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The Galerkin spectral method with basis functions previously introduced by Gelfgat [1]
is applied for analysis of oscillatory instability of convective flows in laterally heated
rectangular cavities. Convection of water and air in a square cavity, and convection of a
low-Prandtl-number fluid in a square cavity, and a cavity with a ratio length / height of
4 are considered. Patterns of the most unstable perturbations of the stream function and
the temperature are presented, and mechanisms of eoscillatory instability are discussed.
Comparison with other numerical investigations shows that the Galerkin method with
divergent-free basis functions, which satisfy all the boundary conditions, needs fewer modes
than other methods using discretization of the flow region.

INTRODUCTION

The problem of bifurcation from a stationary to an oscillatory state in
convective flows was pointed out in the experimental work of Hurle et al. [2] and
has been investigated by numerous authors for different fluids in different condi-
tions. Numerical investigation of the threshold to oscillatory state is usually carried
out with straightforward integration of nonstationary momentum and heat transfer
equations, and localization of critical values of Grashof or Rayleigh numbers.
Direct application of stability analysis is possible only in the simplest cases, when
initial stationary flow may be obtained analytically [3] or perturbations of a
convective flow are of a supposed known spatial structure, for example, spatial-
periodic [4]. In general, when initial stationary flow must be obtained numerically,
and a set of all possible perturbations have to be considered, application of the
stability theory will lead to an eigenvalue problem of very high order. Namely, the
order of the eigenvalue problem is equal to the number of unknown scalar
variables used by a numerical method for approximation of the solution: number of
unknown functions multiplied by number of discretization elements (nodes of grid,
finite elements, or collocation points). Linear stability analysis was applied together
with the finite element method for investigation of oscillatory instability of convec-

Received 26 April 1993; accepted 2 July 1993.

The authors wish to acknowledge the Ministry of Education, Science and Culture of Japan, and
Japan Society for Promotion of Science for providing support for this research (grant 92024).

Address correspondence to 1. Tanasawa, Institute of Industrial Science, The University of Tokyo,
7-22-1 Roppongi, Minato-ku, Tokyo, Japan.

Numerical Heat Transfer, Part A, 25:627-648, 1994
Copyright © 1994 Taylor & Francis
1040-7782 /94 $10.00 + .00 627



628 A. YU. GELFGAT AND 1. TANASAWA

NOMENCLATURE

A aspect ratio (= L /H) t time, s

A Biis F,» S, matrices defining the T, U Chebyshev polynomials
dynamical system v velocity, ms~!

A%, By, FX matrices multiplied X,y Cartesian coordinates, m
by (S, ! X9 stationary solution of the

c;j(6),d;j(#), X,(t)  time-dependent dynamical system
Galerkin coefficients Xg eigenvector of the

f frequency of dynamical system
oscillations, s ! B volume expansion

g gravitational coefficient, K™!
acceleration, m s 2 6 temperature, K

Gr Grashof number A eigenvalue of the
(=gBAGH?/v?) dynamical system

H height of the cavity, m v kinematic viscosity,

Tk Jacobi matrix m?s~?
length of the cavity, m @i (x, y) Galerkin-based velocity

Nu, Nusselt number at X thermal diffusivity,
x=0 m?s~!

D pressure, Pa ¥ stream function, m? s~ !

Pr Prandtl number
(=v/x)

q;(x, y) Galerkin-based Subscripts
temperature

Ra Rayleigh number cr critical value
(= GrPr) max maximum value

tion in rectangular cavities by Winters [5-7]. Winters showed that when stability
analysis can be applied, it provides more effective calculation of critical parameters
than any other methods using straightforward time integration.

However, the possibilities of applying the stability analysis for investigation of
convective flows remain strongly restricted because of the very large order of the
eigenvalue problems to be solved. It is clear that the number of unknown scalar
variables cannot be sufficiently decreased if any discretization of the flow region is
necessary. On the other hand, methods of weighted residuals with trial functions
defined in the whole flow region allow use of fewer unknown scalars if the system
of trial functions is properly chosen [4, 8, 9].

This paper investigates instability of stationary convective flows in confined
regions using the Galerkin spectral method together with linear stability analysis.
The system of basis functions for a Galerkin series of velocity and temperature was
introduced by Gelfgat [1]. It was shown [1] that the Galerkin spectral method with
basis functions satisfying all the boundary conditions and the continuity equation
allows us to obtain accurate results with rather short truncated series. Thus,
comparison with known theoretical and numerical data showed that the Galerkin
series with six to nine basis functions in each spatial direction allow us to obtain
accurate approximations for stationary buoyancy and thermocapillary convection in
rectangular cavities for moderate values of Grashof and Marangoni numbers. All
the results obtained in Ref. [1] relate to flows with simple spatial structure, without
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thin boundary layers, and small-scale vortices in the core flow. It is obvious that
calculation of convective flows with more complicated structures requires longer
Galerkin series. In this paper we present results of calculations with 20-30 basis
functions in each spatial direction for two problems of oscillatory instability of
convective flows: (1) oscillatory instability of convection of low-Prandtl-number
fluid in laterally heated rectangular cavities with length/height of 4 and (2)
oscillatory instability of convection of low-Prandtl-number fluid, air, and water in a
laterally heated square cavity. In spite of particular theoretical interest, these two
problems are accepted as common tests for comparison of different numerical
methods.

