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THE MAGNETIC FIELD AS IT AFFECTS THE THREE-

DIMENSIONAL STRUCTURE OF THE SELF-OSCILLATIONAL
REGIMES IN FREE CONVECTION

A. Yu. Gel'fgat UDC 536.25

The influence exerted by a magnetic field on the thermogravitational convective flows of a Jonuniformly heated
fluid under conditions characterized by an influx of heat from below has been studied in [1—5}. The more complex
case of heating from the side has been covered in [6), which is devoted 10 a study of the influence exerted by a constant
uniform magnetic field on the stability of steady regimes of free convection (as well as the development of nonsteady
free-convection regimes) in an electrically conducting fluid contained within a quadratic cavity heated from the side.
It was demonstrated that the threshold of stability for the steady convection regimes can be increased through the action
of the magnetic field on the free-convective flow being studied, as well as to regularize or suppress the self-oscillations
of the convective flow. However, the question of changes in the three-dimensional structure of the oscillating
convection flows subjected to the action of a magnetic field has not been dealt with.

In the present study we offer results from investigations into the influence of a constant uniform magnetic field
on the three-dimensional structure of the most dangerous infinitely small perturbation which leads to instability in steady
convective flow; averaged and pulsating components of supercritical convective flows; the tra jectories of fluid particles,
governed by oscillatory convection regimes. Studying the action of a magnetic field on various spatial characteristice
of oscillatory convective flows allows us to establish, in particular, both the qualitative and quantitative analogous
changes in the spatial structure of the convective flows, which occur with an increase in the Hartman number or with
a decrease in the Grashof number, as well as of the case for an increase in the Hartman number or an increase in the
Prandtl number. '

As was done in [6], we examine the problem of the thermogravitational convection within a quadratic region
contained within a constant uniform magnetic field. The flow is described by a system of free-convection equations
in the Overbeck—Boussinesq approximation in which the electromagnetic force is provided for in induction-free
approximation:
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Here 6 is the temperature; §; — 6, is the characteristic temperature difference; B, is the characteristic value for the
induction of the external magnetic field; / is the length of the region; Gr = g8(6, — 01)13/u2. Pr=v/x, Ha = Bolﬁm
represent the Grashof, Prandtl, and Hartman numbers, respectively; the remaining notation is standard. We examine
a region with four solid boundaries. Constant and varying values of temperature are specified for the vertical
boundaries, while the horizontal boundaries are assumed to be thermally insulated;
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v(x=0; 1)=v(y=0;1)=0;, 6(x=0)=1; e(x=1)=0;
0,(y=0,1)=0.

The dissipation of Joule heat is described by the terms o(v x B)z/Cpp in the equation of temperature transfer, where C,,
denotes the heat capacity of the liquid at constant pressure. Subsequent to nondimensionalization, used to derive the
system of equations (1)—(3) (see [1]), the coefficient for the indicated term becomes equal to D = avBo’/[Cpp(ao —6)] =
D*Ha2/Gr, where D* = gBI/Cp. Of fundamental interest in this problem are the convective flows of liquids with
relatively high electrical conductivity (liquid metals and semiconductors), for which C, = 102 J/(kgK), B 103 K™,
With / < 1 m the quantity D* is on the order of 1074 or lower. In our calculations Ha < 102, Gr 2 108, so that
consequently D < 1076, and therefore in Eq. (3) we can neglect the term describing Joule dissipation.

For the solution of problem (1)—(4) we use a variant of the Galerkin method, whose numerical realization is
described in detail in [7). The solution of problem (1)—(4) is sought in the form
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where the functions ¢;; and g;; form the bases in the corresponding functional spaces; c;; and d;; are unknowns,_
dependent on the time coefficient. As a result of the application of the Galerkin method, problem (1)—(4) reduces to
a system of ordinary differential equations of the form

6
dXi/dt =apXn+ bimiXmXn+fi, (6)

where X, is one of the coefficients ¢;; or d;;.

The test calculations illustrating the suitability of the numerical method used in the present study to solve the
system of equations for convection in rectangular areas are described in detail in [8). Good agreement has been achieved
with the results from [9] in studying the stability of steady convective flow of gallium arsenide (Pr = 0.015) in a
rectangular cavity heated from the side, with the length-to-height ratio equal to 4. As was done in [6], in the present
study the calculations were carried out for Pr = 0.02, characteristic of liquid metals and semiconductors, for six
coordinate functions in each spatial direction. The number of coordinate functions is markedly limited by the
productivity of the computer being utilized (the calculations were carried out on an ES-1060 computer). However, as
demonstrated in [8], even with such a limited number of appropriately constructed spatial modes it is possible to achieve
completely satisfactory results.

