit vector
in z-direction. The equations are rendered dimensionless using the
scales W, U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbWDT
p

, t =W/U, and P = qU2 for length, velocity,
time and pressure, respectively. Here q is the mass density, g is
the gravitational acceleration, b is the isobaric coefficient of thermal
expansion, and DT = TH � TC is temperature difference between the
hot and cold walls. The dimensionless temperature h is defined as
h = (T � TC)/DT. The Grashof and Prandtl numbers are
Gr = gbDTW3/m2 and Pr = m/a, where m is the kinematic viscosity,
and a is the thermal diffusivity.

3. Numerical method

3.1. Discretization in time and space

The time derivative in the momentum and the energy equations
is approximated by the second order backward finite difference:

@f nþ1

@t
¼ 3f nþ1 � 4f n þ f n�1

2Dt
þ OðDt2Þ ð4Þ

In both models diffusion and pressure terms are treated implicitly,
while all other terms are treated explicitly. In this formulation the
advancement of velocity in time governed by the continuity (1)
and momentum Eq. (2) is reduced to the inverse of the Stokes oper-
ator. The energy Eq. (3) is decoupled from the continuity and
momentum Eqs. (1) and (2). The time-integration of the whole sys-
tem (1)–(3) is carried out in two separate steps:

(1) Assume initial velocity distributions and solve the energy Eq.
(3) for h(n+1):

1
PrGr0:5

r2hðnþ1Þ � 3
2Dt

hðnþ1Þ ¼ ½ðu � rÞh�n þ 1
2Dt

�4hn þ hðn�1Þ
� �

ð5Þ
(2) Substitute the obtained temperature into the momentum

equations and solve the coupled continuity and momentum
Eqs. (1) and (2) for u(n+1) and p(n+1):

r � uðnþ1Þ ¼ 0 ð6Þ

1
Gr0:5

r2uðnþ1Þ � 3
2Ds

uðnþ1Þ � rpðnþ1Þ

¼ ðu � rÞu½ �n þ 1
2Dt

�4un þ uðn�1Þ� �� hðnþ1Þ~ez ð7Þ

Due to explicit representation of the non-linear terms, the time-
integration scheme is subject to restrictions in the time step size.
Thus, the time step must satisfy the usual Courant number criterion
for purely explicit schemes [8]:

Cx ¼ jujDt=Dx < 1:0; Cy ¼ jv jDt=Dy < 1:0; Cz ¼ jwjDt=Dz < 1:0

ð8Þ

and the requirement that the momentum and thermal energy must
not diffuse through more than one cell in one time step:

ðm;aÞDt 1=ðDxÞ2 þ 1=ðDyÞ2 þ 1=ðDzÞ2
h i

� 1
2

ð9Þ

A number of numerical tests showed that for grids having at least
100 grid nodes in the shortest direction the time stepsDt = 1 � 10�2

andDt = 1 � 10�3 converge to steady states independently on initial
conditions for regular and stretched grids, respectively.

Eqs. (5)–(7) are discretized using conservative second order fi-
nite volume schemes [9] on a staggered mesh (Fig. 2). Following
notations of [9] we represent the finite volume discretization of
Eqs. (5)–(7) as

1

PrGr0:5
ah
P �

3
2Dt

� �
hnþ1
P þ 1

PrGr0:5
X
nb

ahnbh
nþ1
nb ¼ RHSnh ð10Þ

unþ1
e � unþ1

w

� �
= xe � xwð Þ þ vnþ1

n � vnþ1
s

� �
= yn � ysð Þ

þ wnþ1
u �wnþ1

d

� �
= zu � zdð Þ ¼ 0 ð11Þ

1
Gr0:5

aue �
3

2Dt

� �
unþ1
e þ 1

Gr0:5
X
nb

aunbu
nþ1
nb � pnþ1

E � pnþ1
P

xE � xP
¼ RHSnu

ð12:1Þ

1

Gr0:5
avn �

3
2Dt

� �
vnþ1
n þ 1

Gr0:5
X
nb

avnbv
nþ1
nb � pnþ1

N � pnþ1
P

yN � yP
¼ RHSnv

ð12:2Þ

1
Gr0:5

aud �
3

2Dt

� �
wnþ1

u þ 1
Gr0:5

X
nb

avnbw
nþ1
nb � pnþ1

U � pnþ1
P

zU � zP
¼ RHSnw

ð12:3Þ
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Fig. 1. Differentially heated cavity – physical model and coordinate system.
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Expressions for the coefficients ap, ae, an, ad, anb for each unknown
function are derived from the finite volume discretization of the La-
place operator, while expressions for the right hand sides
RHSnh ;RHS

n
u;RHS

n
v ;RHS

n
w contain discretization of all other terms

and are calculated using functions computed at a previous time
step. For the reasons described in [3] the conservative approxima-
tion of convective terms is used. At the same time, the two ap-
proaches described below can be applied for any upwinding or
higher-order scheme approximating the convective terms. Note,
that for a fully coupled solution on a staggered mesh one does
not need to know pressure values at the boundaries, which removes
the well-known problem of pressure boundary conditions.

3.2. The full pressure coupled direct (FPCD) solution

This approach is based on LU-factorization of the Stokes opera-
tor defined on the whole computational domain. The matrix
approximating the Stokes operator is comprised from left hand
sides of Eqs. (11) and (12). Formally, to advance in a single time
step it is necessary to multiply the r.h.s of Eqs. (11) and (12) by
the inverse of this matrix. To evaluate the latter matrix-vector
product we compute the LU-factorization of the matrix in the

beginning of the time-integration process. The computation is car-
ried out by a direct multifrontal sparse solver (we use the MUMPS1

package). The advancement of the velocity and pressure fields in one
time step is then reduced to one backward and one forward substi-
tution procedures, which are also realized for sparse triangular L and
U matrices. Due to effective utilization of the matrix sparseness both
LU-factorization and backward/forward-substitutions are relatively
fast. The characteristic CPU times and memory requirements needed
for the LU-factorization are studied in Ref. [3]. The characteristic
times for the whole time-integration process are given below.

