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The applicability of the Squire’s transformation for stability analysis of stratified two-phase flow in hori-
zontal and inclined channels is examined. It is shown that for the considered flow such a transformation
requires some additional constraints on the change of the inclination angle and flow rates of each of the
phases. While the Squire’s theorem (on the two-dimensionality of the critical disturbances) rigorously
holds for the horizontal two-phase flow, for the inclined flow an exact mathematical theorem cannot be
formulated. Nevertheless, it has been proven that 2D perturbations are the critical ones also for the case
of inclined channel, since the transformation of a 3D stability problem to its 2D analog is associated with
a stabilizing effect of reducing the system inclination, in addition to the reduction of the phases flow
rates as in the case of horizontal flows.
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1. Introduction

Stability of horizontal and inclined stratified two-phase plane-
parallel flow is commonly studied in the framework of two-
dimensional (2D) analysis, which considers only perturbations in
the plane of the flow, while, to the best of our knowledge, oblique,
i.e.,, three-dimensional (3D), perturbations have never been
considered.

For a single-fluid plane Poiseuille flow, Squire (1933) was the
first to show the equivalence between the linear stability of a 3D
perturbation and that of a 2D perturbation but at a lower Reynolds
number. Squire presented the relations between wavenumbers of
3D perturbations and their 2D equivalents and between the corre-
sponding Reynolds numbers. Since then these relations are known
as the Squire’s transformation (Drazin and Reid, 2004). Using this
transformation it can be easily proved that for each unstable 3D
disturbance there is a more unstable 2D one. This allows one to
conclude that consideration of the 2D stability problem is suffi-
cient for a given plane Poiseuille flow. The latter is referred to in
the literature as the Squire’s theorem (Drazin and Reid, 2004).

Stability problems with several governing dimensionless pa-
rameters may also be subject to transformations of Squire’s type.
However, in contrast to those governed by the Reynolds number
only, for some of the parameters the transformation may have
a destabilizing effect. In such cases the Squire’s theorem is not
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applicable for justifying the claim that the primary instability in
the flow is associated with 2D perturbations (i.e., in the plane
of the flow). For example, Gumerman and Homsy (1974) derived
a Squire’s transformation for thermally stratified horizontal two-
phase flow and demonstrated that due to the competing effects
of shear, surface tension and gravity the Squire’s theorem (i.e.,
the criticality of 2D perturbations) cannot be claimed. Smyth and
Peltier (1990) and later Gelfgat and Kit (2006) showed that in den-
sity stratified mixing layers instability can be triggered by 3D per-
turbations. On the other hand, Pearlstein (1985) proved the 2D
nature of the critical disturbances for double-diffusive plane paral-
lel (single phase) shear flows with varying temperature and con-
centration. For stratified two-phase flow, following the claim of
Yih (1955), Hesla et al. (1986) established the sufficiency of 2D
perturbations for the case of horizontal channel, provided that
the density stratification is stabilizing (i.e., the upper phase is
lighter than the lower phase). Yiantsios and Higgins (1988) and
Tilley et al. (1994) discussed the possible inapplicability of the
Squire’s theorem for zero-gravity condition and flow in an inclined
channel, respectively, drawing a conclusion that for such circum-
stances a three-dimensional analysis may be required. In a recent
study, Allouche et al. (2015) compared stability with respect to 3D
and 2D perturbations for a film flowing down an inclined surface.
They argued that by combining the Squire’s transformation and the
results of 2D analysis, the 2D perturbations are found to be al-
ways more unstable. However, the validity of the Squire’s theorem
in the case of inclined stratified two-phase flow has never been
established.
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Fig. 1. Configuration of stratified two-layer flow in an inclined channel (z-axis
comes out of the page).

In a recent study of Barmak et al. (2016b), the linear stability of
stratified two-phase flows in inclined channels with respect to 2D
perturbations of an arbitrary wavenumber was explored. The study
was aimed at identifying the parameter regions for which a stable
stratified configuration (with respect to all wavenumber perturba-
tions) exists in gas-liquid and liquid-liquid concurrent and counter-
current flows. Attention was given to the operational conditions
associated with the multiple-solution regions to reveal the feasibil-
ity of non-unique stable stratified configurations in inclined chan-
nels. Carrying out such a comprehensive analysis with respect to
all possible 3D perturbations is practically unfeasible. Therefore, a
question arises to what extent the stability of stratified two-phase
flow can be determined by considering only 2D perturbations in
the general case of inclined concurrent or countercurrent flows.