The stability of the steady solutions for problem (1)—(4) is determined by the stability of the corresponding steady
solution for system (6). As a result of the studies into the stability of steady convective flows, such as those conducted
in [6] through the calculation of the eigenvalues of the Jacobi matrix in system (6), we derived neutral Gr(Ha) curves
(Fig. 1), which show the relationship between the critical Grashof number and the Hartman number in the case of a
vertical (solid line) or horizontal (dashed line) magnetic field. These neutral curves consist of two smooth segments with



Fig. 2

a break at Ha = 12. At this breaking point on the neutral curves we have a jumplike change in the physical mechanism
responsible for the oscillational instability of the convective flow. Analysis of the structure of the most dangerous
infinitely small perturbation, which is determined by the eigenvector of system (6), calculated for the critical values of
the parameters and by means of the corresponding eigenvalue, with a nonnegative real part, provides some idea as to
the mechanisms responsible for convective instability. The values of the coefficients ¢;; and d;;, equal to the values of
the corresponding components of the eigenvector of system (6), in conjunction with formulas (5), determine (with
accuracy to multiplication by the constant) the most dangerous perturbations in velocity and temperature. Figures 1 and
2 show the streamlines and isotherms of the convective flows for critical values of the Grashof number (solid lines)
and the isolines of the most dangerous infinitely small perturbations in the f unctions of current and temperature (dashed
lines). At the instant at which oscillational instability sets in, the convective flow is made up of the sum of the constant
term represented by the solid lines (see Fig. 2) and the pulsating portion represented by the dashed lines, the latter with
an exponentially increasing amplitude. Figure 2a, b shows the results for Pr = 0.02 and for the Hartman and Grashof
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numbers of various smooth segments of the neutral curve, i.e., Ha = 10, Gr = 4.3-108 (see Fig. 2a) and Ha = 20, Gr =
5.3-10° (see Fig. 2b). Figure 2c shows the results for the case in which there is no magnetic field (Ha = 0) for Pr = 0.04,
Gr = 2.5.105. As we can see from Fig. 2a, b, the isolines of the most dangerous perturbations for Ha = 10 and 20 differ
qualitatively. The change in the three-dimensional structure of the most dangerous perturbation occurs in a jump on
transition through the break in the neutral curve at Ha = 12. At the same time, comparison of Figs. 2b and 2c shows
that the isolines of the most dangerous perturbations in these two cases exhibit identical shape. This indicates that the
instability of the convective flow, with an increase in the Hartman number and with an increase in the Prandtl number,
is generated by analogous physical mechanisms.

The results of these investigations into the stability of the subject convective flow, in the absence of a magnetic -
field, are covered in [10]. The observed analogy between the increase in the Hartman and Prandtl numbers allows us
to draw the conclusion that it is possible to simulate the effects observed in [10], the latter associated with the continuous
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increase in the Prandtl number, by studying the motion of the current-conducting fluid with unchanging properties
within a constantly increasing magnetic field.

Analysis of the properties derived as part of the nonsteady calculations of the self-oscillation convection regimes
was conducted in the following manner: the values of the coefficients c;;(t) and d;;(t) remained the same at the instants
of time t,, at various intervals At. After accumulating information from 2M points, we approximated the coefficients
¢;;(t)and d;;(0), being components of the vector X(t), in conjunction with the rapid Fourier transf: orm, by trigonometric

sums of the form
M-l

! sl
Xa (1) =X+ Z[X;.’cos—i—nt+x:.'sin%—t], 7
. =1

where L = 2MAt is the time interval in which the calculations were carried out. Expansion (7) in these calculations was
carried out with the use of 512 points (M = 256). :

Averaging over the time interval L leads to the following expressions for the averaged (v, 7) and pulsation (v’,
') components of motion:
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Thus, the Fourier transform (7) allows us to o_t_;_t_ain ex_r_;_licit expressions for the pulsation and averaged flow components.
Expressions for the mean-square pulsations v'2 and 2, as well as for other moments of second and higher orders, can
be derived from (10) and (11) by direct integration over time. ,

Analysis of the time structure of the oscillations in the convective flow, such as that conducted in [6], demonstrated
that the nonlinear development of oscillatory instability occurs differently in variously directed magnetic fields. This
conclusion confirms the analysis of the averaged flow components. Figure 3 shows the streamlines for the averaged flow
in the case of Pr = 0.02 and Gr = 107 in the vertical (see Fig. 3a-c) and horizontal (see Fig. 3d-f) magnetic fields for the
case in which Ha = 10 (a, d), 20 (b, e), and 30 (c, f). The greatest differences in the streamlines corresponding to the
same parameter values and various directions of the magnetic field are observed near the center of the cavity. An
exception is represented by the case Ha = 20, for which the shape of the streamline and the intensity of the convective
flow in the variously directed magnetic fields are close to each other. Figure 4a shows the streamlines of the averaged
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flow for Pr = 0.02 and Gr = 6-10° in the absence of a magnetic field. Comparison of Fig. 3b, e and Fig. 4a shows that
in all three of the cases under consideration the structure and intensity of the averaged flows are close to each other.
Thus, the development of convective flows with an increase in the Hartman number and with a decrease in the Grashof
number occurs in analogous fashion. Consequently, by means of the magnetic field it becomes possible to simulate
certain effects associated with the conditions of reduced gravitation.

