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a b s t r a c t 

The applicability of the Squire’s transformation for stability analysis of stratified two-phase flow in hori- 

zontal and inclined channels is examined. It is shown that for the considered flow such a transformation 

requires some additional constraints on the change of the inclination angle and flow rates of each of the 

phases. While the Squire’s theorem (on the two-dimensionality of the critical disturbances) rigorously 

holds for the horizontal two-phase flow, for the inclined flow an exact mathematical theorem cannot be 

formulated. Nevertheless, it has been proven that 2D perturbations are the critical ones also for the case 

of inclined channel, since the transformation of a 3D stability problem to its 2D analog is associated with 

a stabilizing effect of reducing the system inclination, in addition to the reduction of the phases flow 

rates as in the case of horizontal flows. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Stability of horizontal and inclined stratified two-phase plane-

parallel flow is commonly studied in the framework of two-

dimensional (2D) analysis, which considers only perturbations in

the plane of the flow, while, to the best of our knowledge, oblique,

i.e., three-dimensional (3D), perturbations have never been

considered. 

For a single-fluid plane Poiseuille flow, Squire (1933) was the

first to show the equivalence between the linear stability of a 3D

perturbation and that of a 2D perturbation but at a lower Reynolds

number. Squire presented the relations between wavenumbers of

3D perturbations and their 2D equivalents and between the corre-

sponding Reynolds numbers. Since then these relations are known

as the Squire’s transformation ( Drazin and Reid, 2004 ). Using this

transformation it can be easily proved that for each unstable 3D

disturbance there is a more unstable 2D one. This allows one to

conclude that consideration of the 2D stability problem is suffi-

cient for a given plane Poiseuille flow. The latter is referred to in

the literature as the Squire’s theorem ( Drazin and Reid, 2004 ). 

Stability problems with several governing dimensionless pa-

rameters may also be subject to transformations of Squire’s type.

However, in contrast to those governed by the Reynolds number

only, for some of the parameters the transformation may have

a destabilizing effect. In such cases the Squire’s theorem is not
∗ Corresponding author. 
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pplicable for justifying the claim that the primary instability in

he flow is associated with 2D perturbations (i.e., in the plane

f the flow). For example, Gumerman and Homsy (1974) derived

 Squire’s transformation for thermally stratified horizontal two-

hase flow and demonstrated that due to the competing effects

f shear, surface tension and gravity the Squire’s theorem (i.e.,

he criticality of 2D perturbations) cannot be claimed. Smyth and

eltier (1990) and later Gelfgat and Kit (2006) showed that in den-

ity stratified mixing layers instability can be triggered by 3D per-

urbations. On the other hand, Pearlstein (1985) proved the 2D

ature of the critical disturbances for double-diffusive plane paral-

el (single phase) shear flows with varying temperature and con-

entration. For stratified two-phase flow, following the claim of

ih (1955), Hesla et al. (1986) established the sufficiency of 2D

erturbations for the case of horizontal channel, provided that

he density stratification is stabilizing (i.e., the upper phase is

ighter than the lower phase). Yiantsios and Higgins (1988) and

illey et al. (1994) discussed the possible inapplicability of the

quire’s theorem for zero-gravity condition and flow in an inclined

hannel, respectively, drawing a conclusion that for such circum-

tances a three-dimensional analysis may be required. In a recent

tudy, Allouche et al. (2015) compared stability with respect to 3D

nd 2D perturbations for a film flowing down an inclined surface.

hey argued that by combining the Squire’s transformation and the

esults of 2D analysis, the 2D perturbations are found to be al-

ays more unstable. However, the validity of the Squire’s theorem

n the case of inclined stratified two-phase flow has never been
stablished. 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.09.018
http://www.ScienceDirect.com
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Fig. 1. Configuration of stratified two-layer flow in an inclined channel ( z -axis 

comes out of the page). 
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In a recent study of Barmak et al. (2016b) , the linear stability of

tratified two-phase flows in inclined channels with respect to 2D

erturbations of an arbitrary wavenumber was explored. The study

as aimed at identifying the parameter regions for which a stable

tratified configuration (with respect to all wavenumber perturba-

ions) exists in gas-liquid and liquid-liquid concurrent and counter-

urrent flows. Attention was given to the operational conditions

ssociated with the multiple-solution regions to reveal the feasibil-

ty of non-unique stable stratified configurations in inclined chan-

els. Carrying out such a comprehensive analysis with respect to

ll possible 3D perturbations is practically unfeasible. Therefore, a

uestion arises to what extent the stability of stratified two-phase

ow can be determined by considering only 2D perturbations in

he general case of inclined concurrent or countercurrent flows. 

In this study, an appropriate transformation in the spirit of

quire (1933) is applied to convert the 3D stability problem to

n equivalent 2D one for the case of inclined stratified two-phase

ow. We show that for the considered flow such a transformation

equires some additional constraints on the change of the incli-

ation angle and flow rates of each of the phases. We show that

he Squire’s theorem rigorously holds for the horizontal two-phase

ow. For the inclined flow, however, no exact mathematical theo-

em can be formulated. We argue, however, that in spite the ab-

ence of a rigorous mathematical formulation, the 2D perturba-

ions are the most unstable one at least for most of practically im-

ortant cases also in inclined two-phase flows. 

. Problem formulation 

The flow configuration of a stratified two-layer flow of two im-

iscible incompressible fluids in an inclined channel (0 ≤ β <

/2) is sketched in Fig. 1 . The flow, assumed to be isothermal, is

riven by an imposed pressure gradient and a component of the

ravity along the channel walls. The interface between fluids, la-

eled as j = 1, 2 (1 – lower (heavy) phase, 2 – upper (light) phase),

s assumed to be flat in the undisturbed base flow state. The flow

n each of the fluids is described by the continuity and momentum

quations that are rendered dimensionless in the standard manner

see Kushnir et al., 2014), scaling lengths by the height of the up-

er layer h 2 , velocities by the interfacial velocity u i , time by h 2 / u i ,

nd pressures by ρ2 u 
2 
i 
. 