In this study, an appropriate transformation in the spirit of
Squire (1933) is applied to convert the 3D stability problem to
an equivalent 2D one for the case of inclined stratified two-phase
flow. We show that for the considered flow such a transformation
requires some additional constraints on the change of the incli-
nation angle and flow rates of each of the phases. We show that
the Squire’s theorem rigorously holds for the horizontal two-phase
flow. For the inclined flow, however, no exact mathematical theo-
rem can be formulated. We argue, however, that in spite the ab-
sence of a rigorous mathematical formulation, the 2D perturba-
tions are the most unstable one at least for most of practically im-
portant cases also in inclined two-phase flows.

2. Problem formulation

The flow configuration of a stratified two-layer flow of two im-
miscible incompressible fluids in an inclined channel (0 < 8 <
7 /2) is sketched in Fig. 1. The flow, assumed to be isothermal, is
driven by an imposed pressure gradient and a component of the
gravity along the channel walls. The interface between fluids, la-
beled as j=1, 2 (1 - lower (heavy) phase, 2 - upper (light) phase),
is assumed to be flat in the undisturbed base flow state. The flow
in each of the fluids is described by the continuity and momentum
equations that are rendered dimensionless in the standard manner
(see Kushnir et al., 2014), scaling lengths by the height of the up-
per layer h,, velocities by the interfacial velocity u;, time by h;/u;,
and pressures by pzuiz.

For the indicated three-dimensional coordinate system (where
z comes out of the page), the dimensionless continuity and mo-
mentum equations governing the flow are

Buj 81)]- aWJ

ox +{Ty 5z =0
o Uiy TVigy TVig,
=7ﬂ%+Lﬂm,uj 82uj+82uj+32uj sin 8
rpj 0x  Reyrpj pq \ 0x2 dy? 0z2 Fry ’

an ul(‘)vj v'an W'an
ot Ty TVigy TWigz
__ O 1 prmpy (0% 9%y 9%\ cosp
roj 0y  Reyrpj g \ 0x2 dy? 022 Fry ’
ow; 0w dw 0w
ot I 0x I dy 10z
__ o 0p 1 pmpy (P Pwy Pwi)
rpj 0z Reyrp; pq \ 9x? ay? 072

where u;=(u;, v, w;) and p; are the velocity and pressure of the
fluid j, p; and p; are the corresponding density and dynamic
viscosity. In the dimensionless formulation the lower and upper
phases occupy the regions—n <y < 0, and 0 < y < 1, respec-
tively, where n=h;/h,. The other dimensionless parameters are the
Reynolds numbers Re; » = p1uihy /112 (Req = Reyr/m), the light
fluid Froude number Fry = uiz/ghz, and the density and viscosity
ratios r = p1/pp and m = /o, respectively.

The velocities satisfy the no-slip boundary conditions at the
channel walls

uy=-n=0 wy=1)=0. (2)

The disturbed interface y=n(x, z t), which is a surface in the
3D problem, is defined by a unit-length normal vector n, and t;,
t, denote two unit vectors tangential to the interface in xy- and
yz-planes, respectively:

_ (—nx, 1, —1n2) _ (1, nx,0) , = 0,1, 1)
V1+ng+nz VARR: Vi+n:
Boundary conditions at the interface y=n(x, z, t) require conti-
nuity of the velocity components and the tangential stresses, and
a jump of the normal stress due to the surface tension (the square

brackets denote the jump of the expression value across the inter-
face)

u(y=0)=u@y=0), (4)

n

(3)

m
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where We, = pzhzuiz/a is the Weber number, and o is the surface
tension coefficient.
The interface displacement and the normal velocity components
are coupled by the kinematic boundary condition.
Dn _9n 91y an

vj:ﬁ_ﬁ—'—ujﬁ—i_wj&- (8)

3. Base flow

The unperturbed base flow is assumed to be steady, laminar,
and fully developed (the velocity U(y) is parallel to the channel
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walls and varies only with the cross-section coordinate y). De-
tails on the exact steady state solution can be found in the lit-
erature (e.g., Ullmann et al, 2003; Barmak et al., 2016b). The
base flow solution is fully determined by three dimensionless
parameters: the viscosity ratio m, the flow rate ratio q=q;/q,
and the inclination parameter Y= p,(r—1)gsin B8/(—dP/dx),s. Here
gj is the feed flow rate of phase j (positive in the x direc-
tion), and (fdP/dx)j5=12ujqj/H3 is the corresponding superficial
pressure drop for single phase flow in a channel of a height
H=hq+h,. The Martinelli parameter, which represents the ratio
of the superficial frictional pressure drop in the two phases, is

=(—dP/dx),s/(—dP|dx),s=m q. It can replace either q or m. Note
that with q¢ > 0, the solution corresponds to concurrent upward
flow in case of Y < 0, and to concurrent downflow in case of Y >
0. Countercurrent flow, g < 0, is feasible only when the light phase
flows upward, hence for Y < 0.