Application of the linear stability theory allows us to obtain patterns of the
most unstable perturbation, which is described by the eigenvector corresponding
to the dominating eigenvalue of the linearized equations. The spatial patterns of
the most unstable perturbations are used to discuss physical mechanisms of the
instability onset.

FORMULATION OF THE PROBLEM

Convection of the incompressible Boussinesq fluid in a rectangular cavity 0 <
x <A,0 <y < 1is considered. The convective flow is described by the momentum,
energy, and continuity equations:

av

= + (vWv= —Vp + Av + Grée, Q)
% + (vV)6 . A6 2
at v "~ Pr

Vv=0 3)

Here v is fluid velocity, 6 is temperature, p is pressure, Gr = g BAH?/v? is the
Grashof number, Pr = v/ is the Prandtl number, 4 = L /H is the aspect ratio, g
is the acceleration gravity, B is the thermal expansion coefficient, Af is the
characteristic temperature difference, v is the kinematic viscosity, y is the thermal
diffusivity, and L and H are the characteristic length and height of the cavity,
respectively.

Vertical boundaries of the cavity are rigid and isothermal:

Vix=0)=v(x=A4)=0 0(x=0)=1 0(x=A4)=0 @

Horizontal boundaries are considered to be adiabatic or perfectly conducting, the
lower boundary is rigid, and the upper boundary is rigid or stress free:

(y=01) =1 X y=0,0=0 )
0(y=0,1)=1-x -a-;y— , 1) =

viy=0=0 viy=1=0
v, ()
(y=D=0 v(y=1=0

dy
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NUMERICAL PROCEDURE

Solution of Egs. (1)—(6) is approximated as a truncated series:

K L

N M
v=Y Y Weyx,y) 0=Q0-0+ Y Ydg;x,y)
i=1j=1

i=1j=1

Functions ¢;; and g;; are defined as linear superpositions of the Chebyshev
polynomials of the first and second type 7, and U,:

sin[(n + 1arccos(2x — 1)]
T,(x) = cos[narccos(2x — 1)]  U,(x) = - €))
sin[arccos(2x — 1)]

in the following form:

2 X\ 2
4,9 = L aTi| 5) £ BT ®
=0 1=0

ifilT(

4
; 02(i+l) i+l )Igogjlu}u—l(y)

8
502G+

‘Pﬂ(x’ y) = (10)

M> N«

=ifillli+l—l(;x1_)

=0

Polynomials 7, and U, are related by formula (d /dx)T;, (x) = 2(i + DU(x),
which provides zero divergence of functions ¢;; and analytical fulfillment of the
continuity equation, Eq. (3).

Coefficients o), By, f;;, and g;, are defined by substitution of the expressions
Egs. (9) and (10) in boundary conditions Egs. (4)—(6). For each i and j this gives
two linear homogeneous equations for every three coefficients a;, or g; (I = 0,1,
2), and four linear homogeneous equations for every five coefficients f;, or g
(I = 0,1,2,3,4). After addition, using fixed values for coefficients corresponding to
=0 (a;=B;=f;=8,=1), one can obtain completely definite systems of
linear algebraic equations for each group of coefficients. After solution of these
systems, a dependence of all the coefficients on numbers i, j,/ will be obtained.
Formulas for the coefficients a;,, B;, f,;, and g;, are given in the appendix.

Functions ¢;; and g;; are bases in the functional spaces containing divergent-
free functions satisfying all the homogeneous boundary conditions of the problem.
In other words, the approximate solution Eq. (7) is localized in the subspace of
divergent-free functions satisfying all the boundary conditions before the computa-
tional process starts. It will be shown that this may improve the convergence and
decrease the number of modes necessary for approximation of the solution.

Using Egs. (9) and (10), ene can construct different systems of trial and test
functions for the method of weighted residuals (for details, see Ref. [10]). Several
numerical experiments using different systems of the test and trial functions
showed that convergence is better in the case when test and trial systems coincide,
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i.e, in the case of the Galerkin method. In all calculations described below, we
used only the Galerkin formulation. The same bases were used for the expansions
Eq. (7) and for projections of residuals. Both test and trial functions here are called
“basis functions.”

To complete formulation of the Galerkin method, we define inner
products as

fofd = [ffadV Capu) = Gud) + WPu)  aD

After substitution of series Eq. (7) in Egs. (1) and (2) and calculation of all
the necessary inner products, the considered problem is reduced to a system of
ordinary differential equations for definition of the time-dependent coefficients
c;/(¢) and d,(¢). The system may be written in the following form (here and after
summation over repeating indices is supposed):

dx,(¢)

mk dt = Akak(t) + Bmlek(t)X,(t) + Fm (12)

where m = 1, KL + MN and X, is one of the coefficients c;;(¢) or d,(¢):

Xi-n+j = dyj i=1K Jj=1L 13
1

Xikemg-nej =€y i=LN j=TM

The Chebyshev weight p(x) = (x —x2)~1/2 is not used in the definition of the
- inner products, Eq. (11), because unit weight p(x) = 1 provides two important
properties of the resulting equation, Eq. (12). First, any divergent-free function ¢
with vanishing normal to the boundary component is orthogonal to the gradient of
any scalar function p:

[¢ - VpdV =0 (14)
| 4

This means that pressure is eliminated from the Navier-Stokes equation, Eq. (1), by
the Galerkin procedure only, and the resulting equation, Eq. (12), does not contain
any equation without time derivative. Second, conservative properties

f(vv)v cvdV = [(vV)a- 0dV =0 15)
| 4 | 4

are introduced in Eq. (12) as equality B,,;,X,, X, X, = 0 for any current values
of variables X,. This means that all the dissipative properties of Eq. (12) are
determined by matrix A,,,, which contains projections of the dissipative terms of
Egs. (1) and (2) on the phase space with coordinates X,.

