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This study offers an explanation of the recently observed effect of destabilization of
free convective flows by weak rotation. After studying several models where flows
are driven by the simultaneous action of convection and rotation, it is concluded
that destabilization is observed in cases where the centrifugal force acts against the
main convective circulation. At relatively low Prandtl numbers, this counter-action
can split the main vortex into two counter-rotating vortices, where the interaction
leads to instability. At larger Prandtl numbers, the counter-action of the centrifugal
force steepens an unstable thermal stratification, which triggers the Rayleigh–Bénard
instability mechanism. Both cases can be enhanced by advection of azimuthal velocity
disturbances towards the axis, where they grow and excite perturbations of the radial
velocity. The effect was studied by considering a combined convective and rotating
flow in a cylinder with a rotating lid and a parabolic temperature profile at the
sidewall. Next, explanations of the destabilization effect for rotating-magnetic-field-
driven flow and melt flow in a Czochralski crystal growth model were derived.
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1. Introduction
This study is devoted to the effect of destabilization of axisymmetric natural

convection flows by a weak superimposed non-uniform rotation. In classical models,
such as a rotating infinite layer (see e.g. Chandrasekhar 1961; Koschmieder 1993;
Fernando & Smith 2001; Kloosterziel & Carnavale 2003; Lewis 2010) or rotating
cylinders and annuli (see e.g. Lucas, Pfitenhauer & Donelly 1983; Goldstein et al.
1993; Lopez & Marques 2009; Rubio, Lopez & Marques 2010), increasing rotation
usually leads to stabilization of the flow, i.e. to the growth of the critical Rayleigh
number or other critical parameters describing the magnitude of the buoyancy force.
We do not review here numerous studies of the two above-mentioned models, but
address the reader to references in the cited papers. It seems that there is common
agreement that the effect of rotation on convective instabilities is mainly stabilizing.
However, as is shown in this paper, such a generalization is wrong. The two
above models consider the classical Rayleigh–Bénard problem of stability of purely
conducting quiescent states, while in most practically important cases the buoyancy
force is non-potential, so that natural convection flow always exists. Brummel, Hart &
Lopez (2000) argued that non-uniform rotation can destabilize even stably stratified
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FIGURE 1. Neutral stability curves for two models of Czochralski melt flow driven by
buoyancy, thermocapillarity and rotation. (a) Configuration of the experiment of Schwabe
et al. (2004). The inset shows the streamlines (right panel) and isotherms (left panel) at
1T = 0.5. (b) Configuration of the experiment of Teitel et al. (2008); symbols correspond to
experimentally measured critical points. The inset shows the frequency of flow oscillations
at the critical points (curve) and experimentally measured frequencies. See supplementary
movie 1 available at journals.cambridge.org/flm.

non-isothermal flow. Reviewing several studies devoted to instabilities driven by
the simultaneous effect of convection and rotation, Koschmieder (1993) noted that,
when the rotation affects the base flow, its effect on flow instability becomes very
complicated. We can add that non-uniform rotation caused by a rotating boundary or
an external force complicates the stability properties of flows even more. This was
observed, for example, in non-isothermal Taylor–Couette flow (Ali & Weidman 1990;
Ali & McFadden 2005), where circular Couette flow and an infinite convective loop
were superimposed in the base flow state.

This study is motivated by several recent observations of destabilization of
convective flow by rotation in models of the Czochralski bulk crystal growth process
(see, e.g. Müller 2007). These models consider melt flow in a cylindrical crucible
with a heated bottom and sidewall, cooled by a rotating cold crystal pulled out from
the upper free surface. In laboratory flow models, the crystal is usually replaced by
a cooled cylindrical dummy whose lower surface touches the free surface of the
working liquid. Rotation and lower temperature of the dummy mimic the effect of the
crystal in a technological setup (Hintz, Schwabe & Wilke 2001; Schwabe, Sumathi
& Wilke 2004; Teitel, Schwabe & Gelfgat 2008). The flow is driven by buoyancy,
rotation of the crystal and the thermocapillary force acting along the free surface.
Stability studies of these flows focus on parameters at which the steady–oscillatory
flow transition takes place. Different examples can be found in Gelfgat (2008) and
references therein. Figure 1 shows two examples of stability diagrams, in which the
critical temperature difference 1Tcr, to which both Grashof and Marangoni numbers
are proportional, is plotted versus the Reynolds number defined by the angular velocity
of the dummy rotation and the crucible radius. The system geometry and an example
of the flow pattern are shown in the inset. Further details can be found in Teitel et al.
(2008), Crnogorac et al. (2008) and Gelfgat (2008). Both examples relate to similar
experiments with different working liquids with the Prandtl number Pr = 9.2 in the
case (a) of Schwabe et al. (2004) and Pr = 23.9 in the case (b) of Teitel et al. (2008).

journals.cambridge.org/flm
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In both examples computations predict a steep decrease of 1Tcr with a slow increase
of the rotational Reynolds number up to Re = 100, which corresponds to the rotation
of the crystal with angular velocity smaller than 0.1 and 0.5 rad s−1 (1 and 5
revolutions per minute) in the cases (a) and (b), respectively. Note that, depending
on the aspect ratio, isothermal swirling flow in a cylinder with a rotating lid becomes
unstable for Reynolds number between 2000 and 3000 (Gelfgat, Bar-Yoseph & Solan
2001), so that the destabilization observed in figure 1 cannot be addressed to a
rotation-induced instability. Note also that, despite the fact that the critical temperature
difference 1Tcr decreases by more than an order of magnitude, it never reaches zero.
Therefore, it is an interaction of all the driving forces that makes the flow significantly
less stable.

At the present time there is no thorough experimental evidence of the destabilization
predicted by the computational modelling. Some qualitative evidence of this
phenomenon can be found in the observations of Teitel et al. (2008), which also
support our computations (figure 1b), as well as in Kakimoto et al. (1990), Munakata
& Tanasawa (1990), Ozoe, Toh & Inoue (1991), Kishida, Tanaka & Esaka (1993),
Seidl et al. (1994) and Suzuki (2004). Some independent numerical results exhibiting
the Czochralski flow destabilization with increasing rotation can be found in Sung,
Jung & Ozoe (1995), Akamatsu, Kakimoto & Ozoe (1997), Zeng et al. (2003) and
Banerjee & Muralidhar (2006). The fluid Prandtl number in these works varies from
Pr = 0.011 in Kishida et al. (1993) to Pr = 23.9 in Teitel et al. (2008), and even
Pr ≈ 4600 in Ozoe et al. (1991) and Sung et al. (1995), so that the destabilization
phenomenon can be expected and, as shown below, appears in flows with significantly
different Prandtl numbers.

Since the Czochralski flow model is rather complicated, in the present study
we are looking for a simpler characteristic model exhibiting similar destabilization
and intend to study the latter to get more physical insight into the phenomenon.
Considering several examples of flows driven by convection and rotation, we show
that the simplest model exhibiting similar destabilization is a combination of two
well-studied cases: convective flow in a vertical cylinder with a parabolic temperature
profile at the sidewall, and swirling flow in a cylinder with a rotating lid. The three-
dimensional stability of the first one was studied in Gelfgat, Bar-Yoseph & Solan
(2000) and of the second one in Gelfgat et al. (2001). Examining the flow and leading
disturbance patterns, we arrive at the conclusion that destabilization is caused by a
counter-action of the centrifugal force that tends to slow down the main convective
vortex. This counter-action leads either to the appearance of a new vortical structure
or to a steeper temperature gradient along the axis. Consequently, the following
destabilization is connected either to an interaction between counter-rotating vortices,
or to the Rayleigh–Bénard instability developing below the cold upper boundary. An
additional destabilization mechanism is connected to the advection of perturbations
of azimuthal velocity towards the axis, where they grow owing to conservation of
angular momentum, which causes a growth of the radial velocity disturbances. It is
emphasized that we focus here only on the phenomenon of destabilization and do not
pretend to supply a comprehensive description of a variety of instabilities that take
place in convective, rotating, as well as combined convective and rotating flows, whose
variety hardly can be described within a single journal paper. On the other hand, to
show that the described destabilization phenomena can be expected in other convective
and rotating flows, we add an example in which the buoyancy force interacts with a
rotating magnetic field driving effect.
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2. Problem formulation and numerical technique
We study three-dimensional instabilities of axisymmetric non-isothermal base flows.