Given the parameters (mY, q) the lower phase holdup,
h=h{/[H=n/(n+1), can be obtained by solving the algebraic
Eq. (10) in Barmak et al. (2016b). Then, all the dimen-
sionless characteristics of the base flow, including the in-
terfacial velocity, @; = u;/Ups = 0;(m,q,h) (where Ujs=g;/H is
the superficial velocity of fluid j), the dimensionless veloc-
ity profiles #i(y) = u(y)/u; = ti(m,q,h), and the driving forces,
P 5 = (dP/dx — 01.28sin B)/(—dP/dx),s = P1 5(m,q,h), can be de-
termined. In horizontal flows (Y=0), where h=h(m, q), and for a
given two-fluid system (i.e., specified m) the holdup h and all the
dimensionless flow characteristics are determined by the flow rate
ratio, so that the solution is unique. In countercurrent flow (Y < 0,
q < 0) two solutions are obtained for the holdup, which merge to
a single solution at the flooding point. In concurrent upflow (Y < 0,
q > 0) and concurrent downflow (Y > 0, ¢ > 0) up to 3 differ-
ent solutions for the holdup can be obtained in certain ranges of q
and Y.

4. Linear stability for three-dimensional perturbations

In the framework of the linear analysis, the perturbed veloci-
ties and pressure fields are written as u; =U; +d;, v =7;, wj=
Wj, pj=P;+pj, and n =1 for the dimensionless disturbance of
the interface. The base flow is subject for infinitesimal 3D pertur-
bations of the form:

i i;(y)

U; v;(y)

Wj | w: (y) e(l(kxx+kzz)+)»t) (9)
ﬁj p] (Y)

] Hy

where uj, ¥;, wj, p; and Hy are the perturbation amplitudes,
ky, kz are dimensionless real wavenumbers in the streamwise and
spanwise directions respectively (kyx=2mhy/[ly, k;=2mhy/[l; with Iy
and I, being the corresponding wavelengths) and A is the complex
time increment. In the following discussion the overbars in the no-
tation of the perturbation amplitudes are omitted (e.g., v; instead
of 7;) . Note also that since the collocation method based on the
Chebyshev polynomials (defined in the interval [0, 1]) is applied to
solve the stability problem (Barmak et al, 2016a), a new coordinate
y1= (y+n)/n (0 < y; < 1) is introduced for the part of the chan-
nel occupied by the lower phase, while y,=y (0 < y, < 1) for the
upper phase remains unchanged.

When (9) is substituted in the linearized governing equations
and boundary conditions, the well-known Orr-Sommerfeld equa-
tions for the transverse component of velocity are obtained for
each layer
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The linearized boundary conditions are obtained by means of
Taylor expansions of 7 in the vicinity of its unperturbed zero
value
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The temporal linear stability for 3D  perturbations
(Egs. (10)-(17)) can be solved in the same manner as for 2D
perturbations (see Barmak et al., 2016a,b). However, in addition to
a wavenumber in the flow direction ky, all wavenumbers k; should
be considered (since the channel is infinite in the z-direction), for
the specified two-phase system and operational conditions (i.e.,
the flow rate of each of the phases). Neutral stability of the flow
corresponds to max (Ag)=0 for u; > 0 (min(Ag)=0 for u; < 0),
where Mg is the perturbation growth rate. The flow is considered
to be stable if the real parts of all eigenvalues are negative for u;
> 0, or if the real parts of all eigenvalues are positive while u; <
0. The dimensionless phase speed of the perturbation is defined as
a quantity cg=—A;/k, where A; is the wave angular frequency with
k= /kZ + k2. The details on the numerical method can be found
in Barmak et al. (2016a). The numerical solution was verified by
comparison with the two-dimensional analysis (kz;=0).
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5. Squire’s transformation

The linear stability with respect to 2D perturbations was
studied for stratified two-phase flows in inclined channel in
Barmak et al. (2016b). The governing equations and boundary con-
ditions for the 2D case can be easily deduced for v-component
of the velocity from Egs. (10)-(17), taking w=0 and k;=0. The
resulting 2D formulation would be identical to that presented in
Barmak et al. (2016b), where the transverse velocity component
has been expressed in terms of the stream function.

Comparing the formulations, one can easily reduce the three-
dimensional problem to an equivalent two-dimensional problem
by using the following transformation (the parameters for this ana-
log are denoted with a superscript “2D”):

kP = /K2 + k2,

Re%ngD = REL%D\/ k)Z( + k2 = Reszx,

Fi2? (137)” = Fi3P (I3, + k3) = Frakd,
WeP (k)Z(D)2 = We3" (k% + k3) = We,k3. (18)

The velocity components and pressure perturbations are trans-
formed in the following way k2Pu?P = kyu + kzw, p?P/k2P = p/ky.
The relation for the obtained eigenvalues (time increments) reads
22D = /K3 + k2 /ky.