Matrix §,,, in Eq. (12) is not diagonal because of the nonorthogonality of the
basis functions. It depends on the boundary conditions and the aspect ratio but not
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on the Grashof and Prandtl numbers. So for a problem with fixed aspect ratio,
matrix §,,, may be inversed and the right-hand side of Eq. (12) may be multiplied
by the inverse matrix only once for all values of Pr and Gr. As a result, Eq. (12) is
replaced by a modified system with resolved time derivatives:

dx, (1)
dt

where the asterisk (*) corresponds to a matrix from Eq. (12) multiplied by S,,;.

A completely explicit form of Eq. (16) allows us to use standard numerical
methods developed for systems of ordinary differential equations both for obtain-
ing its stationary and nonstationary solutions and investigation of the stability of
solutions. Namely, the stationary solution X° of the system Eq. (16) is unstable if
the Jacobi matrix,

X,
Jnk X =Ay + (Boy + Bry)X, an
X

at X = X° has at least one eigenvalue A with Re A > 0. Thus the investigation of
stability for given Pr and A4 requires the determination of such values of Gr that
provide zero real part Re A = 0 of the dominating eigenvalue A (eigenvalue with
the maximal real part). The imaginary part Im A of the dominating eigenvalue gives
an estimation of cycle frequency of the oscillatory flow that develops after the
onset of instability.

Eigenvector X, corresponding to the dominating eigenvalue A, such as
Re A = 0, defines the most unstable perturbation of the system Eq. (16). The most
unstable perturbation of the convective flow may be calculated using series Eq. (7)
with coefficients ¢;; and d;; defined as components of the eigenvector Xy from
Eq. (13).

Equations (16) and (17) are completely explicit with respect to the time
derivatives and the components of the Jacobi matrix, and their right-hand parts
contain only matrix operations. Effective vectorization of the computational pro-
cess may be easily reached if there is enough computer memory to keep all the
components of matrixes 4, B, and F. Due to nonorthogonality of the basis
functions, these matrices are completely filled by nonzero elements. For example,
matrix B,,, corresponding to the nonlinear terms of the Boussinesq equations,
contains N?/2 nonzero elements, where N is the total number of modes. Thus the
total number of modes that may be used in the computations is strongly restricted.
This may be considered the most serious disadvantage of the numerical method
discussed.

In the computations described, stationary solutions of the system Eq. (17)
were calculated with the Newton method, and eigenvalues of the Jacobi matrix
were computed using QR decomposition. It was possible to use no more than 900
modes in total. One run of the Fortran code contained calculation of stationary
solutions, analysis of their stability, localization of the critical Grashof number
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(Gr,,), and calculation of the eigenvector, which needed less than 3 min on the
Hitachi supercomputer S3800/480.

Stream function ¢ and Nusselt number Nu, computed at the boundary
x = 0 are used below for the description of the results. Both were calculated from
the analytical formulas following from Eqgs. (7)-(10).

AT o oy
Y= E 2( + l) 1+l( )1=20 mj;+1(_)’) v, = a—y v, = —3;
18
1 ao i+
Nuo = L (Ez)x=0dy = 2120( 1) l(l + l) a; Z B]l<7;+1aT0> (19)

RESULTS

Convection of Low-Pr Fluid in a Long Horizontal Cavity (GAMM test)

The problem considered is that of oscillatory instability of convection of fluid
with Pr = 0.015 in a laterally heated rectangular cavity with aspect ratio 4 = L/
H = 4. This problem was accepted as the GAMM test for comparison of different
numerical methods [11]. According to Ref. [11], four types of boundary conditions
on the horizontal boundaries are considered: the R -R_ case for rigid, perfectly
conducting horizontal boundaries; the R,-R, case for rigid adiabatic horizontal
boundaries; the R -F, case for perfectly conducting horizontal boundaries, where
the lower boundary is rigid and the upper boundary is stress free; and the R,-F,
case for adiabatic horizontal boundaries, where the lower boundary is rigid and the
upper boundary is stress free. In this section, a modified definition of the Grashof
number, Gr* = Gr H/L, is used to make comparisons with other works more
apparent.