The full three-dimensional problem is described by the Boussinesq equations in
cylindrical coordinates. A Boussinesq fluid with density ρ∗, kinematic viscosity ν∗

and thermal diffusivity χ∗ in an axisymmetric region 0 6 r 6 R∗, 0 6 z 6 H∗ is
considered. The polar axis is assumed to be parallel to the gravitational force. The
flow is described by the momentum, continuity and energy equations in cylindrical
coordinates (r∗, z∗). To render the equations dimensionless, we use the scales R∗,
R∗2/ν∗, ν∗/R∗ and ρ∗(ν∗/R∗)2 for length, time, velocity and pressure, respectively. The
temperature is rendered dimensionless by the relation T = (T∗ − T∗cold)/(T

∗
hot − T∗cold),

where T∗hot and T∗cold are the maximal and minimal temperatures at the boundaries of
the flow region. The set of Boussinesq equations for the non-dimensional velocity
v= {vr, vθ , vz}, temperature T and pressure p in the domain 0 6 r 6 1, 0 6 z 6 A reads

∂v

∂t
+ (v ·∇)v=−∇p+1v+ Gr Tez + Ta f (r, z)eθ (2.1)

∂T

∂t
+ (v ·∇)T = 1

Pr
1T, (2.2)

∇ ·v= 0. (2.3)

Here A = H∗/R∗ is the aspect ratio, Gr = g∗β∗(T∗hot − T∗cold)R
∗3/ν∗2 is the Grashof

number, Pr = ν∗/χ∗ is the Prandtl number, g∗ is the gravitational acceleration, β∗ is
the thermal expansion coefficient, and ez is the unit vector in the z-direction. The last
term in (2.1) describes the time-averaged azimuthal force resulting from an externally
applied rotating magnetic field (RMF), which is considered as a possible source of
rotational motion in one of the examples below. Under the assumption that the flow
does not affect the magnetic field (i.e. small magnetic Prandtl number), this force is
described by an analytical function (Gorbachev, Nikitin & Ustinov 1974; Grants &
Gerbeth 2001)

f (r, z)= r − 2
∞∑

k=0

J1(γkr) cosh[γk(2z− A)/2]
(γ 2

K − 1)J1(γk) cosh(γkA/2)
, (2.4)

where J1 is the Bessel function and γk are eigenvalues of the problem J′1(γk) = 0. The
non-dimensional parameter that defines the force magnitude is the magnetic Taylor
number Ta = ω∗σ ∗B∗20 R∗4/(2ρν∗2), where B∗0 and ω∗ are the magnitude and rotational
frequency of the magnetic field, and σ ∗ is the electric conductivity of the fluid.
Additionally, if the top or bottom of the cylinder rotates with angular velocity Ω , we
define the rotational Reynolds number as Re = ΩR∗2/ν. Since the models considered
below do not include background uniform rotation, we do not include centrifugal
buoyancy effects in our formulation (see e.g. Lopez & Marques 2009; Rubio et al.
2010). The boundary conditions will be specified below, separately for each problem.

We study instability of steady axisymmetric flows {V ,P,T}, V = (U,V,W),
with respect to infinitesimally small three-dimensional disturbances, which are
decomposed into a Fourier series in the azimuthal direction and are represented
as
∑m=+∞

m=−∞{ṽm, p̃m, T̃m} exp(λt + mθ), where λ is a complex amplification rate, and
ṽ = (ũ, ṽ, w̃), p̃ and T̃ are perturbations of the velocity, pressure and temperature,
respectively. The subscript m denotes the mth Fourier mode of a corresponding
function. It is well known that the linear stability problem separates for each m,
which is an integer azimuthal wavenumber. Therefore, after an axisymmetric steady



Destabilization of free convection by weak rotation 381

state is computed, the solution of the stability problem is reduced to a series of
two-dimensional-like generalized eigenvalue problems defined for the eigenvalues λ
separately at different azimuthal wavenumbers m (see e.g. Gelfgat 2007). The steady
flow is unstable when at least one λ exists with a positive real part. The eigenvalue
with the largest real part is called ‘leading’ and parameters at which the leading
eigenvalue crosses the imaginary axis are called ‘critical’.

To calculate steady states of (2.1)–(2.3) and to study their linear stability with
respect to three-dimensional infinitesimal disturbances, we use the finite volume
discretization and the technique described and verified in Gelfgat (2007). The test
calculations performed there showed that, to keep critical parameters within 1 %
accuracy, one needs to apply at least 100 grid points in the shortest spatial direction.
Note that our stability results for isothermal flow in a cylinder with a rotating top
were successfully compared with several independent computations (Gelfgat 2002) and
were validated experimentally by Sørensen, Naumov & Mikkelsen (2006). The results
for stability of convective flow in a side-heated cylinder also compare well with the
independent result of Gemeny, Martin Witkowski & Walker (2007). Together with the
convergence studies (Gelfgat 2007), these make us confident in the accuracy of the
results reported below. In the following calculations, the size of the stretched finite
volume grid varies from Nr = 100 to 300 points in the radial direction. The grid size in
the axial direction is taken as Nz = ANr. The grid size is chosen to ensure convergence
to at least three correct decimal places in the calculated critical parameters.

3. Instability of axisymmetric flows driven by buoyancy convection and
rotation: examples

To explain the destabilization described in § 1, we seek a simple model flow, which
exhibits a similar phenomenon, i.e. destabilization of convective circulation by slow
rotation that takes place in a wide range of Prandtl numbers. It can be easily checked
that the steep destabilization of Czochralski flow persists if the thermocapillary force
is set to zero. Therefore, thermocapillarity can be excluded from the qualitative model
we are trying to find. We also exclude the classical Rayleigh–Bénard configuration
of the cylinder with an isothermal top and bottom, since this problem can lead
to multiple secondary states (Boronska & Tuckerman 2010), so that each distinct
steady-state branch will be affected differently by the same rotational forcing. In this
study we prefer to refrain from configurations allowing for multiple steady states.
Figures 2–4 represent several characteristic examples that illustrate the existence or
absence of the destabilization and help us to focus on a model that seems to be
the most appropriate for our purposes. Stability diagrams shown in these figures for
different thermal boundary conditions and different Prandtl numbers are supplied by
examples of streamlines and isotherms.

It should be noted that almost all instabilities observed are oscillatory, i.e. the
corresponding leading eigenvalue has a non-zero imaginary part. The imaginary part
estimates the frequency of the oscillations that appear. The latter is not shown
on separate graphs because it does not relate directly to the destabilization effect
discussed. It is quite obvious that, if a perturbation is not axisymmetric (m 6= 0)
and the base flow has a non-zero azimuthal component, then the non-axisymmetric
perturbation pattern is advected around the axis, which makes steady three-dimensional
instability impossible for Re 6= 0. Therefore, steady bifurcation can appear either for
the axisymmetric Fourier mode m = 0 or for non-rotating basic flows at Re = 0.
Among the results shown in figures 2–4, only four points correspond to the steady
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FIGURE 2. Neutral stability curves for different flows in a vertical cylinder driven by
buoyancy convection and rotation. Insets show streamlines (left panels) and isotherms (right
panels) at several characteristic points. (a) Cylinder with a parabolic temperature profile
at the bottom and rotating top. (b) Cylinder with partially heated bottom and rotating top.
(c) Cylinder with a parabolic temperature profile at the sidewall under the effect of a rotating
magnetic field. The isotherms are equally spaced between the values 0 and 1. Streamlines are
equally spaced between the minimal and maximal values reported in table 1.

instability: in figure 2(a) point Retop = 0, Pr = 0.7; in figure 3(c) two points at
Rebottom = 0; and in figure 4(c) the point Retop = 0. All the other points on the neutral
stability curves correspond to the oscillatory instability.