For the indicated three-dimensional coordinate system (where

 comes out of the page), the dimensionless continuity and mo-

entum equations governing the flow are 

∂ u j 

∂x 
+ 

∂ v j 
∂y 

+ 

∂ w j 

∂z 
= 0 , 

∂ u j 

∂t 
+ u j 

∂ u j 

∂x 
+ v j 

∂ u j 

∂y 
+ w j 

∂ u j 

∂z 

= − ρ1 

r ρ j 

∂ p j 
∂x 

+ 

1 

Re 2 

ρ1 

r ρ j 

m μ j 

μ1 

(
∂ 2 u j 

∂ x 2 
+ 

∂ 2 u j 

∂ y 2 
+ 

∂ 2 u j 

∂ z 2 

)
+ 

sin β

Fr 2 
, 
∂ v j 
∂t 

+ u j 

∂ v j 
∂x 

+ v j 
∂ v j 
∂y 

+ w j 

∂ v j 
∂z 

= − ρ1 

r ρ j 

∂ p j 
∂y 

+ 

1 

Re 2 

ρ1 

r ρ j 

m μ j 

μ1 

(
∂ 2 v j 
∂ x 2 

+ 

∂ 2 v j 
∂ y 2 

+ 

∂ 2 v j 
∂ z 2 

)
− cos β

Fr 2 
, 

∂ w j 

∂t 
+ u j 

∂ w j 

∂x 
+ v j 

∂ w j 

∂y 
+ w j 

∂ w j 

∂z 

= − ρ1 

r ρ j 

∂ p j 
∂z 

+ 

1 

Re 2 

ρ1 

r ρ j 

m μ j 

μ1 

(
∂ 2 w j 

∂ x 2 
+ 

∂ 2 w j 

∂ y 2 
+ 

∂ 2 w j 

∂ z 2 

)
, (1) 

here u j = ( u j , v j , w j ) and p j are the velocity and pressure of the

uid j , ρ j and μj are the corresponding density and dynamic

iscosity. In the dimensionless formulation the lower and upper

hases occupy the regions −n ≤ y ≤ 0, and 0 ≤ y ≤ 1, respec-

ively, where n = h 1 / h 2 . The other dimensionless parameters are the

eynolds numbers Re 1 , 2 = ρ1 , 2 u i h 2 / μ1 , 2 ( Re 1 = Re 2 r/m ) , the light

uid Froude number Fr 2 = u 2 
i 
/ g h 2 , and the density and viscosity

atios r = ρ1 / ρ2 and m = μ1 / μ2 , respectively. 

The velocities satisfy the no-slip boundary conditions at the

hannel walls 

u 1 ( y = −n ) = 0 , u 2 ( y = 1 ) = 0 . (2) 

The disturbed interface y = η( x, z, t ), which is a surface in the

D problem, is defined by a unit-length normal vector n , and t 1 ,

t 2 denote two unit vectors tangential to the interface in xy - and

z -planes, respectively: 

 = 

( −ηx , 1 , −ηz ) √ 

1 + η2 
x + η2 

z 

, t 1 = 

( 1 , ηx , 0 ) √ 

1 + η2 
x 

, t 2 = 

( 0 , ηz , 1 ) √ 

1 + η2 
z 

. (3) 

Boundary conditions at the interface y = η( x, z, t ) require conti-

uity of the velocity components and the tangential stresses, and

 jump of the normal stress due to the surface tension (the square

rackets denote the jump of the expression value across the inter-

ace) 

 1 ( y = 0 ) = u 2 ( y = 0 ) , (4) 

 

t 1 · T · n ] = 

[ 
mμ

μ1 
( −2 ηx u x + ( u y + v x ) − ηz ( w x + u z ) + 2 ηx v y ) 

] 
= 0 . (5) 

 

t 2 · T · n ] = 

[ 
mμ

μ1 
( 2 ηz v y − ηx ( w x + u z ) + ( v z + w y ) − 2 ηz w z ) 

] 
= 0 . (6) 

 

n · T · n ] = 

[
p − mμ

μ1 

2 Re −1 
2 

1 + η2 
x + η2 

z 

((
η2 

x − η2 
z 

)
u x + 

(
1 − η2 

z 

)
v y 

−ηx ( u y + v x ) − ηz ( w y + v z ) + ηx ηz ( u z + w x ) 
)]

= We −1 
2 

ηxx 

(
1 + η2 

z 

)
+ ηzz 

(
1 + η2 

x 

)
− 2 ηx ηz ηxz (

1 + η2 
x + η2 

z 

)3 / 2 
. (7) 

here W e 2 = ρ2 h 2 u 
2 
i 
/σ is the Weber number, and σ is the surface

ension coefficient. 

The interface displacement and the normal velocity components

re coupled by the kinematic boundary condition. 

 j = 

Dη

Dt 
= 

∂η

∂t 
+ u j 

∂η

∂x 
+ w j 

∂η

∂z 
. (8) 

. Base flow 

The unperturbed base flow is assumed to be steady, laminar,

nd fully developed (the velocity U ( y ) is parallel to the channel
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walls and varies only with the cross-section coordinate y ). De-

tails on the exact steady state solution can be found in the lit-

erature (e.g., Ullmann et al., 2003; Barmak et al., 2016b ). The

base flow solution is fully determined by three dimensionless

parameters: the viscosity ratio m , the flow rate ratio q = q 1 / q 2 ,

and the inclination parameter Y = ρ2 ( r −1) g sin β/( −dP / dx ) 2 S . Here

q j is the feed flow rate of phase j (positive in the x direc-

tion), and ( −dP / dx ) jS =12 μj q j / H 

3 is the corresponding superficial

pressure drop for single phase flow in a channel of a height

H = h 1 + h 2 . The Martinelli parameter, which represents the ratio

of the superficial frictional pressure drop in the two phases, is

X 

2 = ( −dP / dx ) 1 S /( −dP / dx ) 2 S = m q . It can replace either q or m . Note

that with q > 0, the solution corresponds to concurrent upward

flow in case of Y < 0, and to concurrent downflow in case of Y >

0. Countercurrent flow, q < 0, is feasible only when the light phase

flows upward, hence for Y < 0. 