In cases R,-R, and R_-R_ the convective flow is symmetric with respect to
rotation 180° around the center of the cavity. This symmetry appears in the basis
functions as a result of symmetric homogeneous boundary conditions in such a way
that one half of the functions is symmetric and the other half is antisymmetric:

¢ij(x,y) = (_1)i+j¢ij(1 -x,1-y) qij(x’ y) = (_I)HHIQU(I -x,1-y)
(20)

This property allows us to exclude half the modes when the stationary solution is
calculated. Antisymmetric modes cannot be excluded from the analysis of stability
because instability may be connected with a break of symmetry. In both cases
R,-R, and R -R_, instability analysis showed that the most unstable perturbation
is also symmetric. This is in complete agreement with several straightforward
calculations [12-14, 8], which show preservation of symmetry in instantaneous
patterns of supercritical flows, as well as with patterns of eigenvectors obtained
with bifurcation analysis by Winters [6, 7].
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Table 1. Results Obtained for the R -R Case and Comparison with Results of Previous Work:
GAMM Test, Cavity with L/H = 4, Gr* = Gr H/L, and Pr = 0.015

Previous work
From 35 x 101 60 X 24
81 x 321 30 X 16 Non Finite

Uniform to 40 X 30 uniform elements and

Present work finite difference Chebyshev finite difference bifurcation

mesh modes mesh analysis
26 X 10 28 x 12 30 x 14 [15] [8, 9] [12] [6, 71
Gr* = 25,000, stationary solution
V,ax 0.4338 0.4335 0.4337 0.4334 0.4337 0.4169 —
Upax (x=1) 07042 0.7052 0.7055 0.7037 0.706 — —
Vaoax (y = 05 05703 05716  0.5717 0.5684 0.568 — —
Oscillatory instability onset
GrX x107% 2775 2826 283 — 2.8-2.85 25-285 2.8153
fa 17249 17517 17.529 — 17.45 <17.63 17.445

Examples of convergence of the considered Galerkin method for case R -R,
and comparison with the results of other authors are shown in Table 1. As is seen
from the table, 26 basis functions in the x direction and 10 functions in the y
direction provide two correct digits both for the stationary solution with Gr* =
25,000 and for values of the Gr,, and the critical frequency (f.,). Increasing the
number of modes up to 30 X 14 functions approves convergence of the method. All
the results are in good agreement with the results of previous work.

It should be noted (see Table 1) that the total number of scalar unknowns
necessary in the present computations was noticeably less than the total number
of unknowns in other numerical analyses using finite difference or finite element
methods. Pulicani et al. [8, 9] used the tau spectral method with Chebyshev poly-
nomials as basis functions, and obtained accurate results for subcritical stationary
flow with 30 X 16 modes. But for accurate computation of the critical Grashof
number, 40 X 30 Chebyshev polynomials were necessary. Winters [7] also reported
that accurate prediction of Gr, requires a finer grid than calculation of the
stationary flow only.

Analysis of the numerical solutions obtained in this work with a different
number of Galerkin modes showed that the main difficulty both in case R,-R, and
case R-R, is related to accurate determination of the position of two smaller
convective vortices (see Figure 1). This may be a sequence of minimization of error
used in the Galerkin method: spatially distributed error is minimized on average,
so local errors may remain relatively large even if the averaged error is small.

Results of stability analysis and comparison with previous works are shown in
Table 2. In cases R,-F, and R_-F, there are no symmetrical properties and all the
Galerkin coefficients have nonzero values. This produces stronger restrictions for
truncation of the Galerkin series. On the other hand, the spatial structure of the
convective flow in these two cases is simpler than in the case of two rigid horizontal
boundaries (see Figure 2), which allows us to obtain comparable results with
24 X 10 Galerkin modes.
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o

Figure 1. Streamlines and isotherms
(solid lines), and the most unstable per-
turbations of the stream function and the
temperature (dashed lines) for (a) case
R.R,, Gr = 2.835 x 10%, and (b) case
R,-R,, Gr = 3330 X 10*, at Pr = 0,015,
30 X 14 Galerkin modes.

Table 2. Comparison of Critical Grashof Numbers and Frequencies of Oscillations with Results of
Previous Work: GAMM Test, Cavity with L /H = 4, Gr* = Gr H/L, Pr = 0.015

Previous work
35 x 101 From
60 x 24 and 40 X 16 to
Finite 41 x 121 50 x 20 From
element Non- Pseudo- 30 x 16
and bifur- uniform spectral to 40 X 30
Present work cation finite difference =~ Chebyshev Chebyshev
analysis mesh modes modes
24x10 30x14 [6, 71 [12] [13] [8,9]

R.-R_ case — 2.83 2.8153 2.5 %285 2.7875 2.8 X285

GrX x 1074

fa — 17.529 17.445 <17.63 17.27 17.45
R,-R, case — 3.330 3.3002 3.25-3.35 — 3.30-3.35

Gr* x 1074

fa — 19.765 19.656 19.06-20 — <19.72
R_-F, case 1.477 — 1.4767 1.475-15 1.365 1.40-1.47

GrX x 1074

fo 12.814 — 12.818 <1294 12.33 <13.07
R,-F, case 1.937 — 1.6598 1.90-1.95 — 1.85-1.90

GrX x 1074

fa 14.962 — 13.557 <15.01 — <1491
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Figure 2. Streamlines and isotherms
(solid lines), and the most unstable per-
turbations of the stream function and the
temperature (dashed lines) for (a) case
R.-F,, Gr =1.477 X 10*, and (b) case
R,-F,, Gr = 1.937 x 104, at Pr = 0.015,
24 x 10 Galerkin modes.