In all the cases we impose no-slip boundary conditions on all the boundaries.
Assuming that either the top or bottom of the cylinder rotates with a constant angular
velocity, Ωtop or Ωbottom, respectively, the boundary conditions read

at r = 1 : vr = vθ = vz = 0, (3.1)
at z= 0 : vr = vz = 0, vθ = Rebottomr, (3.2)
at z= A : vr = vz = 0, vθ = Retopr. (3.3)
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The temperature boundary conditions will be defined separately for each problem.
Additionally, they are summarized in table 1 together with the parameters at which the
flow patterns are reported in figures 2–4. The critical azimuthal wavenumbers mcr as
well as values of the Prandtl number and the aspect ratio, are shown in the figures.

Figures 2(a) and 2(b) show stability diagrams for vertical cylinders non-uniformly
heated from below: by a parabolic radial temperature profile (figure 2a)

T(r, z= 0)= 1− r2, T(r, z= A)= 0,
(
∂T

∂r

)
r=1

= 0 (3.4)
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and by heating of a half-radius inner part of the boundary (figure 2b)

T(r 6 0.5, z= 0)= 1, T(r > 0.5, z= 0)= 0,

T(r, z= A)= 0,
(
∂T

∂r

)
r=1

= 0.

 (3.5)

Inboth cases the convective flow is affected by rotation of the upper boundary
(Rebottom = 0). In both cases the fluid driven by the buoyancy force rises along the axis
and descends along the sidewall. The rotation of the top creates a centrifugal force
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that pushes the fluid from the centre to the sidewall along the upper boundary, and
therefore intensifies the convective circulation. Depending on the Prandtl number,
we observe either existence or absence of destabilization of convection by rotation.
Surprisingly, in the case of figure 2(a) the destabilization exists for larger Prandtl
number, Pr = 7, while in the case of figure 2(b) for smaller Prandtl number, Pr = 0.7.
In these cases the critical Grashof number can be reduced by approximately four to
five times. Thus, these two examples show that a significant destabilization can be
observed at certain conditions, but its existence depends on the ratio of momentum
and heat dissipation, i.e. the Prandtl number, so that no general conclusion can be
drawn and each particular case should be studied separately. We conclude that these
two models are not the characteristic model we are looking for.

Figure 2(c) presents another example where the convective circulation is created
by a parabolic temperature profile at the cylinder sidewall, while the top and bottom
remain at a low constant temperature

T(r, z= 0)= T(r, z= A)= 0, T(r = 1, z)= 4z(1− z). (3.6)

In this case the fluid ascends along the sidewall and descends along the cylinder
axis. Stability of this convective flow was studied by Gelfgat et al. (2000). For the
purposes of this study we affect the convective circulation by an azimuthal RMF
force (2.4) keeping Rebottom = Retop = 0. Three-dimensional instability of the isothermal
RMF-driven rotating flow was studied by Grants & Gerbeth (2002), who showed that
the critical magnetic Taylor number exceeds the value of Ta = 105. In our example
the Taylor number does not exceed 104, so that the RMF-driven flow instabilities
do not develop. Again, we observe that a relatively weak RMF force with Ta ≈ 103

leads to a decrease of the critical Grashof number by more than five times. At larger
Taylor numbers, beyond the minimum, Grcr monotonically grows with the increase of
Ta. Note that the observed destabilization takes place with the convective circulation
rotating in the opposite direction compared to figure 2(a) and 2(b). Moreover, unlike
the examples in figure 2(a) and 2(b), the RMF force drives rotation of the whole fluid
volume, so that the angular velocity grows from the no-slip top and bottom towards
the midplane z = 0.5, where the centrifugal force attains its maximal value. Thus,
without convection or at larger Ta, the meridional flow consists of two circulations
(Grants & Gerbeth 2001); the inset in figure 2(c) corresponding to Ta = 104 shows
the beginning of the second circulation development. This example shows again that
destabilization of convective circulation by a weak non-uniform rotation is a rather
common phenomenon and is not necessarily connected with a rotation of one of the
boundaries. Formally, we can consider the RMF-driven flow also at larger Prandtl
number. Since RMF is applied mainly to control liquid metals and semiconductors
whose Prandtl number does not exceed 0.1, we do not consider here larger Prandtl
number values.

Figures 3 and 4 present stability diagrams for the convective flow resulting from the
same sidewall parabolic heating as in (3.6) and figure 2(c) and affected by rotation
of either the bottom (figure 3) or the top (figure 4). Frames (a)–(c) correspond to
different Prandtl numbers, 0.015, 0.7 and 7, respectively. In addition, figure 4(a)
contains the neutral curve for a limit case Pr = 0, which corresponds to a very large
thermal diffusivity. Note that, at smaller Prandtl numbers, which can be interpreted as
fluids with smaller viscosity, we consider larger intervals of the Reynolds number to
cover all the values of interest.

It can be stated immediately that no significant destabilization is observed when the
convective flow is affected by rotation of the bottom boundary (figure 3). A slight
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destabilization for Pr = 0.015 cannot be compared to what was observed in figures 1
and 2. In the case of a rotating bottom, the centrifugal force drives the flow from the
axis towards the sidewall along the bottom and therefore intensifies the convective
circulation. In spite of that, at Pr = 0.7 and 7 we observe stabilization of the
flow. At larger Prandtl numbers (figure 3c, Pr = 7) the instability sets in as a
spoke pattern, which is illustrated by the temperature perturbation isolines plotted
in an axial cross-section just below the upper boundary. This type of instability was
observed experimentally and numerically by Gelfgat et al. (1999), where we argued
that it is caused by the Rayleigh–Bénard mechanism developing in the upper unstably
stratified flow region. Some more details on this instability were reported later by
Szmyd, Jaszczur & Ozoe (2002). It also follows from figure 3(b) that weak bottom
rotation can trigger the spoke pattern instability, which is a result of intensifying heat
convection and thinning of the thermal boundary layer near the upper boundary.

A combination of the parabolic sidewall heating and rotation of the top yields
the desirable effect (figure 4): independent of the Prandtl number, a relatively weak
rotation destabilizes the convective circulation so that the critical Grashof number
decreases by about an order of magnitude. In this case the centrifugal force drives the
flow from the axis to the sidewall along the upper boundary, so that it counteracts
the convective circulation. As a result, at small Re, we observe a retardation of the
flow near the top, and with further increase of the Reynolds number an opposite
circulation develops. This configuration is similar to the Czochralski flow model
(figure 1), motivating our study by exhibiting the steep destabilization of convection
by rotation, as well as by relative action of the buoyancy and centrifugal forces. The
destabilization is observed in a wide range of Prandtl numbers. We consider this case
as the characteristic one and will study it in detail below.