Given the parameters ( m,Y, q ) the lower phase holdup,

h = h 1 / H = n /( n + 1), can be obtained by solving the algebraic

Eq. (10) in Barmak et al. (2016b) . Then, all the dimen-

sionless characteristics of the base flow, including the in-

terfacial velocity, ˜ u i = u i / U 2 S = ˜ u i ( m, q, h ) (where U jS =q j / H is

the superficial velocity of fluid j ), the dimensionless veloc-

ity profiles ˜ u (y ) = u (y ) / u i = ˜ u ( m, q, h ) , and the driving forces,
˜ P 1 , 2 ≡ ( d P/d x − ρ1 , 2 g sin β) / ( −d P/d x ) 2 S = 

˜ P 1 , 2 ( m, q, h ) , can be de-

termined. In horizontal flows ( Y = 0), where h = h ( m, q ), and for a

given two-fluid system (i.e., specified m ) the holdup h and all the

dimensionless flow characteristics are determined by the flow rate

ratio, so that the solution is unique. In countercurrent flow ( Y < 0,

q < 0) two solutions are obtained for the holdup, which merge to

a single solution at the flooding point. In concurrent upflow ( Y < 0,

q > 0) and concurrent downflow ( Y > 0, q > 0) up to 3 differ-

ent solutions for the holdup can be obtained in certain ranges of q

and Y . 

4. Linear stability for three-dimensional perturbations 

In the framework of the linear analysis, the perturbed veloci-

ties and pressure fields are written as u j = U j + ˜ u j , v j = ̃

 v j , w j =
˜ w j , p j = P j + ˜ p j , and η = ˜ η for the dimensionless disturbance of

the interface. The base flow is subject for infinitesimal 3D pertur-

bations of the form: 

⎛ 

⎜ ⎜ ⎝ 

˜ u j 

˜ v j 
˜ w j 

˜ p j 
˜ η

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

ū j ( y ) 
v̄ j ( y ) 
w̄ j ( y ) 
p̄ j ( y ) 

H η

⎞ 

⎟ ⎟ ⎠ 

e ( i ( k X x + k Z z ) + λt ) (9)

where ū j , v̄ j , w̄ j , p̄ j and H η are the perturbation amplitudes,

k X , k Z are dimensionless real wavenumbers in the streamwise and

spanwise directions respectively ( k X = 2 πh 2 / l X , k Z = 2 πh 2 / l Z with l X
and l Z being the corresponding wavelengths) and λ is the complex

time increment. In the following discussion the overbars in the no-

tation of the perturbation amplitudes are omitted (e.g., v j instead

of v̄ j ) . Note also that since the collocation method based on the

Chebyshev polynomials (defined in the interval [0, 1]) is applied to

solve the stability problem ( Barmak et al, 2016a ), a new coordinate

y 1 = ( y + n ) / n (0 ≤ y 1 ≤ 1) is introduced for the part of the chan-

nel occupied by the lower phase, while y 2 =y (0 ≤ y 2 ≤ 1) for the

upper phase remains unchanged. 

When (9) is substituted in the linearized governing equations

and boundary conditions, the well-known Orr-Sommerfeld equa-

tions for the transverse component of velocity are obtained for

each layer 
 ≤ y 1 ≤ 1 

( −n ≤ y ≤ 0 ) : 

λ

k X 
D 1 v 1 = 

[
i 

(
−U 1 D 1 + 

U 

′′ 
1 

n 

2 

)
+ 

1 

k X Re 1 
D 

2 
1 

]
v 1 , 

(10)

 ≤ y 2 ≤ 1 

( 0 ≤ y ≤ 1 ) : 

λ

k X 
D 2 v 2 = 

[ 
i 
(
−U 2 D 2 + U 

′′ 
2 

)
+ 

1 

k X Re 2 
D 

2 
2 

] 
v 2 , 

(11)

here D 1 v 1 = 

v ′′ 1 
n 2 

− ( k 2 
X 

+ k 2 
Z 
) v 1 , D 

2 
1 
v 1 = 

v 1 IV 
n 4 

− 2( k 2 
X 

+ k 2 
Z 
) 

v ′′ 1 
n 2 

+
( k 2 X + k 2 Z ) 

2 v 1 , D 2 v 2 = v ′′ 2 −( k 2 X + k 2 Z ) v 2 , D 

2 
2 v 2 = v 2 IV −2( k 2 X + k 2 Z ) v 

′′ 
2 +

( k 2 
X 
+k 2 

Z 
) 2 v 2 . 

The linearized boundary conditions are obtained by means of

aylor expansions of η in the vicinity of its unperturbed zero

alue 

 1 = 1 , y 2 = 0 : 
λ

k X 
	 = −i ( v 2 ( 0 ) + 	) , 

with 	 = 

v ′ 2 ( 0 ) − v ′ 1 ( 1 ) /n 

U 

′ 
1 ( 1 ) /n − U 

′ 
2 ( 0 ) 

, where 	 = −i k X H η, (12)

 1 = 1 , y 2 = 0 : 
λ

k X 

(
v ′ 2 ( 0 ) − r 

v ′ 1 ( 1 ) 

n 

)

= i 

[((
v 2 ( 0 ) U 

′ 
2 − v ′ 2 ( 0 ) U 2 

)
− r 

(
v 1 ( 1 ) 

U 

′ 
1 

n 

− v ′ 1 ( 1 ) 

n 

U 1 

))

+ 

(
k 2 X + k 2 Z 

)
k 2 

X 

( 

cos β

Fr 2 
( r − 1 ) + 

(
k 2 X + k 2 Z 

)
We 2 

) 

· 	
] 

+ 

1 

k X Re 2 

((
v ′′′ 2 ( 0 ) − 3 

(
k 2 X + k 2 Z 

)
v ′ 2 ( 0 ) 

)
− m 

(
v ′′′ 1 ( 1 ) 

n 

3 
− 3 

(
k 2 X + k 2 Z 

)v ′ 1 ( 1 ) 

n 

))
, (13)

 1 = 0 : v 1 = v ′ 1 = 0 , (14)

 2 = 1 : v 2 = v ′ 2 = 0 , (15)

 1 = 1 , y 2 = 0 : v 1 ( 1 ) = v 2 ( 0 ) , (16)

 1 = 1 , y 2 = 0 : m 

(
v ′′ 1 ( 1 ) 

n 

2 
+ 

(
k 2 X + k 2 Z 

)
v 1 ( 1 ) 

)
−

(
v ′′ 2 ( 0 ) + 

(
k 2 X + k 2 Z 

)
v 2 ( 0 ) 