The decoupled energy Eq. (3) was solved by the Bi-CGStab algo-
rithm [10]. In this way we decrease computer memory usage in
about 20% comparing with solving the same equation by the
MUMPS package. It was found that for the energy equation the
iterative Bi-CGSTAB procedure and the direct solution using
the MUMPS package consume almost same CPU time. For two-
dimensional simulations the characteristic CPU time needed for a
single time step per one node and per one CPU is of order
5 � 10�3 m s on a single AMD 2.4 GHz processor, which is close
to the best result among 32 studies reported during a special
MIT2001 session [11]. It should be noted, however, that being very
effective for two-dimensional problems, the FPCD algorithm is ex-
tremely memory demanding for three-dimensional calculations.
Thus, for 32-bit integers it is restricted to approximately 403 grids,
which is insufficient for obtaining quantitatively reliable results
[3]. Nevertheless, taking into account a rapid increase of availabil-
ity of computer memory it should not be immediately disregarded.

3.3. The multigrid solution

Following previous studies cited below we consider Eqs. (11)
and (12) for corrections of pressure and velocity, that are defined
as difference of the corresponding values at two consequent time
steps and are denoted by prime.

The multigrid approach used in the present work is a modifica-
tion of the method originally developed and tested by Vanka for
square [4] and cubic [5] lid-driving cavities. Linearity of the Stokes
operator allows us to use the correction scheme (CS) of Ref. [12]
and the Coupled Line Gauss–Seidel smoother (CLGS) developed in
[6]. An additional description of this method can be found in [7].
A typical V-cycle technique [13] is used for the multigrid iterations.
Contrary to so called self-controlling algorithms detailed in [4,5]
the V-cycle technique is controlled only by rate of convergence
and does not require any additional accommodative criteria for
switching from one grid to another [12]. Therefore it is expected
to be more efficient for analysis of unsteady flows where small
time steps are necessarily used, so that variations between two
sequential time steps are small. The rate of convergence on each
grid level has been defined as jðkRmþ1kL2 � kRmkL2Þ=kRmþ1kL2j > g
where Rm+1 and Rm are residuals at iterations m + 1 and m, respec-
tively, and g is a convergence threshold. In the present study the
convergence rate at a specific grid level is supposed to be slow if
maximal value of all threshold rates obtained for both the continu-
ity and the momentum equations is greater than g = 0.5. To define
the algorithm stopping criterion on the finest grid the point-wise
absolute difference between iterations m + 1 and m is firstly ob-
tained at each point of the computational domain. The difference
is defined by jvM

mþ1 � vM
m j=jvM

m j
� �

ði;jÞ if v
M
m > 0:1 and jvM

kþ1 � vM
k j

� �
ði;jÞ

otherwise. Such definition yields representative values of the iter-
ations difference for the wide range of the vM. At a given time step
the overall multigrid iteration process is stopped when a maximal
value of all obtained local differences is less then 10�7.
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Fig. 2. Staggered grid arrangement (a) control volume for scalar fields and (b)
control volume for u velocity component.

1 See http://www.enseeiht.fr/apo/MUMPS/ or http://grall.ens-lyon.fr/MUMPS/.
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3.3.1. Restriction and prolongation
Definitions of the restriction Ikkþ1 and prolongation Ikþ1

k opera-
tors on uniform staggered grids are given in [4,5]. In the present
study these definitions are generalized in terms of coordinate dif-
ferences between fine and coarse grids that make them applicable
for the non-uniform and strongly stretched grids characterized by
an unfixed mesh ratio between coarse and fine grid steps. For pro-
longation of the pressure corrections at the nodes adjacent to do-
main boundaries we require the pressure derivative in the
normal to the boundary direction to vanish. It is emphasized that
for the finest grid of the V-cycle, for which the actual solution is
being sought, no prolongation and no boundary conditions for
pressure are needed.

3.3.2. The line-wise smoother
We start the description of the smoother that we propose here

from recalling the characteristic matrix for the coupled pressure–
velocity corrections for the Symmetric Coupled Gauss–Seidel
smoother (SCGS) developed in [4]. This matrix is illustrated in
Fig. 3 and for the discretized Eqs. (10)–(12) its coefficients are
A1 ¼ 1

Gr0:5
; auw � 3

2Dt ; A3 ¼ 1
Gr0:5

aue � 3
2Dt ;A5 ¼ 1

Gr0:5
au
w � 3

2Dt ;A9 ¼ 1
Gr0:5

avn�
3

2Dt ; A7 ¼ �1=ðxe � xwÞ; A8 ¼ �1=ðyn � ysÞ; A2 ¼ �1=ðxP � xWÞ; A4 ¼
1=ðxE � xPÞ;A6 ¼ �1=ðyP � ySÞ;A10 ¼ 1=ðyN � yPÞ:

It can be inversed analytically, so that required corrections
are easily computed and are immediately added to the values
of the current solution. Under-relaxation is implemented by
adding a fraction of the calculated correction to the current
variables.

The cell-wise implementation described above is known to have
poor convergence characteristics when grids are stretched or the
flow is largely unidirectional [7]. An improvement can be achieved
by an update of variables for the entire line (column or row). This
concept, called Collective Lines Gauss–Seidel smoother (CLGS), was
proposed by Zeng and Wesseling [6] who used a block-tridiagonal
structure of the matrix assembled from the matrices corresponding
to single lines of finite volumes. The corresponding linear equa-
tions system was solved in [6] by the standard backward–forward
substitution. Performance of CLGS and SCGS smoothers was later
compared by Paisley [7] who showed that the CLGS smoother is
more efficient. However, this approach did not attract much atten-
tion, possibly because the pressure–velocity decoupling methods
were still more efficient, as it was shown for the SIMPLE algorithm
in [7].