Another similarity between the Czochralski configuration and the one chosen as
‘characteristic’ can be observed in the pattern of supercritical oscillatory flow (figure 5).
Schlieren visualizations made by Teitel et al. (2008) revealed so-called ‘cold plumes’
instability, where cold fluid accumulates near the upper cold boundary and then
descends towards the bottom. A similar instability was observed by Munakata &
Tanasawa (1990) but for much larger Prandtl number, Pr = 1000 (see figure 2 of Teitel
et al. (2008) and figures 5 and 6 of Munakata & Tanasawa (1990) and multimedia
files related to our figure 5). A time-dependent calculation for our characteristic model
(figure 5b) also reveals a cold plume descending from the upper towards the lower
boundary. Note that an attempt to reveal cold plumes from linear stability analysis
only is not always successful. This is shown in figure 5(a), where supercritical
oscillatory flow is approximated by a superposition of the base flow and the most
unstable perturbation. The perturbation amplitude at a small supercriticality can be
calculated as in Gelfgat, Bar-Yoseph & Solan (1996). For present illustration purposes,
the supercriticality was taken small enough to keep the temperature in the interval
0 6 T 6 1. The superposition also reveals plumes of cold fluid descending along the
axis; however, it does not reveal the cold thermal shapes observed in figure 5(b)
and the experiments of Teitel et al. (2008) (see also multimedia files related to
figure 5). This example shows, in particular, how cautious one should be when the
linear stability results are extrapolated into a nonlinear regime, and vice versa when
linear instability arguments are derived from fully nonlinear observations.
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FIGURE 5. Four equally distanced snapshots of the supercritical oscillatory state during
one period of oscillations. Flow with parabolic temperature profile at the sidewall with
rotating top at Pr = 7 (figure 4c). (a) Superposition of the base flow with the most unstable
perturbation, Grcr = 104, Recr = 47.51, mcr = 0. See supplementary movie 2. (b) Fully
nonlinear calculation for Gr = 104, Re= 60, m= 0. See supplementary movie 3.

4. More details on destabilization mechanisms
4.1. The characteristic model

In the following study of mechanisms that cause destabilization of convective flow,
we take into account that in all the cases reported in figure 4 the rotation is slow.
In fact, the critical Reynolds number of the corresponding swirling isothermal flow
is beyond 2000 (Gelfgat et al. 2001), so that one cannot expect the appearance
of any purely rotation-induced instabilities for Re 6 600. With this in mind, we
focus on three general possibilities. The destabilization can be caused by either
(i) alteration of a leading disturbance by rotation, making it unstable, (ii) alteration
of the base meridional flow pattern, which leads to a destabilization of one of the
leading eigenmodes, or (iii) a new eigenmode whose appearance is caused by the
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base rotational motion. Note that in option (i) we assume that a decaying disturbance
existing without rotation is thereby destabilized, while alteration of the base meridional
flow seems to be negligible. In option (ii), we expect to notice some considerable
changes in the meridional flow and assume that, if a similar base flow existed without
rotation, it would be destabilized by a similar meridional disturbance. Finally, in
option (iii) we expect to observe an eigenmode that does not exist in the non-rotational
case. Obviously, these possibilities relate to each other and can exhibit a variety
of changes in the patterns of the base flows and perturbations. Moreover, we can
expect a simultaneous observation of different possibilities, which would result in their
interaction.

To illustrate some of the above destabilization possibilities, we choose several
characteristic points on the neutral stability curves of figure 4 and continue the study
in the following way. First, we exclude from the linearized stability problem the
terms containing the base azimuthal velocity component, and observe changes in the
critical Grashof numbers (table 2). A significant increase in the critical value would
indicate the term or terms contributing to the destabilization. Additionally we consider
the terms eθr−1U ∂(rṽ)/∂r and eθW ∂ṽ/∂z that describe advection of the azimuthal
velocity perturbation by the meridional flow. A significant stabilization observed when
these terms are switched off would indicate the importance of the azimuthal velocity
perturbation for the whole instability mechanism. Second, we plot the patterns of
base flows at the same Grashof number with and without rotation to visualize the
alterations that the rotation produces. Third, we plot the absolute values of the leading
eigenvector of the linearized stability problem, which describe the distribution of
oscillation amplitudes in the meridional plane. To simplify further explanations, the
perturbation patterns are plotted together with the base flow streamlines. Together
with the two previous steps, it allows us to derive some conclusions about the
destabilization mechanisms. All the cases described and the conclusions derived are
summarized in table 3. Note that perturbations shown in the plots below are the
dominant eigenvectors of the linear stability problem. They are defined to within
multiplication by a constant, so that only their relative values are relevant. All the plots
showing patterns of the absolute value of the most unstable perturbation are equally
spaced between zero and the corresponding maximal value.

We start the discussion from the case Pr = 0 (figure 4a), for which temperature
perturbations do not play any role and the instability is of purely hydrodynamic nature.
We consider point A on the corresponding neutral stability curve in figure 4(a), which
is located on a steeply decaying branch. Observations of switching on and off different
terms of the linearized problem (table 2) can be summarized as follows. Stabilization
is observed when the terms containing either perturbation of the azimuthal velocity ṽ
(case 14) or the base azimuthal velocity component (cases 5, 7, 11, 16, 17) or both
(cases 9, 12, 15) are switched off. The largest stabilization is observed in cases 12 and
15 when all or almost all the convective terms of the linearized azimuthal equation are
switched off. This shows that the destabilization is caused by advection of the base
rotation, as well as its disturbance. There is also a weaker stabilization connected with
switching off the terms related to the meridional flow (cases 16–18): switching off one
or both of the terms containing the base and perturbed azimuthal velocity components
imũVer/r and 2ṽVer/r also leads to almost a doubling of Grcr. For a more detailed
explanation, we refer to figure 6 where flow and perturbation patterns are presented.

In the upper part of the cylinder, where the radial velocity component is negative,
the meridional flow advects the azimuthal momentum from the sidewall towards the
axis (figure 6a). The rotational velocity in this region is maximal near the sidewall,
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(ũ

V
/
r)
e r

2
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FIGURE 6. (Colour online available at journals.cambridge.org/flm) Flow and perturbation
patterns for point A in figure 4(a), for Pr = 0, Re = 250, Grcr = 1.19 × 105. Instability
for the azimuthal wavenumber mode m = 2. (a) Streamlines of the considered flow (blue
solid line) and of the flow at Re = 0 at the same Gr (red dashed line). Streamlines are
evenly distributed between the values of 0 and −36 (global minimum); levels ±0.1 and
−0.5 are added additionally. (b)–(d) Absolute values of the most unstable perturbation of the
azimuthal, radial and axial velocities, respectively. (e) Isolines of the azimuthal component of
the base flow.
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and with the decrease of r attains a local minimum and a local maximum, reaching
the zero value at the axis (figure 6e). Since the angular momentum tends to be
preserved, the advection of rotation from the sidewall towards the axis necessarily
leads to the growth of angular velocity. This is the reason for the appearance of
the local maximum in the isolines of figure 6(e), but also can lead to a growth
of azimuthal velocity perturbations. In fact, we observe a local maximum of the
azimuthal velocity perturbation amplitude on the streamlines corresponding to the flow
descending along the axis (figure 6b). The location of the maximum near the bottom
shows that the instability relates to the advection of rotation by both radial and axial
components of the meridional flow, as is observed in the cases 12–15 of table 2.
A strong perturbation of the radial velocity (figure 6c) located at the descending
part of the main vortex can be a consequence of the perturbed centrifugal force.
Our description of this destabilization mechanism is supported also by the absence
of strong perturbations of the axial velocity in the discussed region. We attribute
this instability to the appearance of a new unstable eigenmode, which corresponds
to option (iii) described above. The latter is seen also from the stability diagram in
figure 4(a): the destabilization starts at Re ≈ 175 when a mode with mcr = 4 unstable
at Re= 0 is replaced by a mode with mcr = 2.