Streamlines, isotherms, and patterns of the most unstable perturbations for
Gr,, in cases R,-R, and R.-R, are shown in Figure 1. Solid lines are used
for plotting the streamlines and isotherms, and dashed lines for the isolines
of the most unstable perturbations. In the case of oscillatory instability, the eigen-
vector of the linearized system has complex components. Since the eigenvector
is defined within multiplication by a complex constant, only the absolute value of
the eigenvector has physical meaning and is plotted.

As is seen from Figure 1, patterns of the streamlines as well as patterns of the
stream function perturbations are similar in both cases R,-R, and R_-R_. This
leads to the conclusion that in both cases, convective instability is connected with
instability of fluid flow, in spite of different patterns of the perturbation of the
temperature. Maximal values of the stream function perturbations are located at
the periphery of the central vortex. It may be supposed that instability is caused by
interaction between the central vortex and smaller vortices. Such a supposition
corresponds to results of analysis of slightly supercritical flows made by Winters [5,
6], and straightforward solutions by Pulicani et al. [8, 9] and Ben Hadid and Roux
[12] who reported that synchronous oscillations of smaller vortices existed together
with pulsations of the central vortex. The same oscillations were obtained in the
case Pr = 0, which shows a completely hydrodynamical origin of the instability.
This conclusion was confirmed in this work by analysis of patterns of the stream
function perturbation for Pr = 0, which was found to be the same as for Pr = 0.015.

Thus, instability mechanisms for different thermal boundary conditions are
the same in both cases R,-R, and R-R.. On the other hand, thermal boundary
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conditions influence fluid velocity, and thus the Gr_,. Oscillations of the temper-
ature in these cases are sequences of the velocity oscillations. But, as one can
conclude from the patterns of temperature perturbations, spatial distributions of
the amplitude oscillations of the temperature are different for different boundary
conditions. In case R,-R, (see Figure 1b) the most intensive oscillations of the
temperature may be expected in the center of the cavity, where the maximum
perturbation is located. But in case R -R_, maxima of the temperature perturba-
tion are shifted from the center toward the boundaries, and at least two maxima in
spatial distribution of the oscillation amplitude may be expected.

Patterns of convective flows corresponding to Gr, and the most unstable
perturbations for the R,-F, and R -F, cases are shown in Figure 2. One can see
from the figure that for a stress-free upper boundary the same conclusion about
instability of the fluid flow takes place: patterns of the streamlines as well as
patterns of their perturbations are similar in both cases. The same patterns were
obtained in the case of Pr = 0. As in the case of rigid upper boundary maxima of
stream functions, perturbations are located at the periphery of two vortices.
Oscillations of these vortices were reported by Behnia and de Vahl Davis [15]
in the case of Pr = 0, and by Pulicani et al. [9] for cases Pr = 0 and R,-F,,
Pr = 0.015. These results are in agreement with the pattern of the most unstable
perturbation obtained in this work.

As in the case of two rigid horizontal boundaries, patterns of the temperature
perturbation are different in cases R ,-F, and R -F,. Maxima of the perturbation of
the temperature in case R _-F, are located in the bulk flow, but in case R,-F,, on
the horizontal boundaries. As was mentioned for cases R,-R, and R -R_, thermal
boundary conditions do not influence the instability mechanism, but do influence
fluid velocity and the Gr,,.

Convection in a Square Cavity

In the case of a laterally heated square cavity the oscillatory instability of
convection is investigated for three different values of Pr: Pr = 0.015 (low-Pr fluid),
Pr = 0.71 (air), and Pr = 7.0 (water). Values of Gr,, and f,, obtained using from
20 to 30 basis functions in each spatial direction, are shown in Tables 3 and 4.
Henkes and Hoogendoorn [16] discovered that frequency of oscillations scaled by
the Brunt-Vaisala frequency L(gBAOL)~!/? does not depend on Gr for a rather
wide interval of supercritical values of Gr. The scale of the frequency used here is
v/L?, and one can find that f*L(gBAOL)"!/? = f, /Gr'/?, where f* and f,, are
dimensional and nondimensional values of the critical frequency. The ratio
f../Gr'/? is also reported in Tables 3 and 4.

Case of Low-Pr Fluid. Analysis of results obtained in the case of Pr = 0.015
(see Tables 3 and 4) confirms that accurate calculation of the critical parameters
requires better spatial resolution than calculation of a stationary flow. As can be
seen from Tables 3 and 4, to obtain two correct digits in values of Gr, for
Pr = 0.015, more than 26 X 26 functions are necessary for conducting horizontal
boundaries and 24 X 24 for adiabatic. On the other hand, values of the scaled
critical frequencies f,,/Gr'/? are close for all reported truncations. Moreover, no
change in the patterns of the most unstable perturbations was observed when