To describe our modification of CLGS smoother we recall the
corresponding system of algebraic equations assembled for pres-
sure and velocity corrections belonging to a column of finite vol-
umes. For brevity only 2D case is described. Assuming that
pressure values are located in the nodes (i, j), while the vertical
and horizontal velocities are located in the nodes (i, j + 1/2), and
(i + 1/2, j), respectively, the correction equations are considered in
the following form

� � �
AðxÞ
iþ1=2;ju

0
iþ1=2;j þ BðxÞ

iþ1=2;jp
0
i;j ¼ RðxÞ

iþ1=2;j

AðxÞ
i�1=2;ju

0
i�1=2;j � BðxÞ

i�1=2;jp
0
i;j ¼ RðxÞ

i�1=2;j

AðyÞ
i;jþ1=2v

0
ijþ1=2 � BðyÞ

i;jþ1=2 p0
i;jþ1 � p0

i;j

� �
¼ RðyÞ

i;jþ1=2

AðxÞ
i;j u0

iþ1=2;j � u0
i�1=2;j

� �
þ AðyÞ

i;j v 0
i;jþ1=2 � v 0

i;j�1=2

� �
¼ 0

� � �

ð13Þ

All the coefficients in Eqs. (13) are derived from the discretized Eqs.
(11) and (12). The vertically arranged neighbor volumes are con-
nected through the values v 0

i;jþ1=2 and p0
i;jþ1, so that the resulting

system is block-tridiagonal and can be inversed by, e.g. block LU-
factorization [6]. However, numerical experiments of [7] showed
that this algorithm performs slower than SIMPLE. To make the ma-
trix inverse faster we propose to modify the Eq. (13) by assignment
of the term with p0

i;jþ1 to the right hand side. This reads

� � �
AðxÞ
iþ1=2;ju

0
iþ1=2;j þ BðxÞ

iþ1=2;jp
0
i;j ¼ RðxÞ

iþ1=2;j

AðxÞ
i�1=2;ju

0
i�1=2;j � BðxÞ

i�1=2;jp
0
i;j ¼ RðxÞ

i�1=2;j

AðyÞ
i;jþ1=2v

0
ijþ1=2 þ BðyÞ

i;jþ1=2p
0
i;j ¼ ~RðyÞ

i;jþ1=2

AðxÞ
i;j ðu0

iþ1=2;j � u0
i�1=2;jÞ þ AðyÞ

i;j ðv 0
i;jþ1=2 � v 0

i;j�1=2Þ ¼ 0

� � �

ð14Þ

where ~RðyÞ
i;jþ1=2 ¼ RðyÞ

i;jþ1=2 þ BðyÞ
i;jþ1=2p

0
i;jþ1 and the value of p0

i;jþ1 is taken
from the previous iteration. The resulting equations for the column
of finite volumes remain linked by the values of v 0

i;jþ1=2, but now one
can derive a Thomas-like algorithm for calculation of an analytical
solution of this equation system. This algorithm is illustrated in
Fig. 4 and is described below.

For a 2D problem a typical column (row) consists of L finite vol-
umes denoted by VI, I = 1,2, . . . ,L (Fig. 4). Each volume contains 5
unknown correction values (four for velocity components and
one for pressure). In total, the entire column contains k unknowns.
It is assumed that the boundary conditions yield the values of
v 0
1 and v 0

k. We start from equations written for the upper volume
VL (Fig. 4). The value of v 0

k is known and the values of u0
k�2;u

0
k�3

can be expressed via the value of p0
k�1 using first two equations

of the system (14). Then the expressions for v 0
k;u

0
k�2;u

0
k�3 are

substituted into the last equation (the continuity), which yields a
linear link between p0

k�1 and v 0
k�4. Then p0

k�1 can be expressed via
v 0
k�4 in the following form

p0
k�1 ¼ ðcL1v 0

k�4 þ RL
k�1 þ cL2R

L
k�2 þ cL3R

L
k�3 þ cL4R

L
k�4Þ=cL5 ð15Þ

Now, assuming that vk-4 is known we can repeat this procedure for
the volume L-1 and to continue till the volume 1. At the volume 1
the value of v 0

1 is known and therefore the value p0
4 can be calcu-

lated using equation similar to (15). Then, the values of
v 0
5;u

0
2 and u0

3 are readily expressed via p0
4 as
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Fig. 3. Matrix corresponding to a single finite volume for Symmetrical Coupled Gauss–Seidel (SCGS) smoother [4].
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m05
u0
2

u0
3

2
64

3
75 ¼

c16
c17
c18

2
64

3
75� p0

4 þ
c19R

L
5

c110R
L
2

c111R
L
3

2
64

3
75 ð16Þ

Now, having the value of v 0
5 we calculate the pressure and velocity

correction values belonging to the volume 2 and continue to the
volume L.

To finalize, the proposed algorithm consists of two stages. At the
first stage we calculate the coefficients cIi and at the second stage
obtain all the current corrections. It is emphasized that for a con-
stant time step the coefficients cIi remain unchanged for all the iter-
ations and time steps, which makes the algorithm considerably
fast.

An exact analytical estimation of the developed algorithm over-
all complexity is barely possible since, as for any iterative algo-
rithm, its convergence rate is problem dependent. Nevertheless, a
quantitative estimation of the algorithm complexity can be ob-
tained by applying it to representative benchmark problems,
known to have periodical solutions (see Section 4.5 for more de-
tails). Here we present some general remarks illustrating advanta-
ges of the developed smoother. Since all the coefficients ci are
calculated only once at the beginning of the process the CPU time
consumed for their calculation is negligible. To proceed with Eqs.
(15) and (16) we need 11 multiplications and divisions and 7 sum-
mations to calculate 4 corrections for a single volume. Note that
the fifth correction is yielded by the result obtained for the previ-
ous finite volume or from a boundary condition. Thus, we need
about 5N operations to compute N corrections for a single finite
volume and thus the same order of operations amount for the
whole line of volumes. Note that the assembled matrix corre-
sponding to the whole line of volumes is six-diagonal. The calcula-
tion of its solution, however, needs the same amount of operations
as Thomas algorithm applied to a three-diagonal matrix. It should
be emphasized, that the above estimate does not take into account
additional mathematical operations needed to obtain residuals RI

i

(Fig. 4), which must be updated at each sub-iteration and will inev-
itably increase the overall complexity of the algorithm. This, how-
ever, is a disadvantage of all multigrid algorithms based on the
Gauss–Seidel smoother.