)
+ 

(
m 

U 

′′ 
1 

n 

2 
− U 

′′ 
2 

)
· 	 = 0 . (17)

The temporal linear stability for 3D perturbations

 Eqs. (10) –(17) ) can be solved in the same manner as for 2D

erturbations (see Barmak et al., 2016a,b ). However, in addition to

 wavenumber in the flow direction k X , all wavenumbers k Z should

e considered (since the channel is infinite in the z-direction), for

he specified two-phase system and operational conditions (i.e.,

he flow rate of each of the phases). Neutral stability of the flow

orresponds to max ( λR ) = 0 for u i > 0 (min ( λR ) = 0 for u i < 0),

here λR is the perturbation growth rate. The flow is considered

o be stable if the real parts of all eigenvalues are negative for u i 
 0, or if the real parts of all eigenvalues are positive while u i <

. The dimensionless phase speed of the perturbation is defined as

 quantity c R = −λI / k , where λI is the wave angular frequency with

 = 

√ 

k 2 
X 

+ k 2 
Z 
. The details on the numerical method can be found

n Barmak et al. (2016a) . The numerical solution was verified by

omparison with the two-dimensional analysis ( k =0). 
Z 
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. Squire’s transformation 

The linear stability with respect to 2D perturbations was

tudied for stratified two-phase flows in inclined channel in

armak et al. (2016b) . The governing equations and boundary con-

itions for the 2D case can be easily deduced for v -component

f the velocity from Eqs. (10) –(17) , taking w = 0 and k Z =0. The

esulting 2D formulation would be identical to that presented in

armak et al. (2016b) , where the transverse velocity component

as been expressed in terms of the stream function. 

Comparing the formulations, one can easily reduce the three-

imensional problem to an equivalent two-dimensional problem

y using the following transformation (the parameters for this ana-

og are denoted with a superscript “2D ”): 

 

2 D 
X = 

√ 

k 2 
X 

+ k 2 
Z 
, 

e 2 D 1 , 2 k 
2 D 
X = Re 1 , 

2 D 
2 

√ 

k 2 
X 

+ k 2 
Z 

= Re 1 , 2 k X , 

r 2 D 2 

(
k 2 D X 

)2 = Fr 2 D 2 

(
k 2 X + k 2 Z 

)
= Fr 2 k 

2 
X , 

 e 2 D 2 

(
k 2 D X 

)2 = We 2 D 2 

(
k 2 X + k 2 Z 

)
= We 2 k 

2 
X . (18) 

The velocity components and pressure perturbations are trans-

ormed in the following way k 2 D 
X 

u 2 D = k X u + k Z w, p 2 D /k 2 D 
X 

= p/ k X .

he relation for the obtained eigenvalues (time increments) reads
2 D = λ

√ 

k 2 
X 

+ k 2 
Z 
/ k X . 

The fluids considered in both cases (2D and 3D) are identical,

ence m and r are invariant. In terms of dimensional parameters,

he only component that is changing in the Reynolds, Froude, and

eber numbers is the interfacial velocity: 

 

2 D 
i 

√ 

k 2 
X 

+ k 2 
Z 

= u i k X . (19) 

The analogy holds only when the base state velocity profile, in-

luded in the governing equations, remains unchanged. To meet

his requirement the holdup should stay the same, h 2 D =h . In hor-

zontal flow, where h = h ( m, q ), this requirement corresponds to

 

2 D =q , or in terms of the superficial velocities the following re-

ations should be satisfied 

U 

2 D 
1 S 

U 1 S 

= 

U 

2 D 
2 S 

U 2 S 

= 

u 

2 D 
i 

u i 

= 

k X √ 

k 2 
X 

+ k 2 
Z 

. (20) 

Thus, for horizontal flow the transformation from a 3D linear

tability problem into an equivalent 2D linear stability problem

Squire’s transformation) is exact. As the equivalent 2D problem is

ssociated with lower flow rates of both phases, the addition of a

panwise wave component always has a stabilizing effect provided

hat stable density stratification is considered ( r > 1). Therefore, in

uch cases the critical instability is two-dimensional in the plane

f the flow and the Squire’s transformation fully applies. 

In inclined systems, however, the angle of inclination is an ad-

itional parameter and h = h ( m, q, Y ). Hence, constant holdup can

e maintained if in addition to q 2 D =q the inclination parameter is

nvariant, whereby Y 2 D =Y . Using the definition of Y , the latter con-

ition can be satisfied for fixed fluid properties and channel size

f 

in β2 D = 

U 

2 D 
2 S 

U 2 S 

· sin β = 

k X (
k 2 

X 
+ k 2 

Z 

)1 / 2 
· sin β. (21) 

This means that the channel inclination considered in the

quivalent 2D stability problem is changed when the Squire’s

ransformation is applied, whereby: 

2 D = arcsin 

( 

k X (
k 2 

X 
+ k 2 

Z 

)1 / 2 
· sin β

) 

. (22) 

Eqs. (20) and (22) suggest that the Squire’s transformation for

nclined system is associated with reduction of the flow rates of
ach of the phases and decrease of the channel inclination. Gener-

lly, both modifications have stabilizing effects. Therefore, one may

xpect the validity of the Squire’s theorem also in inclined sys-

ems. However, due to the presence of the term with cos β � = 1

n the boundary condition on the normal stress ( Eq. (13) ), the

esulting 2D problem is not a complete equivalent of the 3D prob-

em. Nevertheless, the effect of cos β is relatively small for shal-

ow inclinations (e.g., it varies from 1 to 0.9 while β is from 0 ° to

6 °). The main effect of gravity in inclined channels is due to the

tream wise component ( g sin β) via its impact on the holdup and

elocity profiles. For steeper channel inclinations, the 2D analysis

ndicates that the stratified flow is unstable in the entire range of

ractical flow rates ( Barmak et al., 2016b ). Thus, the 3D stability

nalysis can reveal only additional unstable disturbance modes. In

nclined channels of shallow inclinations, at which stratified flow

ith a smooth interface can be stable, an approximate transfor-

ation can be utilized with sufficient accuracy to convert the 3D

nto its equivalent 2D stability problem in order to determine the

tability of the flow. This will be shown and discussed in the fol-

owing section. 