The fluids considered in both cases (2D and 3D) are identical,
hence m and r are invariant. In terms of dimensional parameters,
the only component that is changing in the Reynolds, Froude, and
Weber numbers is the interfacial velocity:

uP /K2 + k2 = uiky. (19)

The analogy holds only when the base state velocity profile, in-
cluded in the governing equations, remains unchanged. To meet
this requirement the holdup should stay the same, h?° =h. In hor-
izontal flow, where h=h(m, q), this requirement corresponds to
q*P=q, or in terms of the superficial velocities the following re-
lations should be satisfied

Ul _UR _u? ke (20)
Us U u ,/k)2<+k§'

Thus, for horizontal flow the transformation from a 3D linear
stability problem into an equivalent 2D linear stability problem
(Squire’s transformation) is exact. As the equivalent 2D problem is
associated with lower flow rates of both phases, the addition of a
spanwise wave component always has a stabilizing effect provided
that stable density stratification is considered (r > 1). Therefore, in
such cases the critical instability is two-dimensional in the plane
of the flow and the Squire’s transformation fully applies.

In inclined systems, however, the angle of inclination is an ad-
ditional parameter and h=h(m, ¢, Y). Hence, constant holdup can
be maintained if in addition to q2°=q the inclination parameter is
invariant, whereby Y2P =Y. Using the definition of Y, the latter con-
dition can be satisfied for fixed fluid properties and channel size
if

2D
ZA- inﬂ:kixl/z~sin/3. (21)
25 (k)z( + k%)

This means that the channel inclination considered in the
equivalent 2D stability problem is changed when the Squire’s
transformation is applied, whereby:

sin B?P =

. k .
B?P = arcsin *1/2 .sinB ). (22)

(k2 +K2)
Eqgs. (20) and (22) suggest that the Squire’s transformation for
inclined system is associated with reduction of the flow rates of

each of the phases and decrease of the channel inclination. Gener-
ally, both modifications have stabilizing effects. Therefore, one may
expect the validity of the Squire’s theorem also in inclined sys-
tems. However, due to the presence of the term with cos 8 # 1
in the boundary condition on the normal stress (Eq. (13)), the
resulting 2D problem is not a complete equivalent of the 3D prob-
lem. Nevertheless, the effect of cos 8 is relatively small for shal-
low inclinations (e.g., it varies from 1 to 0.9 while 8 is from 0° to
26°). The main effect of gravity in inclined channels is due to the
stream wise component (gsin £) via its impact on the holdup and
velocity profiles. For steeper channel inclinations, the 2D analysis
indicates that the stratified flow is unstable in the entire range of
practical flow rates (Barmak et al., 2016b). Thus, the 3D stability
analysis can reveal only additional unstable disturbance modes. In
inclined channels of shallow inclinations, at which stratified flow
with a smooth interface can be stable, an approximate transfor-
mation can be utilized with sufficient accuracy to convert the 3D
into its equivalent 2D stability problem in order to determine the
stability of the flow. This will be shown and discussed in the fol-
lowing section.

6. Results and discussion

The parameter regions, in which stratified flow with a smooth
interface is stable with respect to two-dimensional perturbations
in the plane of the flow, are known for horizontal (Barmak et al.,
2016a) and inclined (Barmak et al., 2016b) flows. The results were
presented in the form of stability boundaries on the flow pattern
map for each steady state solution (configuration). In the following
we provide justification of the completeness of such a 2D analy-
sis in order to determine the linear stability boundaries with re-
spect to all possible perturbations (three-dimensional in general).
In all cases the upper layer is considered to be lighter than the
lower layer (r > 1), so that the Rayleigh-Taylor instability is not
encountered. It will be shown that in all practical situations 2D
perturbations in the flow plane are the most unstable and thereby
determine the critical conditions for the onset of instability.

6.1. Horizontal flow

For horizontal stratified two-phase flows, the Squire’s trans-
formation is rigorously valid. Nevertheless, as the studied stabil-
ity problem involves several dimensionless parameters, the mathe-
matical statement on the 2D nature of the critical perturbations
(Squire’s theorem) is not straightforward. Therefore, the conse-
quences of applying the Squire’s transformation are demonstrated
in this subsection.

Given a particular two-phase system, for which the channel
height, the viscosity ratio (m) and density ratios (r) are speci-
fied, the stability problem for an oblique wave defined by the two
wavenumbers (ky, k7) is equivalent to the stability problem for
plane wave, where ky is replaced by w/k)z( + k2, the flow rates are

reduced by the factor ky/\/kZ + k2, while the flow rates ratio q is
kept constant. Maintaining q and m ensures that the holdup and
all the other dimensionless characteristics of the base flow remain
invariant.