The developed solver is easily extended to three-dimensional
geometry by treating a line of three-dimensional finite volumes.

Consider a single column of L finite volumes. For a finite volume
I (I = 1,2, . . . ,L) we use notations of Fig. 2. Then the pressure and
velocity corrections belonging to this volume are calculated as a
solution of:

� � �
AðxÞ
e u0

e þ BðxÞ
e p0

p ¼ RðxÞ
e

AðxÞ
w u0

w � BðxÞ
w p0

p ¼ RðxÞ
w

AðyÞ
n v

0
n þ BðyÞ

n p0
p ¼ RðxÞ

n

AðyÞ
s u0

s � BðyÞ
s p0

p ¼ RðxÞ
s

AðzÞ
u w0

u þ BðzÞ
u p0

p ¼ ~RðzÞ
u

AðxÞ
p ðu0

e � u0
wÞ þ AðyÞ

p v 0
n � v 0

s

� �þ AðzÞ
p w0

u �w0
d

� � ¼ 0

� � �

ð17Þ

A similar solution procedure yields

p0
p ¼ cI1w

0
d þ RI

p þ cI2R
I
e þ cI3R

I
w þ cI4R

I
n þ cI5R

I
5 þ cI6R

I
d

� �
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� p0

p þ

cI13R
I
d

cI14R
I
s

cI15R
I
n

cI16R
I
w

cI17R
I
e

2
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77777775

ð19Þ

As in the two-dimensional case all the coefficients ci are calculated
only once at the beginning of the process. To calculate 6 corrections
for a single volume we need 17 multiplications and divisions and 11
summations, which results in about 5N operations to compute N
corrections located in one column (row). Again, the seventh correc-
tion is yielded by the finite volume proceeded before or by a bound-
ary condition. Thus, both for two- and three-dimensional problems
the number of operations needed for a single sub-iteration grows
proportionally to the number of unknowns belonging to one col-
umn or row of finite volumes. Note that in a two-dimensional for-
mulation the number of columns to be processed is of the order
N, while in a three-dimensional formulation the number of columns
is of the order of N2. Therefore three-dimensional computations re-
main significantly more demanding.
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Fig. 4. A schematic description of ASA-CLGS smoother.
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Apparently, the described solution procedure can be reformu-
lated for a row of finite volumes, which yields an additional line-
wise smoother for 2D problems and two additional smoothers in
3D case. Considering convection test problems we observed that
for a two-dimensional configuration the line-wise smoother utiliz-
ing columns (vertically arranged lines) was about 30% faster than
that utilizing the rows. Similarly, for the three-dimensional config-
urations the columns arrangement was about 35% faster than two
other possibilities of rows arrangement. This observation can be
explained by a slow convergence of the pressure corrections, which
is characterized by a vertical stratification forming inside the dif-
ferentially heated cavity. This shows that a fast propagation of
the pressure correction changes through the computational do-
main improve the convergence, which, for the test problems con-
sidered, is achieved by choosing a line-wise smoother directed
along maximal pressure variations. Apparently, the choice of the
optimal direction for the line-wise smoother is problem-
dependent.

The approach described above is in fact a modified CLGS
smoother proposed in [6] and applied in [7]. The modification
introduced here allows for an analytical solution at the lowest level
of block Gauss–Seidel iteration, which speeds up the whole pro-

cess. We call this approach an Analytical Solution Accelerated Cou-
pled Line Gauss–Seidel (ASA-CLGS) smoother.

4. Results and discussion

The two approaches, FPCD and ASA-CLGS, were tested for con-
vection of air in two- and three-dimensional rectangular contain-
ers. In particular, we considered time-periodic solutions of the
MIT2001 benchmark dealing with 8:1 thermally driven cavity
and steady state solution of convection in a laterally heated cubical
enclosure as two representative 2D and 3D examples, respectively.
Convergence to steadiness is assumed to be reached when the
maximal point-wise relative difference for each function at two
consecutive time steps is less than 10�5.

4.1. Thermally driven rectangular cavity of aspect ratio 8:1

The results obtained using the FPCD and ASA-CLGS multigrid
approaches are compared with time-periodic solutions obtained
by Xin and Le Quéré [2] and by Guo and Bathe [14] for the differ-
entially heated cavity of aspect ratio 8:1 at Ra = 3.4 � 105

Table 1
Comparison of the results of FPCD approach with the independent solutions [2,14]. Ra = 3.4105 � 105, Pr = 0.71, uniform grid, calculations performed for the time interval of 700
dimensionless units.

Quantity Average Amplitude Period Average Amplitude Period

48 � 180 pseudo-spectral Chebyshev modes steps per period 2024.37 [2] Stretched grid, 40 � 120 elements steps per period 34 [14]
u1 5.6345 � 10�2 5.4768 � 10�2 3.4115 5.6100 � 10�2 5.2940 � 10�2 3.422
v1 0.46188 7.7125 � 10�2 3.4115 0.4620 7.5120 � 10�2 3.422
h1 0.26548 4.2690 � 10�2 3.4115 0.2654 4.1340 � 10�2 3.425
DP1 �1.8536 � 10�3 2.0355 � 10�2 3.4115 �2.0030 � 10�3 2.0040 � 10�2 3.421
DP51 �0.53486 2.2442 � 10�2 3.4115 �0.53490 2.2080 � 10�2 3.422
DP35 0.53671 1.0057 � 10�2 3.4115 0.53690 0.9976 � 10�2 3.422
Nux0 �4.57946 7.0921 � 10�3 3.4115 �4.57950 6.8900 � 10�3 3.422
Nux1 �4.57946 7.0921 � 10�3 3.4115 �4.57950 6.8920 � 10�3 3.422