. Results and discussion 

The parameter regions, in which stratified flow with a smooth

nterface is stable with respect to two-dimensional perturbations

n the plane of the flow, are known for horizontal ( Barmak et al.,

016a ) and inclined ( Barmak et al., 2016b ) flows. The results were

resented in the form of stability boundaries on the flow pattern

ap for each steady state solution (configuration). In the following

e provide justification of the completeness of such a 2D analy-

is in order to determine the linear stability boundaries with re-

pect to all possible perturbations (three-dimensional in general).

n all cases the upper layer is considered to be lighter than the

ower layer ( r > 1), so that the Rayleigh-Taylor instability is not

ncountered. It will be shown that in all practical situations 2D

erturbations in the flow plane are the most unstable and thereby

etermine the critical conditions for the onset of instability. 

.1. Horizontal flow 

For horizontal stratified two-phase flows, the Squire’s trans-

ormation is rigorously valid. Nevertheless, as the studied stabil-

ty problem involves several dimensionless parameters, the mathe-

atical statement on the 2D nature of the critical perturbations

Squire’s theorem) is not straightforward. Therefore, the conse-

uences of applying the Squire’s transformation are demonstrated

n this subsection. 

Given a particular two-phase system, for which the channel

eight, the viscosity ratio ( m ) and density ratios ( r ) are speci-

ed, the stability problem for an oblique wave defined by the two

avenumbers ( k X , k Z ) is equivalent to the stability problem for

lane wave, where k X is replaced by 
√ 

k 2 
X 

+ k 2 
Z 
, the flow rates are

educed by the factor k X / 
√ 

k 2 
X 

+ k 2 
Z 
, while the flow rates ratio q is

ept constant. Maintaining q and m ensures that the holdup and

ll the other dimensionless characteristics of the base flow remain

nvariant. 

The above procedure is illustrated in Fig. 2 for the case of strat-

fied horizontal air-water flow, where air forms the upper layer

 m = 55 and r = 10 0 0). The solid (blue) curve confines the region

hich was found to be (linearly) stable with respect to all 2D per-

urbations ( k Z =0, see Barmak et al. 2016a ). Each point along the

tability boundary corresponds to water and air flow rates (i.e., su-

erficial velocities U 1 S and U 2 S ), for which the flow is neutrally sta-

le for a particular 2D perturbation, k X (denoted the critical 2D

erturbation), and is stable with respect to all other 2D perturba-

ions. For higher flow rates, beyond the 2D neutral stability bound-
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Fig. 2. Stability boundary with respect to 2D perturbations for horizontal air-water 

flow ( k Z =0, blue solid line). According to the Squire’s transformation, stability of 

any 3D disturbance can be reduced to an equivalent 2D stability problem (e.g., B 1 , 

C 1 instead of B, C, respectively), which corresponds to lower superficial velocities 

along the line of constant flow rate ratio (red dashed line). For such conditions the 

flow is stable. 
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S  
ary, there is a range of 2D perturbations that are amplified. The

dashed (red) straight lines correspond to the locus of constant flow

rate ratio, q , and hence of constant holdup as well. 

Adding an arbitrary oblique perturbation (3D, k Z > 0) at any op-

erational conditions along the 2D neutral stability boundary (e.g.,

at point B ) will have identical effect on the flow stability as that of

the corresponding plane (2D) perturbation imposed on a flow of

lower U 1 S and U 2 S . Such a point (e.g., B 1 ) is situated along the line

of the same flow rate ratio as that of the original (3D) problem.

The higher is k Z , the smaller are the equivalent superficial veloc-

ities of each of the phases. As all such points are within the 2D

stable region, each of the points along the (2D) neutral stability

boundary (solid (blue) curve) must be stable with respect to any

3D perturbation. Note that this actually holds in all cases where

the structure of stable region is such that the constant flow rate ra-

tio line drawn from a point on the neutral stability curve towards

lower flow rates is within the 2D stable region. This is the case in

horizontal stratified two-phase flows. Hence, the Squire’s transfor-
Fig. 3. Contours of the growth rate of 3D perturbations (a) at point B and (b) at point C. 

(neutral stability) only for k Z =0 and the k X value corresponding to the critical 2D waven
ation allows us to reduce the 3D stability problem to the 2D one

or horizontal flows. 

Additional validation of the theorem can be provided by exam-

ning the growth rate of perturbations with arbitrary wavenum-

ers k X and k Z for operational conditions along the stability bound-

ry. The growth rate of perturbations for points B and C are illus-

rated in Fig. 3 (a) and (b), respectively. It is seen that except the

wo-dimensional perturbation ( k Z =0) corresponding to the criti-

al (neutrally stable) wavenumber k X (for which the growth rate,

R =0), all other perturbations are stable and decay in time (nega-

ive growth rate). 

Short-wave mode of instability is the critical at point B

 k X = 0.46), while long waves ( k X → 0) determine stability for the

onditions of point C . As demonstrated by Fig. 3 (a) and (b), the ef-

ect of the spanwise component k Z is especially weak in case of

hort streamwise waves ( k X ). This can be deduced by compari-

on of the vertical axis coordinates in Fig. 3 (a) and (b) that cor-

espond to about the same (negative) growth rate. Fig. 4 illustrates

he growth rate dependence on k Z for a fixed wavenumber in x -

irection (e.g., the critical one). As shown, the damping of the per-

urbation becomes stronger as k Z is larger. In Fig. 5 , two different

atterns of the perturbation amplitudes are presented for point B :

he critical (neutrally stable) 2D perturbation with a maximum in

he bulk of the upper (air) layer in proximity of the interface, and

 3D interfacial mode (which is equivalent to the 2D perturbation

t point B 1 ), that eventually decays (stable). 