The above procedure is illustrated in Fig. 2 for the case of strat-
ified horizontal air-water flow, where air forms the upper layer
(m=55 and r=1000). The solid (blue) curve confines the region
which was found to be (linearly) stable with respect to all 2D per-
turbations (k;=0, see Barmak et al. 2016a). Each point along the
stability boundary corresponds to water and air flow rates (i.e., su-
perficial velocities U5 and Uys), for which the flow is neutrally sta-
ble for a particular 2D perturbation, ky (denoted the critical 2D
perturbation), and is stable with respect to all other 2D perturba-
tions. For higher flow rates, beyond the 2D neutral stability bound-
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—stability boundary (all kx, kz=0) B=0°
@ selected points r=1000
O 2D equivalent points m=55
H=0.02m
6=0.072 N/m

Water, U, [m/s]

0.01 {

0.001 0.01 0.1 1 10
Air, Uy [ms]

Fig. 2. Stability boundary with respect to 2D perturbations for horizontal air-water
flow (kz;=0, blue solid line). According to the Squire’s transformation, stability of
any 3D disturbance can be reduced to an equivalent 2D stability problem (e.g., By,
C; instead of B, C, respectively), which corresponds to lower superficial velocities
along the line of constant flow rate ratio (red dashed line). For such conditions the
flow is stable.

ary, there is a range of 2D perturbations that are amplified. The
dashed (red) straight lines correspond to the locus of constant flow
rate ratio, g, and hence of constant holdup as well.

Adding an arbitrary oblique perturbation (3D, k; > 0) at any op-
erational conditions along the 2D neutral stability boundary (e.g.,
at point B) will have identical effect on the flow stability as that of
the corresponding plane (2D) perturbation imposed on a flow of
lower Uy and Uys. Such a point (e.g., By) is situated along the line
of the same flow rate ratio as that of the original (3D) problem.
The higher is k7, the smaller are the equivalent superficial veloc-
ities of each of the phases. As all such points are within the 2D
stable region, each of the points along the (2D) neutral stability
boundary (solid (blue) curve) must be stable with respect to any
3D perturbation. Note that this actually holds in all cases where
the structure of stable region is such that the constant flow rate ra-
tio line drawn from a point on the neutral stability curve towards
lower flow rates is within the 2D stable region. This is the case in
horizontal stratified two-phase flows. Hence, the Squire’s transfor-
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mation allows us to reduce the 3D stability problem to the 2D one
for horizontal flows.

Additional validation of the theorem can be provided by exam-
ining the growth rate of perturbations with arbitrary wavenum-
bers ky and k7 for operational conditions along the stability bound-
ary. The growth rate of perturbations for points B and C are illus-
trated in Fig. 3(a) and (b), respectively. It is seen that except the
two-dimensional perturbation (k;=0) corresponding to the criti-
cal (neutrally stable) wavenumber ky (for which the growth rate,
Agr=0), all other perturbations are stable and decay in time (nega-
tive growth rate).

Short-wave mode of instability is the critical at point B
(kx =0.46), while long waves (ky— 0) determine stability for the
conditions of point C. As demonstrated by Fig. 3(a) and (b), the ef-
fect of the spanwise component k; is especially weak in case of
short streamwise waves (ky). This can be deduced by compari-
son of the vertical axis coordinates in Fig. 3(a) and (b) that cor-
respond to about the same (negative) growth rate. Fig. 4 illustrates
the growth rate dependence on k; for a fixed wavenumber in x-
direction (e.g., the critical one). As shown, the damping of the per-
turbation becomes stronger as ky is larger. In Fig. 5, two different
patterns of the perturbation amplitudes are presented for point B:
the critical (neutrally stable) 2D perturbation with a maximum in
the bulk of the upper (air) layer in proximity of the interface, and
a 3D interfacial mode (which is equivalent to the 2D perturbation
at point By), that eventually decays (stable).

The case of particular interest is a system under zero-gravity
conditions (or fluids of equal densities, r=1). Yiantsios and Hig-
gins (1988) argued that under such conditions and the absence of
surface tension the Squire’s theorem may not be valid. However,
according to the 2D analysis (Barmak et al., 2016a), the flow is al-
ways unstable in the absence of surface tension (We — oo). There-
fore, there is no need to consider also 3D perturbations. With the
inclusion of surface tension, there is a stable region on the flow
pattern map, which is located in the region where the more vis-
cous phase is faster (above the critical flow rate line for m > 1
(e.g., Fig. 6), or below it for m < 1). The structure of stable re-
gion for systems under zero-gravity conditions with m > 1 and
m < 1 is such that the constant flow rate ratio line (e. g., red lines
in Fig. 6) drawn from the point on the neutral stability curve to-
wards lower flow rates is within the stable region. This means that
Squire’s theorem is valid, and 2D perturbations are the most un-

