to the right, its reflection from the surface of the exit channel.

With increasing Reynolds number, the distance between the vortices increases. Figure
5 shows experimental data on the relative distance s/d between the axes of the neighbor-
ing vortices as a function of the number Re. This distance was determined from the strips
in the central parts of the exit channels of the high cell in the case when colored fluid
was supplied to one of the entrance channels. The corresponding values measured in the
lower cell lie below them. For Re < 100 (as measured in the high cell) the flow is steady;
above this value, the vortices begin to oscillate. The amplitude of the oscillations
is small, and therefore the influence of the unsteady behavior is weakly manifested in

the picture of the propagation of the colored strips in the exit channels as captured
by the photographs of Fig. 2.

The investigated flow complements the comparatively small number of known flows
of a viscous fluid whose instability leads to the formation of regular dynamical struc-
tures of a higher order of complexity compared with the structures of the initial flows.
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E DEVELOPMENT AND INSTABILITY OF STEADY CONVECTIVE FLOWS IN A SQUARE CAVITY
ﬁhEATED FROM BELOW AND A FIELD OF VERTICALLY DIRECTED VIBRATIONAL FORCES

. A. Yu. Gel'fgat UDC 532.5.013.4:536.25

<

The present paper is devoted to numerical investigation of the spatial
structure and stability of secondary vibrational convective flows re-
sulting from instability of the equilibrium of a fluid heated from below.
Vibrations parallel to the vector of the gravitational force (vertical
vibrations) are considered. As in earlier work [7—9], a region of finite
size is used — a square cavity heated from below. It is shown that en-
hancement of the vibrational disturbance of the natural convective flow
may either stabilize or destabilize flows with different spatial struc-
tures; it may also stabilize certain solutions of the system of con-
vection equations that are unstable in the absence of vibrational forces.
In addition, increase of the vibrational Rayleigh number can lead to a
change of the mechanisms responsible for equilibrium instability and
Oscillatory instability of the secondary steady flows.

Bi§h‘frequency vibrational force fields are effective means of control of thermal
t}Ve flows and their stability [1—9]. A well-known example is provided by the
tically predicted [2, 3] and experimentally confirmed [S, 6] possibility of stabi-
the equilibrium of a fluid heated from below in the case of high-frequency verti-
Prations of a container with fluid. The fluid executes a quasirigid vibrational
§t°83ther with the container, and there is no averaged convective flow.

“~f?e complicated is the question of the influence of the vibrational forces on

ii:y Secondary convective flow that arises after the loss of stability. Secondary
T flows in a flat horizontal layer were investigated in [4] for different values
Wl 8Tavitational and vibrational Rayleigh numbers. JVibrational convective flows in
i 0X were studied in [7—9] in the case when the mutual orientation of the

gTraHSlated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza,
-18, March-April, 1991. Original article submitted February 6, 1990.
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vibrational force and the temperature gradient does not allow the existence of convegy
quasiequilibrium.
In this paper we present an account of the w

The equations that describe the slow (compared with the vibrational component ) com
ponent of the convective flow have the form [10] '

ork outlined in the abstract.

' 1
% +(vV)v=—VP+Av+[Rag6eu+Ra,(wV) (en_w)J_P;

0 3400 bwABl)? :
B evyo=2Y  ivvmo Ra, = 82492 Ra, = (B00A8D" v
ot br E x

P is the pressure, Rag and Ra,, are '§
al Rayleigh numbers, Pr is the Prandtl number, e, ig the

the y axis, g is the acceleration of free fall, g g
the coefficient of volume expansion, 4@ is the difference between the t
tained on the horizontal boundaries of the box, ¢ is its length
cosity, x is the thermal diffusivity, b and o are the amplitude and cir
of the vibrational motion (w > 1), n is the unit vector in the directi
tion axis, w is the solenoidal

part of the vector 6n., which on the bo
the condition wm=0, m is the normal to the boundary

.