Uniform grid, 100 � 800 steps per period 1707.32 (Dt = 0.002) Uniform grid, 100 � 800 steps per period 3414.63 (Dt = 0.001)
u1 5.7490 � 10�2 6.2236 � 10�2 3.4146 5.6095 � 10�2 5.2232 � 10�2 3.4146
v1 0.46165 8.5893 � 10�2 3.4146 0.46177 7.3937 � 10�2 3.4146
h1 0.26565 4.8475 � 10�2 3.4146 0.26561 4.090 � 10�2 3.4146
DP1 �1.7841 � 10�3 2.2811 � 10�2 3.4146 �1.85305 � 10�3 1.9522 � 10�2 3.4146
DP51 �0.53575 2.4893 � 10�2 3.4146 �0.53546 2.1564 � 10�2 3.4146
DP35 0.53753 1.1393 � 10�2 3.4146 0.53732 0.9764 � 10�2 3.4146
Nux0 �4.579232 6.7021 � 10�3 3.4146 �4.59220 6.9334 � 10�3 3.4146
Nux1 �4.579232 6.7021 � 10�3 3.4146 �4.59220 6.9334 � 10�3 3.4146

Table 2
Comparison of the of FPCD approach with the independent solution [2,14]. Ra = 3.4105 � 105, Pr = 0.71, stretched grid, calculations performed for the time interval of 700
dimensionless units.

Quantity Average Amplitude Period Average Amplitude Period

Stretched Grid, 40 � 120 elements steps per period 34 [14] 48 � 180 pseudo-spectral Chebyshev modes steps per period 2024.37 [2]
u1 5.6100 � 10�2 5.2940 � 10�2 3.4115 5.6345 � 10�2 5.4768 � 10�2 3.422
v1 0.4620 7.5120 � 10�2 3.4115 0.46188 7.7125 � 10�2 3.422
h1 0.2654 4.1340 � 10�2 3.4115 0.26548 4.2690 � 10�2 3.425
DP1 �2.0030 � 10�3 2.0040 � 10�2 3.4115 �1.8536 � 10�3 2.0355 � 10�2 3.421
DP51 �0.53490 2.2080 � 10�2 3.4115 �0.53486 2.2442 � 10�2 3.422
DP35 0.53690 0.9976 � 10�2 3.4115 0.53671 1.0057 � 10�2 3.422
Nux0 �4.57950 6.8900 � 10�3 3.4115 �4.57946 7.0921 � 10�3 3.422
Nux1 �4.57950 6.8920 � 10�3 3.4115 �4.57946 7.0921 � 10�3 3.422

Stretched Grid, 100 � 800 Steps per period 3414.63 (Dt = 0.001) Stretched Grid, 100 � 800 Steps per period 1707.32 (Dt = 0.002)
u1 5.7985 � 10�2 5.7985 � 10�2 3.4146 5.7535 � 10�2 7.4267 � 10�2 3.4146
v1 0.46119 8.1097 � 10�2 3.4146 0.46220 8.4425 � 10�2 3.4146
h1 0.26547 4.5300 � 10�2 3.4146 0.26524 4.9038 � 10�2 3.4146
DP1 �1.8967 � 10�3 2.1381 � 10�2 3.4146 �1.8602 � 10�3 2.4578 � 10�2 3.4146
DP51 �0.53527 2.3609 � 10�2 3.4146 �0.53528 2.5371 � 10�2 3.4146
DP35 0.53769 1.0762 � 10�2 3.4146 0.53735 1.1157 � 10�2 3.4146
Nux0 �4.57923 6.7021 � 10�3 3.4146 �4.57957 8.0646 � 10�3 3.4146
Nux1 �4.57923 6.7021 � 10�3 3.4146 �4.57957 8.0646 � 10�3 3.4146
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(Ra = GrPr). The comparison of present results obtained by both
algorithms using uniform and stretched grids with benchmark
solution [2] and reference solution [14] is presented in Tables 1–
4. The average Nusselt number reported in the tables defines the
dimensionless heat flux through a plane x = const per unit width:

Nux ¼
Z 1

0
� @h
@x

dy ð20Þ

Nux0 and Nux1 are the Nusselt numbers obtained for the hot and the
cold vertical boundaries, respectively. The solutions obtained by
both approaches are in a good agreement with the benchmark-
quality solution of [2]. Noticeable discrepancies between the pres-
ent results and those of [14] can be explained by a large time step,
which in [14] was two orders of magnitude larger than in the pres-
ent work, as well as by rather coarse spatial resolution used in [14].
Our results show that the accuracy tends to increase with the de-
crease of the time step (Tables 1–4). The grid stretching slightly im-
proves the accuracy for the large time step but its effect weakens
when the time step decreases. The hot and cold wall Nusselt num-
ber amplitudes obtained by the multigrid solution slightly differ
from each other that should not occur. The possible reason for such

behavior is inaccuracy introduced by an insufficient numerical con-
vergence of the temperature field, which makes the Nusselt number
the most sensitive quantity. Note, that such an inequality of Nusselt
number amplitudes is observed also in other studies, e.g. in [14],
where quadrilateral finite elements were used for the spatial dis-
cretization. This shows that the instantaneous heat balance is a
common problem for different numerical methods, which worth
to be studied in more detail. The average values of both Nusselt
numbers, however, are equal (Tables 1–4), which proves the conser-
vation of heat throughout the cavity. It is expected that the ob-
served inaccuracy will decrease by utilizing semi-implicit
discretization of the convection terms, which is the issue of our
future research. In this case the FAS-FMG (full approximation stor-
age-full multigrid) algorithm [12], applicable for the non-linear
problems should be used.