Comparing streamlines of the flow with and without rotation (figure 6a), we observe
that, as a result of the counter-action of the buoyancy and centrifugal forces, the
main convective circulation weakens. Thus, the minimal value of the streamfunction
at Re = 0 is −36.9, while at Re = 250 it is −31.8. Retardation of the buoyancy
convective circulation leads also to the appearance of the two counter-rotating vortices
in the upper corner and in the lower part of the cylinder near its axis. A strong
perturbation of the axial velocity is observed at the boundary separating the lower
counter-rotating vortex and the main circulation (figure 6d). The corresponding
perturbations of the two other components are weaker and are shifted downwards.
It is emphasized that such a growth of perturbations at the boundary separating
two counter-rotating vortices has been observed also in many other configurations.
Nienhüser & Kuhlmann (2002) observed similar perturbations located on a similar
toroidal vortex without base flow rotation. They argued that the instability is caused by
a centrifugal mechanism appearing when the streamline makes a turn from the vertical
descending to the radial direction. This instability mechanism is attributed mainly to
the meridional component of the flow. Our observation for cases 16–18 shows that
a slow rotation can also destabilize this mechanism. The destabilization is possibly
connected with deformation of a three-dimensional perturbation of radial and axial
velocities by advection around the axis caused by the non-uniform rotation. Since
this mechanism results from the change of the base meridional flow, we attribute it
to option (ii). Thus, already in this case we observe a simultaneous appearance of
options (ii) and (iii).

In order to gain more understanding of the destabilization mechanisms, we observed
the perturbation patterns calculated with switched off terms for the cases when it
leads to stabilization (table 2). In all the cases, the patterns remained similar to
those shown in figure 6. We also tried to assign to the terms eθ ũ ∂V/∂r, eθ ũV/r,
eθr−1U ∂(rṽ)/∂r and eθW ∂ṽ/∂z an amplitude ε varying between 0 and 1, and to
monitor the change of critical parameters and the perturbations when these terms are
being diminished continuously. For all the above terms, we have observed continuous
change of the critical Grashof number and critical frequency along with a slight,
but definitely not qualitative, change in the disturbance pattern. This allows us to
argue that the instability observed is generally a three-dimensional instability of the
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FIGURE 7. (Colour online) Flow and perturbation patterns for point B in figure 4(b), for
Pr = 0.7, Re = 200, Grcr = 3.497 × 105. Instability for the azimuthal wavenumber m = 1.
(a) Streamlines and (b) isotherms of the considered flow (blue solid line) and of the flow
at Re = 0 at the same Gr (red dashed line). Streamlines are evenly distributed between the
values of 0 and −14 (global minimum); level −0.5 is added additionally. Isotherms are evenly
distributed between the values 0 and 1. (c) Isolines of azimuthal velocity evenly distributed
between 0 and 240. (d)–(g) Absolute values of the most unstable perturbation of radial, axial
and azimuthal velocities, and the temperature, respectively.

meridional flow, for which disturbances of the azimuthal velocity component always
exist. The destabilization by a slow non-uniform rotation takes place because it causes
a faster growth of perturbations of the azimuthal velocity.

Analysing the results of table 2 for Pr 6= 0, we notice first that switching off the
term ir−1mVT̃ in the linearized energy equation does not lead to stabilization in all
the cases considered. We conclude that alteration of temperature perturbation by weak
rotation is not a reason for the destabilization observed. We must keep in mind,
however, that the perturbation pattern can change due to temperature changes in the
base flow pattern.

Figure 7 shows the flow and perturbation patterns for parameters of point B in
figure 4(b). In this case the streamlines and isotherms corresponding to Re = 0
and 200 are only slightly different (figure 7a and 7b). Minimal values of the
streamfunction are −13.9 and −13.5 for Re = 0 and Re = 200, respectively. Since
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the effect of weak rotation on the temperature perturbations is already ruled out, the
destabilization should be attributed to the velocity perturbations. Strong perturbations
of radial and azimuthal velocities localized near the axis (figure 7d and 7f ) can be
caused by a steep increase of the azimuthal velocity observed in the same region
(figure 7c). This assumption is supported by two additional facts. First, analysis of
the leading eigenmodes for the base flow without rotation (Re = 0) does not reveal
any mode similar to the observed one, which connects this mode to the motion
in the azimuthal direction, and assigns it to option (iii). Second, switching off the
term eθ ũ ∂V/∂r in the azimuthal component of the momentum equation, rather than
the Coriolis term eθ ũV/r, leads to stabilization (table 2, case 5). This indicates the
importance of radial non-uniformity of the azimuthal velocity for the appearance of
this instability. A sharp maximum of the azimuthal velocity perturbation located near
the axis (figure 7f ) also destabilizes the flow: we observe a strong destabilization
when the terms eθr−1U ∂(rṽ)/∂r and eθW ∂ṽ/∂z are switched off. These terms become
significant because of the steep increase of the amplitude of ṽ near the axis.

Further, we note that switching off the term corresponding to disturbance of the
centrifugal force, 2ṽVer/r, destabilizes the flow further (table 2, case 17), so that
the perturbed centrifugal force acts here as a stabilizing factor. The stabilization of
flow happens when we switch off the term imũVer/r (table 2, cases 18 and 20) that
describes advection of radial velocity disturbances in the azimuthal direction. Since
perturbations of the axial velocity in the discussed region are weak, the instability
should be described via an interaction between the radial and azimuthal velocity
disturbances. One can imagine a feedback mechanism in which an azimuthal velocity
perturbation is advected towards the axis where it grows due to conservation of the
angular momentum and is advected downwards by the main convective circulation.
This gives rise to the growth of radial and azimuthal velocity perturbations along the
descending streamline. The maximum of the axial velocity disturbance observed in the
bottom-axis corner results either from the advection of r- and θ -velocity perturbations
downwards via continuity, or from an instability developing along the meridional
streamline, turning from negative axial to positive radial direction, which can be
caused by the above-mentioned Taylor–Couette mechanism discussed by Nienhüser
& Kuhlmann (2002). In the latter case, a similar instability must be observed also
without rotation. The examination of eigenmode patterns at Re = 0 rules out the
second possibility. We assume that the observed maximum of the axial velocity
perturbation is also caused by the base flow rotational component. This assumption
is supported also by the results of table 2: switching off the term ir−1mVw̃ in the
axial component of the momentum equation leads to a significant stabilization (table 2,
cases 19 and 20).

Examination of changes of the perturbation patterns when terms of cases 5, 8, 14,
18 and 19 were reduced by introducing an artificial amplitude ε, 0 6 ε 6 1, showed
that the eigenmode reported in figure 7 disappears when the amplitude of either of
the terms eθ ũ ∂V/∂r, [r−1U ∂(rṽ)/∂r + W ∂ṽ/∂z]eθ or (imũV + 2ṽV)er/r is reduced
below ε = 0.7, 0.5 and 0.4, respectively. Switching off the terms in cases 8 and
19, for which stabilization is also observed, does not change the leading eigenmode
pattern. These observations support the above assumption of the instability mechanism:
the term eθ ũ ∂V/∂r causes the growth of the azimuthal velocity perturbation, the
term (r−1U ∂(rṽ)/∂r +W ∂ṽ/∂z)eθ advects this perturbation along the main convective
vortex, and the term (imũV + 2ṽV)er/r causes the growth of perturbations of the
radial velocity, which yields the necessary feedback mechanism for the appearance of
sustainable oscillations.
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FIGURE 8. (Colour online) Flow and perturbation patterns for point C in figure 4(b), for
Pr = 0.7, Re = 300, Grcr = 8.622 × 104. Instability for the azimuthal wavenumber m = 2.
(a) Streamlines and (b) isotherms of the considered flow (blue solid line) and of the flow
at Re = 0 at the same Gr (red dashed line). Streamlines are evenly distributed between the
values of 3 and −8 (global minimum). Isotherms are evenly distributed between the values 0
and 1. (c)–(f ) Absolute values of the most unstable perturbation of the temperature and radial,
axial and azimuthal velocities, respectively.