8ST°0 0€19T°0 SET9T0 910 $191°0 91910 610 10/ %f
£'6ET — — 9b'SpT SSSPT eshl oLyl 60v1 8'091 *f
¢-0L X ®1n
€C'L — — TErs LET'S [4%'] 0c'8 9L 0L 0L=1d
8YT'0 0S22°0 TESESTO  19SEST'0 19S€ST°0 65S€ST°0 SYSEST'0 LISEST0 9¢ST0 w1/ %
LTy 1'96€ 86'9€ 16°9€Y 16'9€p 16'9¢ £6'9€Y 1T°LEY TULEy . “f
5-01 X ¥10
96'C 660°€ LOL6T L0696'C 60696'C 1696°C L696'C €L6'T 6T IL0=1g
65260 £926'0 86260 LEE6D €LT6°0 6026'0 w13/ f
— — — 1'STST TITST 9'€IsT 9'8TST 6°18ST €'p861 °f
9-0T X "19
— — — €ILT L69°T $9'T 89°C 16T 96'C S100 = 1d
[o1] [61] [s] 0€ X 0¢ 87 X 8 97 X 9T vZ X ¥ WXW 0T X0T
ysow sapowt sisATeue
uaIPIp  AoYsAqaY) uoned FFom Jussald
Uy [enoods  -imyiq pue
08 X 08 -opnasd aﬁoEo—o
X1y anury
8T X 8T
NI0M SNOIADI]

9PIS 9y Wox Sunesy pue S[TeM [e0ZLOY Sunonpuoy Aoopag

s K1) arenbg 10 SNOIAAIJ JO SIMSIY YIM SUONEIISO JO S310uaNboLY PUE S19quINN JOYSeID) [eOnI) JO Uostredwo)) *¢ AqEL

638



OSCILLATORY INSTABILITY OF BUOYANCY CONVECTION 639

Table 4. Comparison of Critical Grashof Numbers and Frequencies of Oscillations with Results of
Previous Work: Square Cavity with Adiabatic Horizontal Walls and Heating from the Side

Previous work
40 X 40 to
121 X 121 160 X 160
Finite Finite
Present work difference difference
mesh mesh
20X 20 22X 22 24Xx24 26X26 28x28 30x30 [14] [16]
Pr = 0.015 2.83 2.97 2.89 293 2.899 2.907 — —
Gr,, X 107¢
fa 1,363 1,374 1,367 1,371 1,367.1 1,368.3 — —
f./Grl/2 0.810 0.797 0.804 0.801 0.8029 0.8026
Pr =0.71 0.54 0.68 0.87 1.08 1.35 1279  2.68-2.82 2.82
Gr,, X 1078
fa 6,358 3,537 4,668 7,153 9,175 13,570 630 819.5
9,907
f./Gr/? 0.87 0.43 0.50 0.688 0.790 1.20 0.0446 0.0488
0.590
Pr=170 — 0.34 0.41 0.31 0.402 0.392 — 5.7
Gr, X 1078
fa — 3279 3,860 3,623 4,474 4,745 — 2,103
24,851
fo/Gr/? 0.56 0.60 0.65 0.706 0.758 0.088
1.04

the number of modes was increased from 18 X 18 to 30 X 30. Thus, the qualita-
tive description of the instability is already correct for the 18 X 18 truncation, but
calculation of the quantitative characteristics needs better accuracy.

Streamlines, isotherms, and isolines of the most unstable perturbation for
Pr = 0.015 are shown in Figures 3b and 3c. Figure 3a illustrates the oscillatory
instability for Pr = 0. Unlike the case of a long horizontal cavity, patterns of the
stream function perturbation differ for different boundary conditions, as for Pr = 0
and Pr = 0.015.

In the case of Pr = 0, perturbation of the stream function (see Figure 3a)
is symmetric with respect to rotation in 90° (not only 180°) around the center of
the cavity. It has the maxima on the diagonals and the minimum in the center
of the square. Instability onset may be described in this case as pulsations of
the main convective vortex with the maxima of amplitude located near diagonals
of the square between the center and all four corners.

In the case of Pr = 0.015 and perfectly conducting horizontal boundaries (see
Figure 3c), perturbation of the stream function is also symmetric with respect
to rotation of 90°. But perturbation of the temperature has only 180° rotation
symmetry. Furthermore, perturbation of the stream function in this case rapidly
increases near the boundaries. Its maxima are shifted from the diagonals and the
center toward the boundaries. It is obvious that differences in the pattern of the
stream function perturbation in this case and the case of Pr = 0 are caused
by interaction with perturbation of the temperature, which has maxima near the
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Figure 3. Streamlines and isotherms
(solid lines), and the most unstable per-
turbations of the stream function and the
temperature (dashed lines) for the case
of low-Pr fluid: (a) Pr = 0, Gr = 1.09 X
10°; (b) adiabatic horizontal boundaries,
Pr = 0.015, Gr = 2.9 X 10%; and (c) con-
ducting horizontal boundaries, Pr =
0.015, Gr = 2.8 x 108,

vertical boundaries of the cavity. As a result, one can expect intensive oscillations
of the velocity and the temperature in the boundary layer developing after onset of
instability.

Completely different patterns of the most unstable perturbation characterize
the onset of instability in the case of adiabatic horizontal boundaries and Pr = 0.015
(see Figure 3b). Perturbation of the temperature in this case has a maximum in the
center of the cavity and is weak near the boundaries. Perturbation of the stream
function has two sharp maxima in the core flow and decays rapidly toward the
center as well as toward the boundaries. Convective oscillations in this case will
appear in the central region of the flow, and no boundary layer effects may be
expected after the onset of instability.