4.2. Laterally heated cubic box with four perfectly insulating walls

A comparison with independent results [15–18] for convection
in three-dimensional box is shown in Table 5. Stretched grid was
used for Ra = 106 and 107 to resolve thin boundary layers adjacent

Table 3
Comparison of the results obtained by the ASA-CLGS multigrid approach with the independent solution [2]. [14] Ra = 3.4105 � 105, Pr = 0.71, uniform grid, calculations performed
for the time interval of 700 dimensionless units.

Quantity Average Amplitude Period Average Amplitude Period

48 � 180 pseudo-spectral Chebyshev modes steps per period 2024.37 [2] Stretched grid, 40 � 120 elements steps per period 34 [14]
u1 5.6345 � 10�2 5.4768 � 10�2 3.4115 5.6100 � 10�2 5.2940 � 10�2 3.422
v1 0.46188 7.7125 � 10�2 3.4115 0.4620 7.5120 � 10�2 3.422
h1 0.26548 4.2690 � 10�2 3.4115 0.2654 4.1340 � 10�2 3.425
DP1 �1.8536 � 10�3 2.0355 � 10�2 3.4115 �2.0030 � 10�3 2.0040 � 10�2 3.421
DP51 �0.53486 2.2442 � 10�2 3.4115 �0.53490 2.2080 � 10�2 3.422
DP35 0.53671 1.0057 � 10�2 3.4115 0.53690 0.9976 � 10�2 3.422
Nux0 �4.57946 7.0921 � 10�3 3.4115 �4.57950 6.8900 � 10�3 3.422
Nux1 �4.57946 7.0921 � 10�3 3.4115 �4.57950 6.8920 � 10�3 3.422

Uniform grid, 100 � 800 steps per period 1707.32 (Dt = 0.002) Uniform grid, 100 � 800 steps per period 3414.63 (Dt = 0.001)
u1 5.7846 � 10�2 6.4487 � 10�2 3.4146 5.64156 � 10�2 5.4671 � 10�2 3.4146
v1 0.46168 8.8484 � 10�2 3.4146 0.46179 7.6954 � 10�2 3.4146
h1 0.26558 5.0139 � 10�2 3.4146 0.26558 4.2729 � 10�2 3.4146
DP1 �1.8054 � 10�3 2.3524 � 10�2 3.4146 �1.84985 � 10�3 2.0334 � 10�2 3.4146
DP51 �0.53565 2.5613 � 10�2 3.4146 �0.53539 2.2402 � 10�2 3.4146
DP35 0.53745 1.1698 � 10�2 3.4146 0.53725 1.0121 � 10�2 3.4146
Nux0 �4.58996 8.0165 � 10�3 3.4146 �4.58969 7.0867 � 10�3 3.4146
Nux1 �4.58995 8.3944 � 10�3 3.4146 �4.58969 7.2008 � 10�3 3.4146

Table 4
Comparison of the results obtained by the ASA-CLGS multigrid approach with the independent solution [2,14]. Ra = 3.4105 � 105, Pr = 0.71, stretched grid, calculations performed
for the time interval of 700 dimensionless units.

Quantity Average Amplitude Period Average Amplitude Period

48 � 180 pseudo-spectral Chebyshev modes steps per period 2024.37 [2] Stretched grid, 40 � 120 elements steps per period 34 [14]
u1 5.6345 � 10�2 5.4768 � 10�2 3.4115 5.6100 � 10�2 5.2940 � 10�2 3.422
v1 0.46188 7.7125 � 10�2 3.4115 0.4620 7.5120 � 10�2 3.422
h1 0.26548 4.2690 � 10�2 3.4115 0.2654 4.1340 � 10�2 3.425
DP1 �1.8536 � 10�3 2.0355 � 10�2 3.4115 �2.0030 � 10�3 2.0040 � 10�2 3.421
DP51 �0.53486 2.2442 � 10�2 3.4115 �0.53490 2.2080 � 10�2 3.422
DP35 0.53671 1.0057 � 10�2 3.4115 0.53690 0.9976 � 10�2 3.422
Nux0 �4.57946 7.0921 � 10�3 3.4115 �4.57950 6.8900 � 10�3 3.422
Nux1 �4.57946 7.0921 � 10�3 3.4115 �4.57950 6.8920 � 10�3 3.422

Stretched grid, 100 � 800 steps per period 1707.32 (Dt = 0.002) Stretched grid, 100 � 800 steps per period 3414.63 (Dt = 0.001)
u1 5.7326 � 10�2 6.3663 � 10�2 3.4146 5.5869 � 10�2 5.3652 � 10�2 3.4146
v1 0.46123 8.7693 � 10�2 3.4146 0.46128 7.5847 � 10�2 3.4146
h1 0.26552 4.9546 � 10�2 3.4146 0.26547 4.1990 � 10�2 3.4146
DP1 �1.8137 � 10�3 2.3258 � 10�2 3.4146 �1.88024 � 10�3 1.9981 � 10�2 3.4146
DP51 �0.53553 2.5521 � 10�2 3.4146 �0.53526 2.2116 � 10�2 3.4146
DP35 0.53735 1.1578 � 10�2 3.4146 0.53714 0.9984 � 10�2 3.4146
Nux0 �4.57949 8.1449 � 10�3 3.4146 �4.57925 6.9967 � 10�3 3.4146
Nux1 �4.57950 8.4378 � 10�3 3.4146 �4.57925 7.1579 � 10�3 3.4146
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to the hot and cold boundaries (see Fig. 5a). An average Nusselt
number determining the thermal flow rate trough the plane
y = const is defined as:

Nuy ¼ �
Z 1

0

Z 1

0

@h
@y

dxdz ð21Þ

The calculated Nusselt numbers at the hot and cold walls were
equal, thus verifying the heat balance inside the cavity. In the fol-
lowing only results for Nuy=0 are reported. The obtained benchmark
results are well compared with the previously published data for
the entire range of Ra numbers. In particular, we would like to stress
the agreement with results of Tric et al. [15], whose spatial resolu-
tion is believed to be better than 0.02%, as well as of Wakashima
and Saitoh [18] who utilized a fourth order finite-differences
scheme on a 1203 grid. The velocity maxima reported in [15] for
the mid-plane (x = 0.5) agree to within 0.04% for Ra = 104, 105 and
106, and to within 0.08% for Ra = 107 (Table 5). The calculated Nus-
selt numbers agree to within 0.034%, 0.048%, 0.07% and 0.74% for
the above Rayleigh numbers, respectively. Comparison of velocities
calculated at two centerlines (0.5, 0.5, z) and (0.5, y, 0.5) agree with
results of [18] to within 1.26% for Ra = 104 and 105, and to within
1.1% for Ra = 106 (Table 5). A possible reason for such relatively
large discrepancies may arise from vorticity-vector potential formu-
lation utilized in [18] instead of using primitive variables formula-
tion as in the present study and in [15]. The corresponding Nusselt
numbers agree to within 0.37%, 0.72%, 0.59% for these Rayleigh
numbers, respectively.

4.3. Laterally heated cubic box with four perfectly conducting walls

Comparison with the independent experimental [19] and
numerical [16] results for this problem is presented in Table 6.
As above, the stretched grid was used for Ra = 106 to resolve thin
boundary layers developed close to the hot and cold boundaries
(see Fig. 5b). The Nusselt numbers obtained in the present study
are in a good agreement with both experimental and numerical
data of [19,16] for the entire range of Ra numbers: the maximal
deviation between the corresponding Nusselt numbers does not
exceed 1.1%. The calculated velocity maxima at the middle plane
of the cube (x = 0.5) agree to within 0.12% for Ra = 104, 0.3% for
Ra = 105 and 0.11% for 106 with the results of [16] (Table 6).

Table 5
Laterally heated cubic box with four perfectly insulating walls: present and previously published results comparison.

Quantity Presenta Ref. [15]b Ref. [16]c Ref. [17]d Ref. [18]e

Ra = 104 uymax(y, z) at x = 0.5 (0.5146,0.8229) 0.1975 (0.5196,0.8250) 0.1984 (0.5250,0.8250) 0.1983
|uzmin(y, z)| at x = 0.5 (0.8894,0.5240) 0.2211 (0.8870,0.5219) 0.2217 (0.8875,0.5225) 0.2217
uy max(Z) at x, y = 0.5 (0.8250) 0.1970 (0.8370) 0.2065 (0.8250) 0.1984
|uz min(y)| at x, z = 0.5 (0.8800) 0.2202 (0.8870) 0.2207 (0.8823) 0.2216
Nuy=0 2.0547 2.0540 2.0550 2.0850 2.0624

Ra =105 uymax(y,z) at x = 0.5 (0.3125,0.8894) 0.1633 (0.3135,0.8848) 0.1616 (0.2946,0.8889) 0.1605
|uzmin(y,z)| at x = 0.5 (0.9371,0.5143) 0.2466 (0.9368,0.5100) 0.2456 (0.9371,0.5000) 0.2452
uymax(y) at x, y = 0.5 (0.8500) 0.1434 (0.8640) 0.1490 (0.8500) 0.1416
|uzmin(y)| at x, z = 0.5 (0.9370) 0.2464 (0.9350) 0.2398 (0.9323) 0.2464
|Nuy=0| 4.3349 4.3370 4.3370 4.3780 4.3665

Ra =106 uymax(y, z) at x = 0.5 (0.1859,0.9374) 0.1471 (0.5000,0.9366) 0.1465 (0.1920,0.9371) 0.1457
|uzmin(y, z)| at x = 0.5 (0.9629,0.5391) 0.2592 (0.9638,0.5353) 0.2590 (0.9658,0.5500) 0.2582
uymax(z) at x, y = 0.5 (0.8605) 0.0802 (0.8603) 0.0811
|uzmin(y)| at x, z = 0.5 (0.9663) 0.2575 (0.9677) 0.2583
|Nuy=0| 8.6461 8.6400 8.6400 8.6973

Ra =107 uymax(y, z) at x = 0.5 (0.1186,0.9674) 0.1410 (0.1223,0.9662) 0.1440
|uzmin(y, z)| at x = 0.5 (0.9797,0.5391) 0.2626 (0.9794,0.5354) 0.2621
|Nuy=0| 16.4644 16.3427

a 1033 uniform grid for Ra = 104,105 and 1033 non-uniform grid for Ra = 106,107.
b 813 uniform grid for Ra = (104�106) and 1113 uniform grid for Ra = 107.
c 813 uniform grid for Ra = 104 and 813 non-uniform grid for Ra = 105 and Ra = 106.
d 61 � 45 � 45 non-uniform grid for Ra = 104 and 91 � 45 � 45 non-uniform grid for Ra = 105.
e Richardson extrapolation using 803 and 1203 uniform grids.

Fig. 5. Temperature distribution in a differentially heated cubic box for Ra = 106

with: (a) four perfectly insulating walls and (b) four perfectly conducting walls.
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4.4. Flow visualization

The three-dimensional flows were visualized by plotting isosur-
faces of the temperature (Fig. 5) and trajectories of four particle
passing through the main diagonal of the mid-plane x = 0.5
(Fig. 6). All the results are plotted for Ra = 106. Both configurations
with perfectly insulating or perfectly conducing walls are charac-
terized by thin thermal boundary layers located near the hot and
cold walls. The graphical representation of the streamlines at the
cavity mid-plane can be found, e.g. in [16]. It is seen that in both
configurations the trajectories leave the mid-plane, thus indicating
on fully three-dimensional flow pattern. The three-dimensional
velocity and temperature fields preserve the symmetry with re-
spect to a 180�-rotation around the x-axis. At the same time there
exists a pressure difference between the mid-plane and vertical
conducting or insulating boundaries, which leads to a non-zero
velocity in the x-direction. This emphasizes the qualitative differ-
ence between flows in three-dimensional boxes with no-slip
boundaries and similar two-dimensional problems.