Considering point C on the lowest branch of the stability diagram of figure 4(b), we
observe a rather strong deformation of the purely convective flow by rotation (figure 8).
Such a deformation is expected since we simultaneously reduce the Grashof number
and increase the Reynolds number. The minimum of the meridional streamfunction
changes from −8.99 at Re = 0 to −4.08 at Re = 300, while another counter-rotating
vortex, whose streamfunction maximum is 3.31, develops in the upper corner. In
this case we observe the localized maximum of perturbations of axial and azimuthal
velocity components located on the zero streamline separating two counter-rotating
vortices. The maxima of azimuthal velocity and temperature perturbations are located
very close and slightly shifted into the area occupied by the weaker vortex. Two
maxima of the radial velocity disturbance are shifted aside from the boundary, with the
larger maximum inside the weaker vortex. Here the instability should be attributed
to the interaction of the two vortices. Since the splitting of the main buoyancy
vortex is a clear result of superimposed convection and rotation, this instability
relates to option (ii). Examination of table 2 shows, however, that excluding several
or all terms containing the base azimuthal velocity from the θ -component of the
linearized momentum equation stabilizes this flow (cases 9 and 11). Switching off
the term imũVer/r from the radial component stabilizes it even more strongly (case
16). A strong stabilization is observed also when the terms eθr−1U ∂(rṽ)/∂r and
eθW ∂ṽ/∂z, corresponding to the perturbation of azimuthal velocity, are switched off
(case 14). Furthermore, switching off either of the terms imũVer/r, eθr−1U ∂(rṽ)/∂r or
eθW ∂ṽ/∂z or their combinations does not qualitatively change the perturbation pattern
shown in figure 8. Thus, these terms are responsible for destabilization of the flow,
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FIGURE 9. (Colour online) Flow and perturbation patterns for point D in figure 4(c), for
Pr = 7, Re = 34.8, Grcr = 2.0 × 104. Instability for the azimuthal wavenumber m = 1.
(a) Streamlines and (b) isotherms of the considered flow (blue solid line) and of the flow
at Re = 0 at the same Gr (red dashed line). Streamlines are evenly distributed between the
values of 0 and −1.3 (global minimum). Isotherms are evenly distributed between the values
0 and 1. (c)–(f ) Absolute values of the most unstable perturbation of the temperature and
radial, axial and azimuthal velocities, respectively. (g) Isolines of the azimuthal component of
the base flow.

but not for the appearance of the perturbation mode. Conversely, switching off all the
terms containing V and eθ (case 11) does change the disturbance pattern.

We can assume that instability of the vortices boundary is intrinsically three-
dimensional, which implies a non-zero perturbation of the azimuthal velocity.
Moreover, this instability sets in when a strong advection of perturbations in the
azimuthal direction by the base non-uniform rotation takes place. Therefore, this case
can be interpreted as a simultaneous appearance of options (ii) and (iii).

The case of a larger Prandtl number, Pr = 7, is illustrated in figures 9 and 10
corresponding to the points D and E in figure 4(c). In this case the spoke pattern
instability observed for 0 6 Re < 30 with mcr = 10 or 11 is replaced by another one,
having mcr = 1 and exhibiting a steep decrease of the critical Grashof number from
Grcr ≈ 2.5× 104 at Re≈ 30 to Grcr ≈ 104 at Re≈ 47. Note that this mode crosses the
Re= 0 axis at Gr ≈ 4.7× 104, so that in the absence of rotation it is less unstable than
the spoke pattern mode. At Re ≈ 47 this mode is replaced again by the axisymmetric
one (mcr = 0), which continues to even smaller values of Gr , reaching Grcr ≈ 3000 at
Re ≈ 51.5. With further increase of the Reynolds number, the critical Grashof number
slowly grows and several other mode switches take place.

Considering the example of flow and perturbation patterns shown in figure 9, we
note that the striking feature of this case is the almost unchanged streamline and
isotherm patterns corresponding to the zero and non-zero Reynolds numbers. In fact,
the Reynolds number is very small, so that taking the characteristic length as 10 cm
and the viscosity of water ≈ 10−6 m2 s−1, Re≈ 35 would correspond to approximately
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FIGURE 10. (Colour online) Flow and perturbation patterns for point D in figure 4(c),
for Pr = 7, Re = 50, Grcr = 5819. Instability for the azimuthal wavenumber m = 0.
(a) Streamlines and (b) isotherms of the considered flow (blue solid line) and of the flow
at Re = 0 at the same Gr (red dashed line). Streamlines are evenly distributed between
the values of 0 and −0.8 (global minimum), and a level −0.02 is added additionally.
Isotherms are evenly distributed between the values 0 and 1. (c)–(f ) Absolute values of
the most unstable perturbation of the temperature and radial, axial and azimuthal velocities,
respectively.

0.2 revolutions per minute. It is really difficult to see what could change in the
flow to affect its stability properties so strongly. One possible explanation is the
following. The temperature perturbation of the destabilized flow (figure 9c) is located
near the axis in the area of unstable temperature stratification and can be driven by
the Rayleigh–Bénard instability mechanism. The spoke pattern instabilities also appear
due to the Rayleigh–Bénard mechanism, but their disturbances are located mainly in
the thinner unstable layer closer to the cylindrical wall (Gelfgat et al. 1999). The
Rayleigh–Bénard driven instabilities located near the axis were also observed in the
considered configuration without rotation, but in taller cylinders (Gelfgat et al. 2000).
Therefore, we observe here two competing instability modes. The examination of
isotherms (figure 9b) shows that, while the unstably stratified temperature near the
sidewall is unaltered by the rotation, the temperature change along the axis slightly
steepens, which is seen as a slight raise of the point where the two upper isotherms
arrive at the axis. In figure 11 the axial temperature gradient of flows at several critical
points are compared with those calculated at the same Grashof numbers but with zero
rotation rate. We observe that the axial gradients at the instability points are always
slightly steeper than those corresponding to zero-rotation cases.

On the basis of the above, we can offer the following explanation of the observed
destabilization. We assume that in a wide range of Grashof numbers the growth rate
of the mode shown in figure 9 is negative but close to zero, so that this disturbance
mode does not become unstable. A slow rotation of the upper boundary creates a
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small change in the base flow, which makes the disturbance unstable. The rotation
slows down the axially directed radial flow along it. Consequently, the descending
flow along the axis also slows down. As a result, the convective mixing near the axis
reduces, which leads to steeper axial temperature gradients. When, with the increase
of the Reynolds number, the unstable temperature gradient exceeds a certain critical
average value, the instability sets in. We observe that at larger Grashof numbers lower
axial gradient is critical (figure 11), which is quite expected and results from the
dependence of the growth rate on the base flow.

The explanation offered assigns the observed destabilization to option (ii); however,
examination of table 2 shows that it may be incomplete. Switching off some terms
with the base rotation and their combinations (cases 2, 13 and 20), as well as a term
describing the axial advection of the azimuthal velocity perturbation (case 10), can
lead to a noticeable stabilization, which, however, is much weaker than those observed
for smaller Prandtl numbers. The pattern of the base azimuthal velocity (figure 9g)
shows that in the upper region it is strongly advected towards the axis. The maximum
of the azimuthal velocity perturbation amplitude is also located near the axis and
is shifted towards the bottom by the meridional flow. As discussed above, such an
advection tends to destabilize the flow, and we observe maxima of the perturbations of
the meridional components located near the axis (figure 9d and 9e). Since the rotation
is very weak, we assume that this effect is secondary, but the appearance of this
additional destabilization can explain why the difference between stable and unstable
axial temperature gradients (figure 11) is so small. This assumption is supported by the
observation of the disturbance pattern: in all the cases of table 2 where stabilization
was observed the patterns of the leading eigenmode were similar.