_ o be rigid and to conduct heat. On the hori:i
zontal boundaries, co

nstant values of the t On the vertical
boundaries, a linear distribution 8(y) is s

=0, 1; zr=1, v=0, 0=1—y
y=0, v=0, 0=1
y=1, v=0, 8=0

The validity of the averaged model (1)-—

and numerically [7]. 1In pParticular, for a3 sufficientl
disturbance, the time-

The functions and 6 are approximated by sums

N N K K
V= ZZcu(t)%(z. ¥, 0=(-p+ ZZ, di; () gij(z, y)

im0 jamg ima( jemQ

the first and second kind in

such a way as to satisfy all
ions and the continuity

equation (see [11—13]). The function scalar
products used in Galerkin’s method are defined as follows:
(f,g)= jjg av, (u V) = (uy, Ux) *(uy, vy) (7)
\ 4 b
The function w is the solenoidal part of the vector ¢n and is determined by the sys- %
tem of equations ;
On=wrgrad . divw=0 (8) '1
Setting w, = —3¥/3y and Wy = 3¥/3x and applying thé operation curl to the first
of Egs. (8), we obtain

AW =—rot, (0n) (9)
From the condition w-m|r=( we obtain ¥|p = 0. Since the boundary conditions for

W can be approximated by the sums




TABLE 1

Ra, Ra, Number of Resu}ts of (7, 9] Our results
vortices . )
) max ‘rmi n *‘mnx ‘rmin
104 4104 3 5.39 -0.3 5.72 -0,25
104 2,5-10+ 3 5.35 -43 5,02 -4,33
0 4104 4 1.45 —-1.45 .44 -1,44
0 4104 3 22 -1.2 2,16 -1,147
M M M M
¥ =22 fi5(0) qe5(z, ), W= Z Z fis () @i* (2, ¥)s (i) e=—09i5l0y, " (4:57)y=04:3/0z (10)
{emQ jesO

im0 jw0

It is obvious that on the box boundary ;" -m=0.

. The coefficients fi; can be expressed in terms of the coefficients dj; by solving
g+ (9) by Galerkin’s method using the expansions (6) and (10). On the other hand, pro-
tion of the first of Eqs. (8) onto the ¢, basis with allowance for the fact that

Sq;.' ;* grad 0dV = S [div(gi;* ®) - © div @; ,‘]dV—S O ;*m dl'=0 (11)
.

v v

;é; any function ¢ also gives a relation between fjj and djj-

.> By simple manipulations analogous to (11) we can show that

(B, gij) =—(W, "), (rot:(0m), i) =—(0m, &;°) (12)

Thus, the two methods of determining the coefficients fi; are equivalent. The ex-
in terms of the coefficients djj enables us to

plicit expression for the coefficients fjj
fivoid the introduction of additional unknown quantities in the computational process,
lbut it does lead to the appearance of additional bilinear terms containing products of

[the form cjjdgg in the equations that determine the coefficients cij(t). Substitution
of (6) and ilO) in (1)—(3), calculation of the corresponding scalar products, and ex-
Fpression of the coefficients f;; in terms of the coefficients djj reduce the problem

(})—(5) to a system of ordinary differential equations of the form
X‘(l)==a,,-.\',~(l)+b,,~,..\',~(l)‘\'k(t)+fv', (13)

here Xg(t) is one of the coefficients cij(t) or dj;(t).

of equations (13) corresponding to steady solutions

3 ned in [12, 13] by Newton’s method. In the case

E. of heating from below, the problem (1)—(5) has different forms of spatial symmetry,

* and therefore Newton’s method makes it possible to obtain solutions that possess the
proximation, which must be chosen sufficiently

;far from the trivial solution Xy = 0. Therefore, in the cases when it is necessary to
Ad_find a steady solution with a previously unknown spatial structure the stabilization

k- method was used, i.e., continuation of the jteration procedure until the solution sta-
- bilizes. The stability of the steady solutions was investigated in the same way as in

(12, 13].

In the case when a Hépf bifur

. Steady solutions of the system
£ of the problem (1)—(5) were determi

cation is discovered, it is assumed that the frequency
of the vibrational motion is much higher than the frequency of the oscillatory flow that
appears. In the case of the occurrence of one zero eigenvalue (monotonic instability),
the flow in the supercritical region was determined by the stabilization method. In

the cases when integration of the system of equations (13) with respect to the time led
to a new steady solution, the stability of this solution was also investigated. Despite
the monotonic instability, in some cases integration with respect to the time led to

Fhe appearance of an oscillating solution, indicating the presence of an oscillatory
instability that develops in a manner different from Hopf bifurcation.