In the configuration with four perfectly insulating walls the tra-
jectories are almost two-dimensional close to the cavity mid-plane.
After leaving the mid-plane they exhibit a complicated three-
dimensional pattern (Fig. 6a). In the configuration with four per-
fectly conducting walls the trajectories are smoother than in the
previous case (Fig. 6b). It is seen that these trajectories remain in-
side the planes that are close and parallel to the mid-plane for
some time. After leaving these planes they rather quickly approach
the insulated vertical wall and immediately turn back.

4.5. CPU time and memory consumption

In this section we give the characteristic CPU times and memory
requirements for our multigrid-based approach. It should be noted
that computing characteristic CPU times for any iterative algo-
rithm is a rather complicated task since its convergence rate might
change during the whole solution depending on several factors
such as mesh and time step size, over or under-relaxation param-
eter values, and closeness of an initial guess to a current solution.
Needless to say, it is also strongly problem-dependent. Among all,
the closeness to a solution could be crucial and its effect on the
characteristic CPU time may result in reduction of number of iter-
ations in several times. Two benchmarks, known to have periodical
solutions: 8:1 differentially heated cavity with perfectly insulating
horizontal walls at Ra = 3.4 � 105 [11] and differentially heated cu-
bic box with perfectly conducting bottom and top and insulated
left and right walls (see Fig. 1) at Ra = 3.3 � 106 [20] have been cho-

sen for CPU time measurements in two- and three-dimensional
geometry, respectively. For both geometries the time step was
Dt = 10�3 and after a series of tests the under-relaxation parameter
was chosen to be 0.6. Memory consumption and characteristic CPU
times were measured for uniform grids only.

Computer memory and the characteristic CPU time per one
node per one CPU consumed for periodical solution in two- and
three-dimensional configurations are shown in Fig. 7. The calcula-
tions were performed on Intel Pentium 2.4 GHz processor with
2 GB RAM. Grid resolutions and total nodes number used for the
analysis are detailed in Table 7. Note that the dependence of mem-
ory and CPU time consumption for both configurations versus the
total nodes number is almost linear that is typical for the multigrid
method [13]. Note that both memory and CPU consumption
growth rates are almost equal for both configurations considered
(Figs. 7). Roughly, the CPU time consumption per one node and
per one CPU for a three-dimensional problem is about 2 times lar-
ger than that needed for a two-dimensional problem. The memory
consumption for a three-dimensional problem is about 1.5 times

Fig. 6. A particle trajectory in a differentially heated cubic box for Ra = 106 with: (a)
four perfectly insulating walls and (b) four perfectly conducting walls.

Table 6
Characteristic quantities for free convection in laterally heated cubic box with four
perfectly conducting walls: comparison of present results with previously published
data.

Source uy max(y,z) at x = 0.5 |uz min(y, z)| at x = 0.5 |Nuy=0|

Ra = 104

Ref. [19]a – – – – 1.52 ± 0.015
Ref. [16]b (0.5250,0.8375) 0.2504 (0.8750,0.5125) 0.2503 1.5060
Presentc (0.5240,0.8317) 0.2501 (0.8798,0.5144) 0.2500 1.5158
Ra = 105

Ref. [19]a – – – – 3.097 ± 0.028
Ref. [16]b (0.4250,0.8750) 0.2356 (0.9375,0.5250) 0.2717 3.1180
Presentc (0.4279,0.8798) 0.2363 (0.9375,0.5144) 0.2721 3.1191
Ra = 106

Ref. [19]a – – – – 6.383 ± 0.070
Ref. [16]b (0.2380,0.9371) 0.2142 (0.9612,0.5500) 0.2833 6.512
Presentc (0.2260,0.9375) 0.2141 (0.9664,0.5721) 0.2830 6.584

a Experimental data.
b 813 uniform grid for Ra = 104,105 and 813 non-uniform grid for Ra = 106.
c 1033 uniform grid for Ra = 104,105 and 1033 non-uniform grid for Ra = 106.
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larger than that needed for a two-dimensional problem with the
same number of grid nodes. Finally, in Fig. 7c we compare the
CPU time consumption for our FPCD and ASA-CLGS approaches
measured for the two-dimensional problem. We observe that at
large number of nodes the FPCD approach becomes faster. This

indicates again on its possible attractiveness assuming that the
computer memory restrictions are removed.

5. Concluding remarks

Two approaches to time-integration of the coupled incompress-
ible Navier–Stokes equations are proposed and verified. The preli-
minary test calculations described above show that the ASA-CLGS
multigrid solver can be considered as a reliable and robust tool
for performing time-dependent computations on fine three-
dimensional finite volume grids. This approach needs relatively
small amount of computer memory and can become attractive
for 3D calculations on fine grids.

The FPCD approach, utilizing the LU decomposition of the
Stokes operator, shows competitive computational times for two-
dimensional problems, but remains restricted by the available
computer memory when is applied to three-dimensional models.
Assuming that this restriction will be removed in near future this
approach should not be immediately neglected. An additional
advantage of the FPCD approach is a constant and a priori known
CPU time consumed at each time step. Apparently it is not a case
for any iterative solver.

It seems us obvious that both approaches can be easily parallel-
ized. The corresponding studies of scalability are yet to be done.
Additionally the ASA-CLGS approach can be extended to semi-im-
plicit and fully-implicit formulations, which can improve the
robustness of time-integration, as well as will allow one to extend
Newton iteration based steady state solvers and stability solvers of
[3,21] to three-dimensional geometries.

An additional advantage of the ASA-CLGS approach is a possibil-
ity to extend it to higher-order schemes formulated on larger grid
stencils. To do that all the terms not allowing for an analytical solu-
tion similar to (18), (19) must be put in the right hand sides of the
pressure and velocity corrections equations. Standard linear inter-
polation functions were applied in the finite volume formulation
used for the above test computations. It would be interesting to
use higher-order interpolation functions, for example those pro-
posed in [22,23] for the finite element formulation, and to verify
convergence of such a finite volume higher-order formulation.
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