Comparison of the temperature perturbations in the cases of a square cavity
and a cavity with 4 = 4 (see Figures 1 and 3) shows that in both cases, pertur-
bations of the temperature have their maxima in the center of the cavity when
horizontal boundaries are adiabatic, and two maxima when horizontal boundaries
are perfectly conducting. As mentioned in the previous section, the instability
mechanism in the case A =4 is completely hydrodynamical. Similarity in the
patterns of the perturbation of the temperature allows us to conclude that in
the case 4 = 1, convective instability still has a hydrodynamical origin but is
strongly influenced by distribution of the temperature.
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Case of Perfectly Conducting Horizontal Boundaries for Pr=0.71
and Pr= 0.7. The case of perfectly conducting horizontal boundaries and Pr =
0.71 shows the best convergence. In this case, even the 6 X 6 truncation used by
Gelfgat [1] provided reasonable values of Gr_, and f_,. As follows from Table 3 for
Gr,,, the 20 X 20 basis functions provide three correct digits, and five correct digits
can be obtained with 30 X 30 truncation. Convergence of values of the critical
frequency is more rapid: five correct digits were already obtained with 26 X 26
truncation.

Increase of Pr from 0.71 to 7.0 for the same boundary conditions leads to
much worse convergence (see Table 3). In this case, a value correct to three digits
for Gr,, is hardly obtained with 30 X 30 basis functions. But the ratio f, /Gr!/?
already has two correct digits for 22 X 22 and three correct digits for 24 X 24
truncation, which shows that in all cases the same instability mechanism was
obtained. This conclusion may be confirmed with the analysis of the most unstable
perturbations, which do not show any qualitative difference when the number of
basis functions is increased from 20 X 20 to 30 X 30.

Patterns of the most unstable perturbations, shown in Figure 4, may be used
to explain why worse convergence is observed for higher values of Pr. Perturbation
of the temperature is intensive in a thin layer near the vertical boundaries of the

Figure 4. Streamlines and isotherms (solid lines), and the most
unstable perturbations of the stream function and the temperature
(dashed lines) for the case of perfectly conducting horizontal
boundaries: (a) Pr = 0.71, Gr = 2.97 X 10° and (b) Pr = 7.0, Gr =
8.3 x 10°.
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cavity. This layer is thinner in the case of Pr = 7, and this makes polynomial
approximation of the perturbation more difficult.

For Pr 0.71 and 7.0, and perfectly conducting horizontal boundaries, patterns
of the most unstable perturbations are similar (see Figure 4). Both stream function
and temperature perturbations are intensive near the vertical walls of the cavity
and decay toward the center. Maxima of the stream function perturbation are
located near maxima of the stream function, and maxima of the perturbation of the
temperature occur in the lower left and upper right corners of the cavity. As
already mentioned, the area near the vertical boundaries, where the perturbation is
intensive, becomes thinner with increasing Pr (see Figure 4). One can conclude
that larger values of Pr lead to formation of a thermal boundary layer near the
vertical boundaries, where the most intensive oscillations of the temperature take
place. These oscillations appear in the lower left and upper right corners, move
with the convective flow along the vertical boundaries, and decay in the core region
of the flow. Perturbations of the stream function in both cases are intensive in
approximately the same areas near the vertical boundaries. It may be supposed
that in these cases, oscillations of velocity are a sequence of the temperature
oscillations appearing in the corners of the cavity.

In the case Pr = 7 the value of Gr,, obtained by Henkes and Hoogendoorn
[16] by straightforward simulation is smaller than the one obtained here with
bifurcation analysis. It is possible that there is no contradiction between these two
results. Linear stability analysis used in the present investigation gives only suffi-
cient conditions of instability, so the real value of Gr, corresponding to finite
amplitude perturbations may be less than Gr, obtained by investigation of the
spectrum of the linearized equations.

Henkes and Hoogendoorn [16] related the instability mechanism illustrated in
Figure 4 with the Rayleigh-Benard instability, which may be caused by an unstable
local vertical temperature gradient near the left side of the lower and the right side
of the upper horizontal boundaries. The present analysis shows (see Figure 4) that
the maxima of the temperature perturbations are in the corners of the cavity,
where the shape of the isotherms changes from almost horizontal to almost
vertical. In this area both vertical and horizontal components of the temperature
gradient are large, so the instability mechanism has to be connected with the
interaction between unstable vertical stratification tending to move colder fluid
down and hotter fluid up, and horizontal stratification tending to move all the fluid
up near the hot boundary and down near the cold one.

Case of Adiabatic Horizontal Boundaries for Pr=0.71 and Pr=0.7.
Results in the cases of Pr = 0.71 and Pr = 0.7 and adiabatic horizontal boundaries
differ drastically from the previous case. No convergence was reached for either
value of Pr (see Table 4). Values of Gr, obtained for 28 X 28 and 30 X 30
truncations are close, but values of f_ apparently show that there is no conver-
gence. Results of straightforward numerical simulations carried out by Henkes and
Hoogendoorn [16] and Paolucci and Chenoveth [14] as well as experiments of Ivey
[17] showed that, in this case, convective oscillations are observed for Gr > 2.5 X
10® for Pr = 0.71 and Gr > 5 X 108 for Pr = 7.