The three-dimensional unsteady temperature pattern that results from the above
instability mode is illustrated in figure 11 by a temperature isosurface corresponding to
T = 0.3. We observe that the isosurface forms a thin tube that rotates along the axis.
Such an instability pattern was observed in the experiments of Hintz et al. (2001) and
Teitel et al. (2008), where it was called a ‘cold jet’ or ‘oscillatory jet’ instability.

At the point E of figure 4(c) the critical Grashof number is already reduced to
Grcr = 5819. Since the buoyancy force in this case is much weaker, the effect of
rotation becomes stronger, as is reflected in the streamline and isotherm patterns
(figure 10a and 10b). Again, we observe a steepening of the unstable temperature
gradient at the axis, which in this case leads to the so-called ‘cold thermals’
instability, which is also of the Rayleigh–Bénard nature. Here the cold fluid is
advected along the upper surface towards the axis where unstable stratification triggers
the instability, appearing as a rapid descent of the cold fluid along the axis and
oscillations of the main convective vortex. Note the large temperature disturbances
located below the upper surface and near the axis (figure 10c), as well as radial
velocity perturbations near the upper and lower boundaries (figure 10d), and also
the axial velocity perturbations near the axis (figure 10e). An additional illustration
is presented in figure 13 by the isotherm snapshots taken from a superposition
of the base flow with the perturbation. The cases shown in figures 13 and 5(a)
correspond to the same branch of the neutral stability curve of figure 4(c) and, as
explained above, resemble the ‘cold thermals’ instability observed in the experiments
of Munakata & Tanasawa (1990) and Teitel et al. (2008). The results of table 2 do
not reveal any significant dependence of the base azimuthal velocity or its perturbation
on this instability. The observed instability mode becomes dominant as a result of
alteration of the base meridional flow by rotation and we attribute it to option (ii).
This conclusion is supported also by results of Teitel et al. (2008), where this
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FIGURE 13. Eight equally distanced snapshots of isotherms of supercritical oscillatory state
during one period of oscillations. Flow with parabolic temperature profile at the sidewall with
rotating top (figure 4c, point E) at Pr = 7, Grcr = 5819, Recr = 50, mcr = 0.

instability mode was observed in the Czochralski model in the absence of any base
rotation both experimentally and numerically. The azimuthal velocity perturbation in
this case (figure 10f ) seems to be a consequence of rather than a reason for the
instability onset.

4.2. Destabilization versus continuous variation of the Prandtl number
To illustrate how the destabilization takes place at different Prandtl numbers, we
present neutral stability curves for three fixed values of the Reynolds number,
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temperature profile at the sidewall and rotating top for fixed values of the Reynolds number,
Re = 0, 200 and 400. Numbers on the curves correspond to the critical Fourier mode mcr.
The neutral curve for Re = 200 is shown by dashed lines and the corresponding numbers are
framed.

Re = 0, 200 and 400, and the Prandtl number continuously varying from 0 to 10
(figure 14). Owing to the difference in the critical values and in the qualitative
behaviour of the curves, the graphs in figure 14 are divided into two frames for Pr 6 1
and for Pr > 1. We observe that the destabilization at small Prandtl numbers takes
place starting from a certain, not very large, value of the Reynolds number (Re= 400),
while at smaller values (Re = 200) the critical azimuthal modes replace each other at
approximately the same values of the critical Grashof number. According to arguments
given in the previous section, the destabilization at small Prandtl numbers is caused by
mainly hydrodynamic mechanisms, such as interaction of counter-rotating vortices and
advection of angular momentum. To destabilize the base flow, these mechanisms must
become strong enough, which happens at a sufficiently large value of the Reynolds
number. An indication of the absence of the described destabilization effect is the
appearance of the spoke pattern at non-zero Re. In figure 14(a) it is observed at
Re= 200 for mcr = 5 and 6.

As discussed above, at Pr > 1 the destabilization takes place mainly due to the
change of the temperature distribution. This may happen at significantly smaller
Reynolds numbers. In fact, for each Pr there exists a relatively low value of Reynolds
number at which the effect is strongest, e.g. at Re ≈ 50 in figure 4(c). We observe
also that for large Prandtl numbers the destabilization at Re = 200 is stronger than
that at Re = 400. Note also that in the absence of rotation the instability results in a
spoke pattern. The critical Grashof numbers at Re = 0 are very close for 10 6 m 6 15
(figure 14b). As discussed above, at a relatively weak rotation, the modes related to
the oscillating jet or cold plumes instability become most unstable and replace the
spoke pattern mode, thus leading to destabilization. The oscillating jet and cold plumes
modes are characterized by a smaller azimuthal wavenumber, which is seen on the
curves corresponding to Re= 200 and 400 in figure 14(b).
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FIGURE 15. (Colour online) Flow and perturbation patterns for a purely convective flow with
parabolic heating at the sidewall, for A = 2, Pr = 0.015, Grcr = 1.01 × 105. Instability for
the azimuthal wavenumber m = 2. (a) Streamlines and (b) isotherms of the flow. Streamlines
are evenly distributed between the values of 0 and −27 (global minimum). Isotherms are
evenly distributed between the values 0 and 1. (c)–(f ) Absolute values of the most unstable
perturbation of the temperature and radial, axial and azimuthal velocities, respectively.

4.3. Destabilization of convection under rotating magnetic field effect
Consider now destabilization of a convective flow by the rotating magnetic field
(figure 2c). Without the RMF effect, the flow becomes unstable at Grcr ≈ 105. The
corresponding flow and perturbation patterns are shown in figure 15. At Ta ≈ 1600,
which corresponds to a rather weak RMF effect (Grants & Gerbeth 2002), the neutral
curve branch started at Ta = 0 is replaced by another one steeply descending and
reaching the minimal critical value of the Grashof number approximately 1.5 × 104

at Ta ≈ 1300 (figure 2c). Along this neutral branch, the instability sets in due to
increase of Ta rather than due to a change of Gr . Flow and perturbation patterns
corresponding to this instability mode are shown in figure 16. The first observation
is that the meridional flow is almost unaltered by RMF (figure 16a and 16b), which
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FIGURE 16. (Colour online) Flow and perturbation patterns for a purely convective flow with
parabolic heating at the sidewall under the effect of a rotating magnetic field, for A = 2,
Pr = 0.015, Grcr = 2 × 104, Ta = 1020. Instability for the azimuthal wavenumber m = 2.
(a) Streamlines and (b) isotherms of the considered flow (blue solid line) and of the flow
at Ta = 0 at the same Gr (red dashed line). (c) Isolines of the azimuthal velocity of the
considered flow (blue solid line) and of the RMF-driven flow with Gr = 0. Streamlines are
evenly distributed between the values of 0 and −8 (global minimum), and isolines of the
azimuthal velocity between 0 and 40. Isotherms are evenly distributed between the values
0 and 1. (d–g) Absolute values of the most unstable perturbation of the radial, axial and
azimuthal velocities, and the temperature, respectively.

again indicates the RMF weakness. Contrarily, isolines of the azimuthal velocity are
significantly different when affected or not affected by the convective circulation
(figure 16c). Gradually increasing the Grashof number from Gr = 0 to 2 × 104,
we observe that the maximum of V first shifts upwards, then towards the axis,
and then descends downwards, so that the isolines become almost symmetric, with
respect to the z = 1 plane, at Gr = 2 × 104. Since the non-zero azimuthal velocity
is the only significant difference from the Ta = 0 case, we assume that this is also
the main reason for destabilization. In fact, by switching off one or several of the
terms im(ũv/r)er, 2(ṽV/r)er and ir−1mVw̃ez, belonging to the meridional part of the
linearized momentum equation, we observe a considerable stabilization of the flow. At
the same time, switching off the V-dependent terms in the azimuthal component leads
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only to minor changes of the critical parameters. The examination of eigenmodes at
Ta= 0 shows that there is no disturbance similar to that shown in figure 16(d–g) when
the RMF is absent. This makes this instability belong to option (iii).