The results of [7, 9] relating to vibrational-gravitational convection of a fluid
Pr = ] in a square box heated from the side (Fy # 0) were used to test the viability
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Fig. 1 Fig. 2
of the employed numerical method. The extremal values of the flow function obtained i
for different values of Ra, and Ray, in [7, 9] and in the present work for N=M =K =6 3

agree well (see Table 1). Bifurcation from the 4-vortex to the 3-vortex flow regime

in the case Rag = 0 occurs at Ra, > 1.5:10* [9]. 1In the present work, the obtained value
of Ra, corresponding to this bifurcation is Ray = 1.88-10".

Calculations were made for three fixed values of the Prandtl number: 0.02, 1, 15.
The streamlines and isotherms of the steady convective flows corresponding to different
forms of spatial symmetry are shown in Fig. 1. For the three values of the Prandtl number
we obtained in the plane of Ra, and a = Ray/Ra, regions of flow stability possessing cen-
tral symmetry with respect to the center of the box (Fig. la, Rap, = 1.4-10°, Ra, = 0,
Pr = 0.02, |¥|pax = 1420), reflection symmetry about the line x = 0.5 (Fig. 1lb, Rag =
2.2-10%, Ray = 6.6°10%, Pr = 1, |y|pax = 11.1), and reflection symmetry about the $ine
y = 0.5 (Fig. lc, Rag = 4.5:10%, Ray = 0, Pr = 15, |¥|pax = 0.523); ¥ is the flow func-
tion. An example of asymmetric convective flow that is the outcome of instability of
the symmetric flow in Fig. lc is shown in Fig. 1b (Ra, = 6-10“, Ra, = 0, Pr = 15,
Vmax = 0.52, ¥pin = —0.61). The results of the stability investigation are shown for
Pr = 0.02, 1, and 15 in Figs. 2—4, respectively.

The continuous curves in Figs. 2—4 correspond to equilibrium instability. The
broken curves bound the regions of stability of flows that are centrally symmetric with
respect to the center of the box (see Fig. la). The chain curves correspond to the sta-
bility boundaries of the flows that are reflection symmetric with respect to the line
y = 0.5 (see Fig. 1lb, curves 1 in Figs. 2—4) and the asymmetric flows that develop
from them (see Fig. lc, curves 2 in Figs. 2—4). The broken curves 3, 4, 6 in Fig. 4
(Pr = 15) shows the stability region of the flows that are reflection symmetric with
respect to the line x = 0.5 (Fig. lc), while curves 4 and 5 bound the stability region
of the corresponding asymmetric flows (see Fig. 1d). Such flows become stable for suf-
ficiently large Prandtl numbers. With decreasing Pr, the region bounded by curves 3,

5, 6 and the ordinate gradually contracts and then disappears. In Fig. 3, for Pr =1,
this region is shown schematically by the broken curves. For Pr = 0.02, the flows with
the spatial structure shown in Figs. lc and 1d are unstable for all values of Rag and Ray-

The neutral curves corresponding to equilibrium instability (the continuous curves
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B For o < 1.6, the most dangerous disturbance of the convective quasiequilibrium pos-
Resses central symmetry, and a centrally symmetric flow arises as a result of the insta-
Hility (see Fig. la). For a > 1.6, the perturbation possessing reflection symmetry about
e line y = 0.5 becomes the most dangerous. The secondary convective flow corresponding
Yo this disturbance (see Fig. 1b) is stable in the case of small Prandtl numbers when

% > 1.6 (chain curve in Fig. 2). However, at higher Prandtl numbers such flows become
F_table only for a@ > 2, and it is the corresponding asymmetric flows (curves 2 in Figs.
£3—4) that first become stable, only then being followed by the symmetric flows (curves

¥l in Fig. 3—4). As can be seen from Figs. 2—4, enhancement of the vibrational dis-
Fturbance leads to the appearance of hysteresis phenomena — the steady flows may remain
JStable in the region that is subcritical from the point of view of equilibrium stability.

g The results relating to oscillatory instability have physical meaning only in the

| cases when the frequency w, of the oscillatory convective flow that develops after the
Eloss of stability is much lower than the frequency w of the vibrational motion: w » w,.
: If the transition to the oscillatory regime takes place through a Hopf bifurcation, then
£ the imaginary part of the dominant eigenvalue will serve as an estimate of w,. The max-
® imal dimensionless values of w, (the dimensional scale is x/2?) obtained in the process
E of the stability investigation can be estimated as follows: for the centrally symmetric
f flows (Fig. la) w, = 2-103; for the flows consisting of two vertically situated vortices
;;(Figs. lc and 1d), w, = 600; for flows consisting of two vortices with one above the

F other, w, = 450. As a rule, the dimensional frequency scale x/%? is less than 107° Hz,
E and therefore the obtained values of w, correspond to oscillations with frequency that

k. do not exceed 1 Hz, this fully corresponding to the considered averaged model.