Growth rate
0
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-0.0012
-0.002
-0.004
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-0.015
-0.018
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Fig. 3. Contours of the growth rate of 3D perturbations (a) at point B and (b) at point C. All perturbations are stable (growth rate < 0). The growth rate attains a zero value
(neutral stability) only for k;=0 and the ky value corresponding to the critical 2D wavenumber: kx=0.46 for point B and kx— 0 for point C.
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Fig. 6. Stability boundary for horizontal air-water flow with surface tension under
zero-gravity condition for 2D perturbations (k;=0, blue solid line), which are the
most unstable ones. According to the Squire’s transformation, stability of the 3D
disturbances can be reduced to an equivalent 2D problem shifted to lower superfi-
cial velocities along the line of constant flow rate ratio (red dashed line).
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Fig. 7. Contours of the growth rate of 3D perturbations at point A (see Fig. 6). All
perturbations are stable (growth rate < 0). The growth rate attains a zero value
(neutral stability) only for the critical 2D wavenumber kyx=0.02, k;=0.

stable ones also for this type of systems. This is also confirmed
by the non-positive growth rate of any perturbation of an arbi-
trary wavenumber at point A (marked in Fig. 6), which is shown
in Fig. 7. A zero value is observed only for the 2D perturbation of
the critical wavenumber at point A, ky=0.02.

6.2. Inclined flow

In order to implement the Squire’s transformation to an in-
clined stratified flow to study its stability with respect to 3D per-
turbations, two conditions should be satisfied. In addition to main-
taining a constant flow rate ratio (Eq. (20)), the inclination param-
eter should be kept at a constant value. This means that, accord-
ing to Eq. (22), the inclination angle of the equivalent 2D problem
should be reduced compared to that of the original 3D problem.
Due to the possible non-uniqueness of the base two-phase strat-
ified flow in an inclined channel (e.g., Ullmann et al., 2003; Bar-
mak et al., 2016b), the transformation should be accomplished sep-
arately for each branch of the base flow solutions. In the following
we demonstrate application of this transformation for concurrent
and countercurrent inclined flows, and its implication on the criti-
cality of 2D perturbations.

In countercurrent flow, there are two possible stratified-smooth
configurations, which are stable in closed regions of low flow rates
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Fig. 8. Stability boundaries for countercurrent liquid-liquid flow for 2D perturba-
tions (kz=0, blue solid line). According to the proposed transformation, stability of
a 3D disturbance can be reduced to an equivalent 2D problem which corresponds to
lower superficial velocities (along constant q lines) in a channel of lower inclination
(e.g., from red dots A and B to blue hollow dots A; and Bj, respectively).

of each of the phases. The 2D stability results are shown in Fig. 8,
where the upper solution for the heavy phase holdup is denoted as
the Heavy Phase Dominated (HPD) configuration, while the lower
holdup solution is denoted as the Light Phase Dominated (LPD)
configuration. It was shown in Barmak et al. (2016b) that the sta-
ble region for each of the holdup solutions widens with decreasing
the inclination. This is demonstrated in Fig. 8 by comparing the
stability boundaries of the HPD and LPD configurations for =26°
(solid curves) and B =10° (dashed curves). Any 3D perturbation at
a point located on the (2D) neutral stability curve of one of the
holdup solutions obtained for a particular inclination (e.g., points
A and B for f=26° in Fig. 8, for the HPD and LPD solutions, re-
spectively) can be converted to a 2D perturbation in a channel of
lower inclination and for lower flow rates (e.g., points A; and B4
for f=10°). The flow is stable with respect to 2D disturbances for
these conditions, indicating the stability of the original 3D prob-
lem. Examination of the growth rate of arbitrary 3D perturbations
at points A and B (Fig. 9) gives an additional evidence for the cor-
rectness of the suggested transformation and the associated con-
clusions for countercurrent flows.
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Fig. 10. Stability boundaries for downward inclined air-water flow with respect to
2D perturbations (kz=0, blue solid line). According to the suggested transformation,
stability of a 3D disturbance can be reduced to an equivalent 2D problem at lower
superficial velocities (along s constant q line) and lower channel inclination (e.g.,
from red dot A of 8 =5° to green hollow dot A; of B=1°).

Air-water flows in downward inclined channels are stable only
in the region of single base flow solution of low water flow rates
(see Fig. 10). In this system the multiple (triple) solution region
is located at high water flow rates, and it was found that none of
those solutions are stable with respect to short-wave perturbations
in the flow plane (Barmak et al., 2016b). Increase of the inclination
angle has a destabilizing effect and results in shrinkage of the sta-
ble region to lower liquid flow rates. Thereby, similarly to the pre-
vious example of countercurrent flow, the 3D problem for a point
located on the neutral stability curve can be converted to an equiv-
alent 2D problem corresponding to stable conditions. For example,
a 3D perturbation at point A on the stability boundary of 8=5°
(obtained with respect to 2D perturbations), is transformed to a
2D equivalent for lower flow rates and shallower channel inclina-
tion (point Aq, f=1°). As shown in Fig. 10, the latter conditions
are stable. Hence, the 2D disturbances remain the most unstable
also for downward inclined concurrent flows.