As is seen from Table 4, Gr, values are underestimated approximately by a
factor of two for Pr = 0.71 and more than a factor of 10 for Pr = 7. Probable
reasons for the absence of convergence may be seen from Table 5 and Figure 5.
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0 005 x 0.1

Figure 5. Results obtained for stability of convection of air (Pr = 0.71) with
30 X 30 truncation: (a) streamlines (left) and isotherms (right) of the convec-
tive flow, (b) isolines of the computed most unstable perturbation of the
stream function (left) and the temperature (right), and (c) fragments of the
most unstable perturbation for 0 < x < 0.1.
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Table 5 contains results for the test offered by de Vahl Davis [18). Station-
ary convection of air (Pr = 0.71) for Ra = Gr Pr = 10° is considered. Analysis of
the results obtained for different truncations (from 20 X 20 to 30 X 30 modes)
and comparison with results of other works show very good convergence for all
reported values of the stream function and velocity. However, convergence of Nu
computed at the hot wall is much worse. Nu is always overestimated and decreases
with the increase of number of basis functions. It is obvious that for larger values
of Ra (or Gr), heat transfer through the cavity will also be overestimated, which
may lead to the underestimation of the Gr,,.

The reason for worse approximations of temperature than of velocity may
be seen from Figure 5, where nonconverged results of stability analysis for
the 30 X 30 truncation are shown. Thin temperature and velocity boundary layers
(Figure 5a) are apparent. It is obvious that accurate approximation of such rapidly
changing functions by smooth polynomials is very difficult. The boundary layer of
the temperature is thinner than the velocity boundary layer and thus convergence
of the Galerkin series of the temperature is worse. The most unstable perturbation
(see Figure 5b) is also localized in the boundary layer. As one can see from
fragments of the perturbation (Figure 5c) areas are very thin where perturbations
are large. The characteristic width of the stream function perturbation is about 8%
of the characteristic length, and the width of the temperature perturbation is
approximately 2 times thinner. This obviously creates additional difficulties for the
stability analysis. Boundary layers in the case of Pr = 7 are even thinner, which
leads to larger errors in the values of Gr,,.

DISCUSSION

In all cases when convergence was reached, the Galerkin spectral method
with basis functions defined by Eqgs.(7)-(10) needed fewer scalar modes than any
other method used for the solution of the same problem. Even the spectral tau
method with a Chebyshev basis used by Pulicani et al. [8, 9] needed more than 2
times the number of modes to obtain correct values of Gr,, for the R -R_ case of
the GAMM test.

The ability to reduce the number of modes is related to the special choice of
the basis functions, which satisfy all the boundary conditions and the continuity
equation. Thus, the solution is sought not in general functional space but in the
subspace of divergent-free functions satisfying all the boundary conditions. More-
over, conservation properties, Eq. (15), valid for all functions belonging to this
subspace are satisfied analytically. Besides decreasing the necessary number of
modes, such a basis allows us to exclude pressure and avoid implicit steps con-
nected with calculation of pressure or vorticity in the numerical procedure. It must
be emphasized that the procedure used here for construction of the basis functions
may be applied to any rectangular region with any linear boundary conditions if
nonhomogeneity of a boundary condition is excluded by an appropriate change of
variables.

It was shown that the main difficulties of application of the numerical
method considered here are connected with accurate approximation of small-scale
vortices and especially with thin boundary layers. It was also shown that for
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investigation of instability, better spatial resolution of the flow is necessary for
- accurate calculation of a stationary flow. This is the same conclusion made by
Winters [6, 7], who investigated GAMM test problems by the finite element
method together with bifurcation analysis.

In two cases described, convergence was not reached up to a 30 X
30 truncation. For these cases (see Table 4), finite difference methods need more
than 100 nodes in both directions. If convergence of the described Galerkin
method could be reached, for example, with a 50 X 50 truncation, it will sufficiently
decrease the amount of scalar variables.

Chebyshev polynomials were used in definition of the bases Egs. (9) and (10)
mainly because of their convenient properties, which allow us to obtain simple
analytical formulas for all the necessary inner products. It is clear that smooth
polynomials are not the best choice for approximation of solutions with very thin
boundary layers. Better Galerkin bases may be found for such problems, but it
remains completely unclear how to choose the best Galerkin basis for a given
hydrodynamical problem.

APPENDIX

Formulas for coefficients a;;, B;, f;;, and g;, are reported below.

For boundary conditions 6(x =0) = 8(x =1) =0, a;; =0, a;, = —1. For
boundary conditions 8'(x =0) = 0'(x=1) =0, a;; =0, a;, = —i%/(i + 2)%

For no-slip conditions v(x = 0) = v(x = 1) = 0,

fu=f3=0
8 _ i G+DG+4 o
fo==3 fe=-Giy a7
4 G+ DG +4) ,
fo4=§ fi4=—i—(i+T i>0

For a stress-free upper boundary, (y = 0) = 0 or dv,/dy(y = 1) = 0,v,(y =
1)=0:

2 G+ 1)? o
= — = >
g = 35 En = “P sz 17 ’
16 i+ 8%+ 26/ +40i + 24 .
-2 >
Bo2 7 8n i+ 80 + 2202 + 21i :
6 ) i2+4i+3 >0
=77 & P+ 52+ !
4 i+ 8%+ 22i2 +27i + 12 S0
= — L, = >
fu =3 8is i+ 80 + 222 + 21 !
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