The observed instability cannot be related to the Taylor–Couette mechanism because
the meridional velocity perturbations are located closer to the axis (figure 16d and
16c), where azimuthal velocity decreases with the decrease of the radius, thus making
the local rotation in this region stable. We conclude that the instability sets in due
to advection of base rotation by meridional velocity disturbances, and propose the
following description. The appearance of a negative disturbance of the radial velocity
at a point where its amplitude attains the maximum can bring a particle with a larger
rotational moment towards the axis, where the rotation will increase. This will increase
the centrifugal force and, consequently, a positive perturbation of the radial velocity.
The latter will happen during advection of the particle downwards by the main vortex,
and will happen already at another azimuthal angle. An increased centrifugal force will
increase the positive radial velocity in the lower part of the cylinder, which speeds up
the main convective vortex. The perturbed vortex will create a negative perturbation of
the radial velocity in the upper part of the flow and, therefore, there will be a feedback
mechanism leading to meridional flow oscillations.

4.4. Destabilization by rotation in Czochralski model flow
Now we return to the Czochralski model flow that motivated this study. The full
formulation of the problem can be found in Crnogorac et al. (2008) and Gelfgat
(2008). The crucible radius is chosen as the characteristic length, and therefore
definitions of the Grashof and Reynolds numbers remain unchanged. The flow is
described by the Boussinesq equations (2.1)–(2.3) with no-slip boundary conditions at
the bottom and the sidewall of the crucible, while the temperature there is prescribed
according to the experiment of Schwabe et al. (2004):

at r − 1 : vr = vθ = vz = 0, T − 1, (4.1)
at z= 0 : vr = vz = vθ = 0, T = 0.8571+ 0.1429r2. (4.2)

The central part of the upper surface touches the rotating cold crystal dummy kept
at the lower temperature. The remaining part of the upper surface is cooled by a
convective flow of air above it and is subject to the thermocapillary force. This reads

at Z = A and r 6
Rcrystal

Rcrucible
:

Vr = Vz = 0, vθ = Recrystalr, (4.3)

at Z = A and r >
Rcrystal

Rcrucible
: vz = 0,

∂vr

∂z
=−MaPr

∂T

∂r
,

∂vθ

∂z
=−MaPr

∂T

r∂θ
. (4.4)

The flow is driven by buoyancy, thermocapillarity and rotation, which are characterized
by the Grashof, Marangoni and Reynolds numbers. The Marangoni number is defined
as Ma = γ1T R/vα, where γ = |dσ/dt| is assumed to be a constant and σ is
the surface tension coefficient. The working liquid is NaNO3 with Pr = 9.2. Since
both the Grashof and Marangoni numbers depend on the characteristic temperature
difference, we calculate Ma = 5861T/Pr and Gr = 1.9 × 1051T and use 1T as a
critical parameter.
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FIGURE 17. (Colour online) Streamlines (left panels) and isotherms (right panels) shown
by lines and perturbations of the streamfunction and temperature shown by colour for
the four points A, B, C and D shown in figure 1(a), at mcr = 0: (a) 1T = 0.63,
Re = 0, ψmin = −1.38; (b) 1T = 0.37, Re = 75, ψmin = −1.22: (c) 1T = 0.1, Re = 104,
ψmin =−0.81; (d) 1T = 0.018, Re= 100, ψmin =−0.40, ψmax =−0.0066.
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FIGURE 18. Eight equally distanced snapshots of isotherms of supercritical oscillatory state
during one period of oscillations. Flow in the Czochralski model of Crnogorac et al. (2008),
(figure 1a, point A), at 1T = 0.63, Recr = 0, mcr = 0.

Figure 17 shows the changes of the flow and perturbation patterns along the neutral
stability curve of figure 1(a). Since the instability in this case is axisymmetric
(mcr = 0), we plot the streamfunction and its perturbation instead of the two
meridional velocity components. As above, in the case of our characteristic problem at
Pr = 7, we observe that with the increase of rotation the main convective circulation
weakens, which leads to a steepening of the axial unstable temperature gradient near
the axis. This leads to strong temperature perturbations that develop below the cold
crystals and descend with the flow along the axis. The snapshots of isotherms shown
in figures 18 and 19 for the points A and C of figure 1(a), respectively, show similar
oscillations of cold thermals that descend along the axis. Examination of the case
of Teitel et al. (2008) shown in figure 1(b) shows similar perturbation patterns and
similar time dependence. We conclude that the destabilization observed for the large
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FIGURE 19. Eight equally distanced snapshots of isotherms of supercritical oscillatory state
during one period of oscillations. Flow in the Czochralski model of Crnogorac et al. (2008),
(figure 1a, point A), at 1T = 0.1, Recr = 100, mcr = 0.

Prandtl number Czochralski melt flow has the same nature as that observed for the
simplified characteristic problem. Rotation of the crystal causes a retardation of the
main convective circulation, which leads to the formation of an unstably stratified
layer beyond the crystal. This layer is destabilized by the Rayleigh–Bénard mechanism,
which is mainly defined by the layer thickness. With the increase of the rotation rate
(the Reynolds number), formation of the unstable layer takes place at a lower Grashof
number, thus resulting in the destabilization of this convective flow by rotation.

5. Conclusions
We have studied the destabilization of buoyancy convection flows by a weak

rotation, which was observed in the Czochralski model flows experimentally and
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numerically and motivated this study. Seeking a simplified problem that reveals similar
destabilization, we showed that thermal boundary conditions leading to the ascent
of hot fluid along the lateral boundary and descent of cold fluid along the axis,
together with a rotating upper boundary, represent the needed characteristic problem.
Therefore, a combination of previously studied problems of convection in a cylinder
with parabolic sidewall temperature profile and swirling flow in a cylinder with a
rotating lid was taken as the characteristic problem for further consideration. Several
characteristic cases of destabilization were studied by observation of their flow and
leading disturbance patterns, and by switching off some of the terms of the linearized
stability equations (table 2). The main conclusions are summarized in table 3. To show
that the destabilization of convection by a weak non-uniform rotation can extend also
to other flow configurations, we supplied an example of convective flow interacting
with RMF-driven rotation.

Based on all above observations, we can expect the destabilization effect when
the buoyancy and centrifugal forces tend to create meridional vortices of opposite
direction. This leads to two rather obvious effects. The first one is a splitting of the
main convective circulation into several vortices with an unstable boundary between
them that causes instability. The second effect is retardation of convective mixing
and creation of unstably stratified regions where the Rayleigh–Bénard instability
mechanism sets in. A third effect observed is connected with the advection of the
angular momentum and its perturbation towards the axis, which leads to growth of the
azimuthal velocity with a consequent local growth of the centrifugal force. The latter
increases the base radial velocity and its perturbation, thus intensifying advection and
creating a positive feedback. This effect is found to be dominant, for example, in the
case of RMF destabilization of convection. In some other cases it was observed as an
additional destabilization that enhances the two previous effects.

It should be mentioned also that starting the discussion on the mechanisms that lead
to convective flow destabilization by rotation, we defined three main cases, which are
(i) alteration of a leading disturbance by rotation, making it unstable, (ii) alteration of
the base meridional flow pattern, which leads to a destabilization of one of the leading
eigenmodes, and (iii) appearance of a new eigenmode caused by the base rotational
motion. Surprisingly, we observed cases (ii) and (iii) existing separately, as well as
interacting. However, we did not observe case (i).

This study was supported by the German–Israeli Foundation, grant number I-954-
34.10/2007.

Supplementary movies are available at journals.cambridge.org/flm.
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