Comparison of the growth rate of arbitrary 3D perturbations for
neutrally stable conditions (point A) and for unstable conditions
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Fig. 9. Contours of the growth rate of three-dimensional perturbations (a) for the HPD solution at point A and (b) for the LPD solution at point B (see Fig. 8). All perturbations
are stable (growth rate <0). The growth rate attains a zero value (neutral stability) only for k;=0 and very long in the streamwise direction waves kyx — 0.



1. Barmak et al./International Journal of Multiphase Flow 88 (2017) 142-151 149

0.1
=5°
h =0.013

U, =25m/s Growth rate
0.08 U, =2.5x10" m/s 0

s

-0.0001
-0.0005
-0.001
-0.005
-0.008
-0.01
-0.015
-0.02
-0.025
-0.03
-0.05
-0.1

0.02

=5

h =002
U, =25m/ss Growth rate

U, =0.001 mss 0.142

kX
(b)

Fig. 11. Contours of the growth rate of 3D perturbations in downward inclined air-water flow, 8 =5° (a) for point A on the stability boundary and (b) for unstable conditions
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(Az) is demonstrated in Fig. 11. In contrast to point A, at which all
wavelength perturbations are stable and only very long 2D waves
have zero-value growth rate, in the unstable region, a range of
various wavenumber perturbations, including 3D ones, are ampli-
fied. The wavenumber ky of the most amplified perturbation is also
shifted (from ky— 0 to kyx ~ 1.8).

For slightly upward inclined air-water flows §=0.1°, there ex-
ists either a single or triple solution base state region. The stability
map for the latter is shown in Fig. 12. In part of the triple solution
region, the lower and middle holdup solutions were found to be
stable (Barmak et al., 2016b). The two-dimensionality of the criti-
cal disturbances in the single solution region (at low air flow rates)
can be proved in the same manner as for downward flow, since the
closed stable region expands with decreasing the channel inclina-
tion. However, the implementation of the Squire’s theorem in the
triple-solution region requires more careful examination.

The upper solution is always unstable and therefore is not of
interest. The lower holdup solution is stable in subdomains a and
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Fig. 13. Triple solution regions for air-water flows in upward inclined channels of
different inclinations (solid lines). Blue dash-dot line depicts a stability boundary
for the middle solution with respect to 2D perturbations (k;=0) for §=0.1°. Ac-
cording to the suggested transformation, a 3D stability problem can be reduced to
an equivalent 2D problem at lower inclination and lower flow rates while main-
tain the same q (red dashed line). For example, from red dot B (neutrally stable for
kx=3.9, kz=0), to the middle holdup solution at the green hollow dot B; B=0.05°
for (kx=3.9, k;=6.74), or to the middle holdup solution at purple hollow dot B,,
B =0.01° for (kx=3.9, k;=38.7) applied at B.

b of the triple solution region. In shallow channel inclinations the
flow configuration of this water layers (low holdup) is insensitive
to the inclination and is similar to the flow configuration obtained
in a horizontal channel. In fact, the neutral stability curve for the
lower holdup solution (line 1 in Fig. 12) coincides with that ob-
tained for horizontal flow and thus remains invariant in this range
of shallow inclinations. The location of the triple solution (3-s) re-
gion is however sensitive to the channel inclination (see Fig. 13).
As channel inclination is reduced (8 < 0.1°), the triple solution is
shifted to lower air and water superficial velocities. Consequently,
the lower (and middle) solutions are found to be stable with re-
spect to 2D perturbations in larger parts of the triple solution re-
gion as the channel inclination is reduced. The middle solution be-
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Fig. 14. Holdup curves for constant water flow rate in slightly upward inclined flow.
Dashed lines represent unstable conditions.

comes stable in the whole triple solution region for inclination an-
gle of $#=0.05° and lower.

Point A is located on the neutral stability boundary of the lower
holdup solution. Considering any arbitrary 3D perturbation at point
A, and applying the proposed transformation, the resulting condi-
tions of reduced air and water flow rates along the same constant
q line as point A are always in the stable region (stability boundary
is independent of the inclination for the lower holdup solution).