Unlike the frequency spectra and averaged characteristics of oscillating convection regimes, the distribution of the
magnitudes of mean-square pulsations in velocity and temperature . is independent of the direction of the magnetic
field. Figure 5a, b shows the isolines of the quantities v, v_'2 and vy v.'% for Pr = 0.02, Gr = 107, Ha = 10, and Ha = 30,
respectively. The change in the shape of the isolines of the mean- square pulsations occurs in the vicinity of Hartman
number values Ha = 12, corresponding to the break in the neutral curves (see Fig. 1). The changes in the spatial
distribution of the convective-flow pulsations are associated with the change in the structure of the most dangerous
infinitely small perturbation (see Figs. 1 and 2b). Figure 5c shows the isolines for the pulsations of each of the velocity
components in the absence of a magnetic field for Pr = 0.1 and Gr = 4.1-106. Comparison of Fig. 5b and ¢ showed that
the distribution in the velocity pulsations through the flow region changes in a manner similar to the case in which the
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{iartmanr. number increases or in the absence of a magnetic field for an increase in the Prandtl number. It was noted
earlier that the shape of the isolines for the mean-square pulsations and the most dangerous perturbations does not
change with the.change in the direction of the magnetic field.

Thus, the existence of analogy between the increase in the Hartman and Prandtl numbers is associated with the
structure of the pulsation component of the nonsteady convective flow (for example, with the structure of the most
dangerous perturbation for the spatial distribution of the mean-square pulsations) and it is independent of the direction
of the magnetic field.

The quantitative characteristics for the suppression of convective-flow oscillations by means of a magnetic field
can be found in Table 1, where the change in the maximum values of the mean-square pulsations in velocity and
temperature (over the flow region) is shown as functions of the Hartman number for Gr = 107.

As noted in [10], the instability of this convective flow (for Pr = 0.02) is accompanied by a disruption of the
properties of central symmetry: the isolines of the steady convection regimes are symmetrical with respect to a rotation
through 180° about the center of the cavity (see Fig. 2a), while the supercritical oscillating flows do not exhibit this
property. At the same time (see Figs. 3 and 5) the streamlines and isotherms of the time-averaged flows, as well as the
isolines of the mean-square pulsations, are centrally symmetrical. This means that the pulsation components of the
described self-oscillation convection regimes at the centrally symmetric points of the flow region carry opposite signs.

The flow approximation defined by expressions (5) and (7), continuous over time and space variables, allows us
to integrate the equations for the trajectories of the liquid particles

dx/dl=vx(x, y,1); dyld=0vylx, Yy, t)

with sufficiently high accuracy. Of particular interest is the trajectory gass’mg through the center of the cavity x =y =
0.5. In the case of stable steady flow, the particle located at the center of the cavity is nonmoving. After the loss of
stability due to disruption of central flow symmetry the trajectory passing through the center of the cavity changes into
the curve shown in Fig. 4b. This curve takes on the appearance of a quasiperiodic winding about a two-dimensional
torus and is characteristic of the weakly supercritical convection regimes, whether in or without the presence of a
magnetic field.

The change in the shape of the trajectory passing through the center of the cavity for the case in which Gr = 107
and Pr = 0.02, given a constant increase in the magnetic field, is shown in Fig. 6. In the absence of a magnetic field,
the fluctuations in the flow are nonperiodic (see [6, 10]), but they are regularized as early as Ha = 10. However, in the
horizontal magnetic field passing through the center of the cavity, the trajectory retains its irregular shape (see Fig. 6a).
With an increase in the magnetic field, the trajectory becomes regular (see Fig. 6b—f). In this case, we have a gradual
reduction in the dimensions of the region into which enters the liquid particle situated at the center of the cavity.

CONCLUSIONS
1. The direction of the magnetic field exerts considerable influence on the structure of the averaged components

of the flow and has virtually no influence on the stability characteristics of the steady flows and the spatial properties
of the pulsation components in the fluctuating flows.

TABLE |

‘ Vertical field ‘ Horizontal field

\
Ha ]

ST B
0 0.96 0.87 0.015 0.96 0,87 00i5
10 0,57 0.56 0.0043 0.925 0.837 0.017
20 0.35 0.35 0.0034 0.36 0.35 0.0035
3¢ 0.13 0.14 0.0016 0.12 0,13 0.0016
345 0.0014 0.0013 0.000018 0 0 0

40 0 0 0 0 0 0




2. Analogies exist between the increase in the Hartmann number and the reduction in the Grashof number, as well

as between the increase in the Hartman and Prandtl numbers.
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