The physical mechanisms giving rise to instability of the steady convective flows
are characterized at critical values of the parameters by the eigenvector of the problem
(1)=(4) linearized in the neighborhood of the steady flow that corresponds to the domi-
¢ nant eigenvalue. Since the components of the eigenvector are complex numbers, a certain
" physical meaning corresponds to the modulus of the most dangerous perturbation, the value
of which in the case of Hopf bifurcation characterizes the spatial distribution of the
rms amplitude of the pulsations that grow exponentially at the time when stability is
! lost. The breaks in the neutral curves shown in Figs. 2—4 correspond to replacement
of the one most dangerous disturbance by the other. Analysis of the spatial structure
of the most dangerous infinitesimally small disturbance makes it possible to study the
supercritical mechanisms responsible for the instability of the convective flow.

In Figs. 5—7, the continuous curves show the streamlines (on the left) and isotherms
(on the right) of the steady convective flows that are losing stabiity, while the broken
curves are the isolines of the absolute value of the most dangerous infinitesimally small
disturbance of the flow function and temperature. The development of the oscillatory
instability can be represented as a sum of the time-constant flows shown in Figs. 5—7
by the continuous curves and the pulsating terms with exponentially growing amplitude
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Fig. 5

(broken curves in Figs. 5-7).

Figure 5 shows the convective flows and the most dangerous disturbances of them
for symmetric and asymmetric flows consisting of two convective vortices (see Figs. lc
and 1d). The flows symmetric with respect to the line x = 0.5 become stable above curve
3 (see Fig. 4). With increasing Ra, these flows become unstable (curve 4) and bifurcate
to a steady asymmetric flow. With further increase of Ra, above curve 5 the asymmetric
flow becomes unstable with respect to oscillatory disturbances. On the other hand, with
increasing o to the right of curve 6 it is the symmetric flow that acquires oscillatory
instability. Figure 5a corresponds to the oscillatory instability of the symmetric flow
that arises on curve 6 (Ra, = 3.75-10%, a = 0.6, Pr = 15) and Fig. 5b corresponds to
the one on curve 5 (Ra, = 6-10*, @ = 0, Pr = 15). In both cases, the spatial structures
of the most dangerous gisturbances are similar and differ only in the presence or absence
of symmetry. The maximal value of the disturbance of the flow function is on the boundary
that separates the two convective vortices, while the maximal value of the temperature
disturbance occurs on both sides of the line separating the vortices in the upper part
of the region, where the flow has a comparatively low intensity. This suggests that
in the given case the oscillatory instability arises on the boundary separating the two
convective vortices, in the region of comparatively slow flow. Integration of the system
(15) with respect to the time shows that in the case represented in Fig. 5a the oscillatory
instability leads to loss of reflection symmetry and that the convective oscillations
are pulsations of two vortices whose intensities vary in antiphase.

Figure 6 illustrates the loss of stability by steady convective flows consisting
of two vortices with one above the other. Such flows become stable at sufficiently large
values of a. Oscillatory instability of the flow with reflection symmetry with respect
to the line y = 0.5 was observed only for Pr = 0.02 (chain curve in Fig. 2). The different
spatial structures of the most dangerous disturbance for this case are shown in Figs.
6a—6c. In the case shown in Fig. 6a (Ra, = 2.8:10°%, a = 1.8) the most intense distur-
bances of the flow are near the extremal values of the flow function. At the same time,
the oscillatory mode that generates the instability either destroys the existing con-
vective vortices or gives rise to oscillations of two reflection-symmetric vortices.
At large a (see Fig. 6b, Rag = 4-10%, a = 3) the strongest disturbances are observed
in the region of comparatively slow convective flow and on the boundary separating the
two convective vortices. In this case the development of the oscillatory instability
leads to a qualitative rearrangement of the spatial structure of the flow, in particular
to a loss of reflection symmetry.