The consequences of applying the proposed transformation for
converting a 3D perturbation to its equivalent 2D perturbation is
demonstrated in Fig. 13 with respect to point B (marked in Fig. 12).
Point B is located on the stability boundary of the middle solution
(8=0.1°) and corresponds to the critical 2D short wave (ky=3.9,
kz=0). The location of point B on the holdup curve (water holdup
vs. the air superficial velocity at a fixed water superficial veloc-
ity corresponding to point B) is shown in Fig. 14. The stability of
point B with respect to a 3D perturbation (kxy=3.9, k;=6.74) is
equivalent to perturbing the middle solution of point By in a chan-
nel inclined at B =0.05° with a 2D perturbation (ky=7.79, kz=0).
Similarly, the 2D stability of the middle solution of point B, in a
B =0.01° inclined channel is the 2D equivalent to a stability of a 3D
the perturbation (ky=3.9, k;=38.7) at point B. Since for the shal-
lower inclinations (8 < 0.05°) the middle holdup solution is stable
over the entire triple solution region, both B; and B, are stable
with respect to the equivalent 2D perturbation. Hence, point B is
stable with respect to the considered 3D perturbations.

7. Conclusions

In this work the sufficiency of 2D analysis to explore the stabil-
ity of stratified horizontal and inclined gas-liquid and liquid-liquid
flows was established based on the Squire’s transformation that al-
lows us to derive either rigorous or rationale-based conclusion say-
ing that two-dimensional perturbations remain most unstable also
in stratified two-phase plane-parallel flows.

For flows in horizontal channels the analogy between the 2D
and 3D problem formulations is rigorously followed from the
Squire’s transformation. As a result it has been proven that 2D
perturbations are the most unstable and should be considered for
identifying the stability limits. However, in the case of inclined
channels, additional arguments should be invoked in order to draw
a similar conclusion. These arguments were elaborated and their
consequences were demonstrated for several gas-liquid and liquid-
liquid inclined concurrent and countercurrent flows. It is shown

that in inclined stratified flows the transformation of a 3D stabil-
ity problem to its 2D analog is associated with a stabilizing effect
of reducing the system inclination, in addition to the reduction of
the phases flow rates as in the case of horizontal flows. The slower
growth of 3D perturbations compared to 2D perturbations is elabo-
rated by considering the corresponding stability maps and contour
plots of the growth rate levels.

Appendix: 3D boundary conditions on the stress components

To formulate the B.C. on the stress components, a unit-length
normal to the disturbed interface, and two unit vectors tangen-
tial to the interface in xy- and yz-planes, t;, t,, respectively, are
used:

_ (=1x, 1, =n2) _ (1, 1%, 0) t — 0,12, 1)

n A , . (A23)
V1+ng+n: V1+ng V1+nZ
The stress tensor is
To Ty T
T=|Tx T, T.]|. (A24)
T« sz T,
where stress tensor components are
au v ow

T = Zﬂﬁ’ Ty = Zﬂﬁa I, = ZME’

ou dv v Iw
Ty =T = M(ay + 3)()’ Ty, =Ty :M<az + 8y>’

ow  du
T, = TZX:M(aX + 82)

The stress vector acting across the interface is given by:
—1
To Ty Tk N 10z
1

™ —T.n = Tyx Tyy Tyz \/ﬁ

Tox sz T, «/ﬁ

—NxTex + Txy — NIy, 1

= | Ty + Ty — 00y | - —————. (A25)
V1+ng+nz

—NxTe + Ty, — 1, T3,
Whereby the normal stress is:

—NxTx + Ty — 021y,
(=% 1, —12) 1

n-T-nzi\/ﬁ. _nxny‘i"l}y_nzTyz 7] > >
2+ V1+n2+
B\ T ng + 112

_ U;%Txx + Ty + nszz = 20xTy — 20T, + 2050 T,
1+77 +n3 '
According to the Young-Laplace equation, the jump in the nor-

mal stress across the interface is balanced by surface tension,
hence:

(A26)

[n:-T-n]j=-0V-n=-0o aﬂ . S
X\V1+ni+n2
+ 83 T , (A27)
E\VI+m+nz
where the jump of the quantity across the interface

(ie,[fl=fo—f1 ) is denoted by [ o |.

Eq. (A27) can be rewritten in dimensionless form with the
stress tensor component expressed in terms of the velocity com-
ponents:
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72
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The interface deformations (n) are assumed to be small,
whereby Eq. (A28) can be reduced (neglecting quadratic terms of
the order n?) to:

m
[n-T-n] = [p - M—TZRegl(vy — Nx(Uy + Uy) — Nz (Wy + vz))]
= We; (Mxx + Nzz)-

The shear stress components are:

(A29)
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—NxTe + Ty, — 1. T3,
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Since the interface deformations are small, the shear stress bal-
ance on xy-plane can be written as:

t,-T-n

[t1:T-n] = [-nxTx + Ty — 0Tz + nxTyy]
m
= [—M(—anux + (Uy + 1)
23

— Nz (Wy +Uz) + 2nxvy)] =0. (A32)

The shear stress balance on yz-plane is:
[t2-T-n] = [Ty — 1Tz + Tz — 01|
m
= [M—/f(znzvy — Nx(Wx + Uz)

+ W4 wy) — 2nzwz)] —0. (A33)
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