The case of particular interest is a system under zero-gravity

onditions (or fluids of equal densities, r = 1). Yiantsios and Hig-

ins (1988) argued that under such conditions and the absence of

urface tension the Squire’s theorem may not be valid. However,

ccording to the 2D analysis ( Barmak et al., 2016a ), the flow is al-

ays unstable in the absence of surface tension ( We → ∞ ) . There-

ore, there is no need to consider also 3D perturbations. With the

nclusion of surface tension, there is a stable region on the flow

attern map, which is located in the region where the more vis-

ous phase is faster (above the critical flow rate line for m > 1

e.g., Fig. 6 ), or below it for m < 1). The structure of stable re-

ion for systems under zero-gravity conditions with m > 1 and

 < 1 is such that the constant flow rate ratio line (e. g., red lines

n Fig. 6 ) drawn from the point on the neutral stability curve to-

ards lower flow rates is within the stable region. This means that

quire’s theorem is valid, and 2D perturbations are the most un-
All perturbations are stable (growth rate ≤ 0). The growth rate attains a zero value 

umber: k X =0.46 for point B and k X → 0 for point C. 
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Fig. 4. Growth rate of the perturbation with k X set at the critical (2D) wavenumber vs. the wavenumber in spanwise direction k Z (a) at point B and (b) at point C. 

Fig. 5. Amplitude of the transverse component of velocity (normalized by the value 

at the interface) corresponding to the critical perturbation ( k X =0.46, red solid line) 

and that of a decaying 3D perturbation ( k X = 0.46, k Z = 0.5) at point B (green dash- 

dot line). The latter is equivalent to a 2D disturbance k 2 D X = 0 . 68 at point B 1 . 

Fig. 6. Stability boundary for horizontal air-water flow with surface tension under 

zero-gravity condition for 2D perturbations ( k Z =0, blue solid line), which are the 

most unstable ones. According to the Squire’s transformation, stability of the 3D 

disturbances can be reduced to an equivalent 2D problem shifted to lower superfi- 

cial velocities along the line of constant flow rate ratio (red dashed line). 

Fig. 7. Contours of the growth rate of 3D perturbations at point A (see Fig. 6 ). All 

perturbations are stable (growth rate ≤ 0). The growth rate attains a zero value 

(neutral stability) only for the critical 2D wavenumber k X =0.02, k Z =0. 
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table ones also for this type of systems. This is also confirmed

y the non-positive growth rate of any perturbation of an arbi-

rary wavenumber at point A (marked in Fig. 6 ), which is shown

n Fig. 7 . A zero value is observed only for the 2D perturbation of

he critical wavenumber at point A , k X =0.02. 

.2. Inclined flow 

In order to implement the Squire’s transformation to an in-

lined stratified flow to study its stability with respect to 3D per-

urbations, two conditions should be satisfied. In addition to main-

aining a constant flow rate ratio ( Eq. (20) ), the inclination param-

ter should be kept at a constant value. This means that, accord-

ng to Eq. (22) , the inclination angle of the equivalent 2D problem

hould be reduced compared to that of the original 3D problem.

ue to the possible non-uniqueness of the base two-phase strat-

fied flow in an inclined channel (e.g., Ullmann et al., 2003; Bar-

ak et al., 2016b ), the transformation should be accomplished sep-

rately for each branch of the base flow solutions. In the following

e demonstrate application of this transformation for concurrent

nd countercurrent inclined flows, and its implication on the criti-

ality of 2D perturbations. 

In countercurrent flow, there are two possible stratified-smooth

onfigurations, which are stable in closed regions of low flow rates
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Fig. 8. Stability boundaries for countercurrent liquid-liquid flow for 2D perturba- 

tions ( k Z =0, blue solid line). According to the proposed transformation, stability of 

a 3D disturbance can be reduced to an equivalent 2D problem which corresponds to 

lower superficial velocities (along constant q lines) in a channel of lower inclination 

(e.g., from red dots A and B to blue hollow dots A 1 and B 1 , respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Stability boundaries for downward inclined air-water flow with respect to 

2D perturbations ( k Z =0, blue solid line). According to the suggested transformation, 

stability of a 3D disturbance can be reduced to an equivalent 2D problem at lower 

superficial velocities (along s constant q line) and lower channel inclination (e.g., 

from red dot A of β =5 ° to green hollow dot A 1 of β =1 °). 
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of each of the phases. The 2D stability results are shown in Fig. 8 ,

where the upper solution for the heavy phase holdup is denoted as

the Heavy Phase Dominated (HPD) configuration, while the lower

holdup solution is denoted as the Light Phase Dominated (LPD)

configuration. It was shown in Barmak et al. (2016b) that the sta-

ble region for each of the holdup solutions widens with decreasing

the inclination. This is demonstrated in Fig. 8 by comparing the

stability boundaries of the HPD and LPD configurations for β =26 °
(solid curves) and β =10 ° (dashed curves). Any 3D perturbation at

a point located on the (2D) neutral stability curve of one of the

holdup solutions obtained for a particular inclination (e.g., points

A and B for β =26 ° in Fig. 8 , for the HPD and LPD solutions, re-

spectively) can be converted to a 2D perturbation in a channel of

lower inclination and for lower flow rates (e.g., points A 1 and B 1 

for β =10 °). The flow is stable with respect to 2D disturbances for

these conditions, indicating the stability of the original 3D prob-

lem. Examination of the growth rate of arbitrary 3D perturbations

at points A and B ( Fig. 9 ) gives an additional evidence for the cor-

rectness of the suggested transformation and the associated con-
clusions for countercurrent flows. n  

Fig. 9. Contours of the growth rate of three-dimensional perturbations (a) for the HPD sol

are stable (growth rate ≤ 0). The growth rate attains a zero value (neutral stability) only f
Air-water flows in downward inclined channels are stable only

n the region of single base flow solution of low water flow rates

see Fig. 10 ). In this system the multiple (triple) solution region

s located at high water flow rates, and it was found that none of

hose solutions are stable with respect to short-wave perturbations

n the flow plane ( Barmak et al., 2016b ). Increase of the inclination

ngle has a destabilizing effect and results in shrinkage of the sta-

le region to lower liquid flow rates. Thereby, similarly to the pre-

ious example of countercurrent flow, the 3D problem for a point

ocated on the neutral stability curve can be converted to an equiv-

lent 2D problem corresponding to stable conditions. For example,

 3D perturbation at point A on the stability boundary of β =5 °
obtained with respect to 2D perturbations), is transformed to a

D equivalent for lower flow rates and shallower channel inclina-

ion (point A 1 , β =1 °). As shown in Fig. 10 , the latter conditions

re stable. Hence, the 2D disturbances remain the most unstable

lso for downward inclined concurrent flows. 