For Pr = 1 and 15, the flows with reflection symmetry about the line y = 0.5 lose
stability with respect to monotonic disturbances to the left and below curves 1 in Fig.
3—4. The instability results in the development of asymmetric flows consisting of two
convective vortices with one above the other. The oscillatory instability of the
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symmetric flows occurs above curves 2 in Fig. 3 and 4.
Same way as in the case shown in Fig. 6a, but in the
one most intense convective vortex becomes unstable.

The stability is lost in the
case of asymmetric flow only the

The greatest diversity of different s
finitesimally small disturbance is observe
symmetric flows. However, they are all di
echanisms illustrated in Figs. 7a and 7b.

patial structures of the most dangerous in-
d in the stability analysis of the centrally
fferent combinations of the three instability

Figure 7a (Ra8 =1.4-10°, « = 0) illustrates loss of stability with rapid increase

f the thermal and hydrodynamic disturbances at the box boundaries; this characterizes

- The most intense disturbances of the flow
ction and the temperature are on the diagonals of the square and are displaced from

’;e center toward the box corners. In the central part of the flow, the disturbances
ave a relatively weak intensity.
: Figure 7b (Rag = 5.4-10%, @ = 1) shows the case when the global maximum of the

ce of the flow function is at the center of the cavity,
d on the diagonals between the main
The maxima of the absolute value of the tem
-1 reverse vortices, whereas in the center of the box
comparatively small. In the considered case,
reasons for the oscillatory instability:

and the instability due to the interaction

and reverse convective
perature disturbance are also near
the temperature disturbance is

one can clearly see the two characteristic
the instability of the main convective vortex
of the main and reverse convective vortices.

: The most dangerous infinitesimall
vective flows can also have other s
in Fig. 7. However, in all cases t
Indicate the presence of different

y small disturbances of centrally symmetric con-
patial structures very different from those shown
he isolines of the absolute value of the disturbances
combinations of these two instability mechanisms.
3 The transition from the steady to the oscillator
through a Hopf bifurcation. In some cases, nonsteady calculations for supercritical
Values of the parameters make it possible to establish that the instability determined
LYY zero eigenvalue of the Jacobi matrix is oscillatory. 1In particular, such instability
'S observed in the case of intersection of the curves 1 (see Figs. 3 and 4) from the
Tight to the left above the point of intersection of these curves with curves 2. The
pOScillatory instability of the centrally symmetric flows for Pr 2 1 and comparatively
nner (left-hand smooth section of the broken curve
the nonsteady calculation made for Pr =1, Ray = 0, Ra, = 7-10%
ymmetric flow as initial condition made it possible to discover
. The time and spatial character-
oscillatory solution correspond to the results obtained in [14]
g = 7°10* and Pr = 0.71. At the same time, the solution of the nonstationary con-

equations, averaged over a period of the oscillations, is reflection symmetric

= 0.5, i.e., in this case the monotonic instability gives rise to a

centrally symmetric to a reflection-symmetric steady flow, which, in

y solution does not always occur
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its turn, is unstable with respect to oscillatory disturbances.

Thus, high-frequency vertically directed vibrational forces have 2 quite different
effect on steady convective flows with different spatial structures. Relatively weak
vibration fields have 2 strong stabilizing effect on centrally symmetric convective flow
put an increase of the vibrational Rayleigh number may lead to 2 lowering of the sta-
bility threshold of such flows, this even going s° far as complete destabilization of
them (broken curves in Figs- 2—-4).

Similarly, gradual increase of Ra, from zero to Ra¥ stabilizes flows that are re-
flection symmetric about the line X = 0.5. For Ray? Ra¥, these flows are completely
destabilized (broken curves in Figs. 3 and 4).

The considered vibrational forces have an essentially nev¥ effect on flows that are
reflection symmetric with respect to the horizontal plane (chain curves in Figs. 2—4).
These flows become stable when ¢ reaches 23 definite threshold value (break in the neutr
stability curves of convective equilibrium at a = 1.6, Figs. 2—4) and they become un-

stable when the parameter & of the vibrational disturbance decreases rather than incre:

1 thank G. Z. Gershuni for assistance and extremely fruitful discussions of the re
sults of the paper-
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