Comparison of the growth rate of arbitrary 3D perturbations for

eutrally stable conditions (point A ) and for unstable conditions
ution at point A and (b) for the LPD solution at point B (see Fig. 8 ). All perturbations 

or k Z =0 and very long in the streamwise direction waves k X → 0. 
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Fig. 11. Contours of the growth rate of 3D perturbations in downward inclined air-water flow, β =5 ° (a) for point A on the stability boundary and (b) for unstable conditions 

of point A 2 . All perturbations decay for point A (growth rate ≤ 0). The growth rate at point A attains a zero value (neutral stability) only for k Z =0 and very long streamwise 

waves k X → 0. 

Fig. 12. Stability boundaries in the triple solution region (black solid triangle) of 

0.1 ° upward inclined air-water flow: a – lower and middle solutions are stable; b –

only the lower solution is stable; c – all three solutions are unstable; d – only the 

middle solution is stable. 
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Fig. 13. Triple solution regions for air-water flows in upward inclined channels of 

different inclinations (solid lines). Blue dash-dot line depicts a stability boundary 

for the middle solution with respect to 2D perturbations ( k Z =0) for β =0.1 °. Ac- 

cording to the suggested transformation, a 3D stability problem can be reduced to 

an equivalent 2D problem at lower inclination and lower flow rates while main- 

tain the same q (red dashed line). For example, from red dot B (neutrally stable for 

k X = 3.9, k Z = 0), to the middle holdup solution at the green hollow dot B 1, β =0.05 °
for ( k X = 3.9, k Z = 6.74), or to the middle holdup solution at purple hollow dot B 2, 

β =0.01 ° for ( k X =3.9, k Z =38.7) applied at B. 
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 A 2 ) is demonstrated in Fig. 11 . In contrast to point A , at which all

avelength perturbations are stable and only very long 2D waves

ave zero-value growth rate, in the unstable region, a range of

arious wavenumber perturbations, including 3D ones, are ampli-

ed. The wavenumber k X of the most amplified perturbation is also

hifted (from k X → 0 to k X ≈ 1.8). 

For slightly upward inclined air-water flows β =0.1 °, there ex-

sts either a single or triple solution base state region. The stability

ap for the latter is shown in Fig. 12 . In part of the triple solution

egion, the lower and middle holdup solutions were found to be

table ( Barmak et al., 2016b ). The two-dimensionality of the criti-

al disturbances in the single solution region (at low air flow rates)

an be proved in the same manner as for downward flow, since the

losed stable region expands with decreasing the channel inclina-

ion. However, the implementation of the Squire’s theorem in the

riple-solution region requires more careful examination. 

The upper solution is always unstable and therefore is not of

nterest. The lower holdup solution is stable in subdomains a and
 of the triple solution region. In shallow channel inclinations the

ow configuration of this water layers (low holdup) is insensitive

o the inclination and is similar to the flow configuration obtained

n a horizontal channel. In fact, the neutral stability curve for the

ower holdup solution (line 1 in Fig. 12 ) coincides with that ob-

ained for horizontal flow and thus remains invariant in this range

f shallow inclinations. The location of the triple solution (3-s) re-

ion is however sensitive to the channel inclination (see Fig. 13 ).

s channel inclination is reduced ( β < 0.1 °), the triple solution is

hifted to lower air and water superficial velocities. Consequently,

he lower (and middle) solutions are found to be stable with re-

pect to 2D perturbations in larger parts of the triple solution re-

ion as the channel inclination is reduced. The middle solution be-
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Fig. 14. Holdup curves for constant water flow rate in slightly upward inclined flow. 

Dashed lines represent unstable conditions. 
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comes stable in the whole triple solution region for inclination an-

gle of β =0.05 ° and lower. 

Point A is located on the neutral stability boundary of the lower

holdup solution. Considering any arbitrary 3D perturbation at point

A , and applying the proposed transformation, the resulting condi-

tions of reduced air and water flow rates along the same constant

q line as point A are always in the stable region (stability boundary

is independent of the inclination for the lower holdup solution). 

The consequences of applying the proposed transformation for

converting a 3D perturbation to its equivalent 2D perturbation is

demonstrated in Fig. 13 with respect to point B (marked in Fig. 12 ).

Point B is located on the stability boundary of the middle solution

( β =0.1 °) and corresponds to the critical 2D short wave ( k X =3.9,

k Z =0). The location of point B on the holdup curve (water holdup

vs. the air superficial velocity at a fixed water superficial veloc-

ity corresponding to point B ) is shown in Fig. 14 . The stability of

point B with respect to a 3D perturbation ( k X = 3.9, k Z = 6.74) is

equivalent to perturbing the middle solution of point B 1 in a chan-

nel inclined at β =0.05 ° with a 2D perturbation ( k X = 7.79, k Z = 0).

Similarly, the 2D stability of the middle solution of point B 2 in a

β =0.01 ° inclined channel is the 2D equivalent to a stability of a 3D

the perturbation ( k X = 3.9, k Z = 38.7) at point B . Since for the shal-

lower inclinations ( β ≤ 0.05 °) the middle holdup solution is stable

over the entire triple solution region, both B 1 and B 2 are stable

with respect to the equivalent 2D perturbation. Hence, point B is

stable with respect to the considered 3D perturbations. 

7. Conclusions 

In this work the sufficiency of 2D analysis to explore the stabil-

ity of stratified horizontal and inclined gas-liquid and liquid-liquid

flows was established based on the Squire’s transformation that al-

lows us to derive either rigorous or rationale-based conclusion say-

ing that two-dimensional perturbations remain most unstable also

in stratified two-phase plane-parallel flows. 

For flows in horizontal channels the analogy between the 2D

and 3D problem formulations is rigorously followed from the

Squire’s transformation. As a result it has been proven that 2D

perturbations are the most unstable and should be considered for

identifying the stability limits. However, in the case of inclined

channels, additional arguments should be invoked in order to draw

a similar conclusion. These arguments were elaborated and their

consequences were demonstrated for several gas-liquid and liquid-

liquid inclined concurrent and countercurrent flows. It is shown
hat in inclined stratified flows the transformation of a 3D stabil-

ty problem to its 2D analog is associated with a stabilizing effect

f reducing the system inclination, in addition to the reduction of

he phases flow rates as in the case of horizontal flows. The slower

rowth of 3D perturbations compared to 2D perturbations is elabo-

ated by considering the corresponding stability maps and contour

lots of the growth rate levels. 

ppendix: 3D boundary conditions on the stress components 

To formulate the B.C. on the stress components, a unit-length

ormal to the disturbed interface, and two unit vectors tangen-

ial to the interface in xy - and yz -planes, t 1 , t 2 , respectively, are

sed: 

 = 

( −ηx , 1 , −ηz ) √ 

1 + η2 
x + η2 

z 

, t 1 = 

( 1 , ηx , 0 ) √ 

1 + η2 
x 

, t 2 = 

( 0 , ηz , 1 ) √ 

1 + η2 
z 

. (A23)

The stress tensor is 

 = 

⎛ 

⎝ 

T xx T xy T xz 

T yx T yy T yz 

T zx T zy T zz 

⎞ 

⎠ , (A24)

here stress tensor components are 

T xx = 2 μ
∂u 

∂x 
, T yy = 2 μ

∂v 
∂y 

, T zz = 2 μ
∂w 

∂z 
, 

 xy = T yx = μ

(
∂u 

∂y 
+ 

∂v 
∂x 

)
, T yz = T zy = μ

(
∂v 
∂z 

+ 

∂w 

∂y 

)
, 

T xz = T zx = μ

(
∂w 

∂x 
+ 

∂u 

∂z 

)
. 

The stress vector acting across the interface is given by: 

 

( n ) = T · n = 

⎛ 

⎝ 

T xx T xy T xz 

T yx T yy T yz 

T zx T zy T zz 

⎞ 

⎠ ·

⎛ 

⎜ ⎜ ⎝ 

−ηx √ 

1+ η2 
x + η2 

z 

1 √ 

1+ η2 
x + η2 

z 

−ηz √ 

1+ η2 
x + η2 

z 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎝ 

−ηx T xx + T xy − ηz T xz 

−ηx T xy + T yy − ηz T yz 

−ηx T xz + T yz − ηz T zz 

⎞ 

⎠ · 1 √ 

1 + η2 
x + η2 

z 

. (A25)

hereby the normal stress is: 

 · T · n = 

( −ηx , 1 , −ηz ) √ 

1 + η2 
x + η2 

z 

·

⎛ 

⎜ ⎝ 

−ηx T xx + T xy − ηz T xz 

−ηx T xy + T yy − ηz T yz 

−ηx T xz + T yz − ηz T zz 

⎞ 

⎟ ⎠ 

· 1 √ 

1 + η2 
x + η2 

z 

= 

η2 
x T xx + T yy + η2 

z T zz − 2 ηx T xy − 2 ηz T yz + 2 ηx ηz T xz 

1 + η2 
x + η2 

z 

. (A26)

According to the Young-Laplace equation, the jump in the nor-

al stress across the interface is balanced by surface tension,

ence: 

 

n · T · n ] = −σ∇ · n = −σ

( 

∂ 

∂x 

( 

−ηx √ 

1 + η2 
x + η2 

z 

) 

+ 

∂ 

∂z 

( 

−ηz √ 

1 + η2 
x + η2 

z 

) ) 

, (A27)

here the jump of the quantity across the interface

i.e.,[ f ] = f 2 − f 1 ) is denoted by [ • ]. 

Eq. (A27) can be rewritten in dimensionless form with the

tress tensor component expressed in terms of the velocity com-

onents: 
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n · T · n ] = 

[
p − mμ

μ1 

2 Re −1 
2 

1 + η2 
x + η2 

z 

((
η2 

x − η2 
z 

)
u x + 

(
1 − η2 

z 

)
v y 

−ηx ( u y + v x ) − ηz ( w y + v z ) + ηx ηz ( u z + w x ) 
)]

= We −1 
2 

ηxx 

(
1 + η2 

z 

)
+ ηzz 

(
1 + η2 

x 

)
− 2 ηx ηz ηxz (

1 + η2 
x + η2 

z 

)3 / 2 
. (A28) 

The interface deformations ( η) are assumed to be small,

hereby Eq. (A28) can be reduced (neglecting quadratic terms of

he order η2 ) to: 

 

n · T · n ] = 

[ 
p − mμ

μ1 

2 Re −1 
2 ( v y − ηx ( u y + v x ) − ηz ( w y + v z ) ) 

] 
= We −1 

2 ( ηxx + ηzz ) . (A29) 

The shear stress components are: 

 1 · T · n = 

( 1 , ηx , 0 ) √ 

1 + η2 
x 

·

⎛ 

⎜ ⎝ 

−ηx T xx + T xy − ηz T xz 

−ηx T xy + T yy − ηz T yz 

−ηx T xz + T yz − ηz T zz 

⎞ 

⎟ ⎠ 

· 1 √ 

1 + η2 
x + η2 

z 

= 

−ηx T xx + T xy − ηz T xz − η2 
x T xy + ηx T yy − ηx ηz T yz √ 

1 + η2 
x ·

√ 

1 + η2 
x + η2 

z 

, (A30) 

 2 · T · n = 

( 0 , ηz , 1 ) √ 

1 + η2 
z 

·

⎛ 

⎜ ⎝ 

−ηx T xx + T xy − ηz T xz 

−ηx T xy + T yy − ηz T yz 

−ηx T xz + T yz − ηz T zz 

⎞ 

⎟ ⎠ 

· 1 √ 

1 + η2 
x + η2 

z 

= 

−ηx ηz T xy + ηz T yy − η2 
z T yz − ηx T xz + T yz − ηz T zz √ 

1 + η2 
z ·

√ 

1 + η2 
x + η2 

z 

. (A31) 

Since the interface deformations are small, the shear stress bal-

nce on xy -plane can be written as: 

 

t 1 · T · n ] = [ −ηx T xx + T xy − ηz T xz + ηx T yy ] 

= 

[ 
mμ

μ1 
( −2 ηx u x + ( u y + v x ) 

−ηz ( w x + u z ) + 2 ηx v y ) 
] 

= 0 . (A32) 
The shear stress balance on yz -plane is: 

 

t 2 · T · n ] = [ ηz T yy − ηx T xz + T yz − ηz T zz ] 

= 

[ 
mμ

μ1 
( 2 ηz v y − ηx ( w x + u z ) 

+ ( v z + w y ) − 2 ηz w z ) 

] 
= 0 . (A33) 
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