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Numerical Investigation of the
Thermocapillary Drift of a Bubble

in an Electric Field

Effect of an imposed electric field on the thermocapillary
migration of a gas bubble in zero-gravity enmvironment is
investigated numerically. An analysis is carried out for an
electrically conducting fluid, and two values of the Prand:l
number 0.01 and 7. Fluid flow is created by a thermocapillary
JSorce, and by an additional electrostatic force which is caused
by a non-uniform distribution of the electric charge on the
surface of the bubble. It is shown that interaction between the
two surface forces may lead either to decrease or to increase
of the drift velocity of the bubble. The effect depends on the
ratio between both forces and values of the Marangoni and
the Prandtl numbers.

1 Introduction

Thermocapillary migration of drops and bubbles under
microgravity conditions is one of numerous theoretical
problems associated with materials processing in the micro-
gravity environment [1, 2]. Dependence of the surface ten-
sion coefficient on the temperature or the concentration
leads to appearance of thermocapillary or concentration-

capillary force on liquid-liquid or liquid-gas interface

whenever a non-uniform distribution of the temperature or
the concentration along the interface takes place. In the
microgravity environment the thermocapillary force usually
becomes the dominant driving source of motion of non-uni-
formly heated multi-component fluid. Such thermocapillary
or concentration-capillary flows arise around drops and
bubbles immersed in a non-isothermal fluid, and propel
them in the direction parallel to the gradient of the temper-
ature or the concentration.

Since the pioneering work of Young et al. [3], where
thermocapillary drift of a bubble was studied experimen-
tally and theoretically, the evidence of the thermocapillary
drift phenomenon has been approved in several ground-
based experiments [1, 4-9]. Several experimental investiga-
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tions [1, 2, 10-12] launched in spacecrafts and drop towers
have shown that the thermocapillary effect is usually the
main cause of migration of drops and bubbles in a temper-
ature gradient under microgravity conditions.

A solution of the problem of the thermocapillary drift of
a drop in the Stokes limit was obtained by Young et al. [3].
Succeeding theoretical works were devoted mainly to ana-
lytical analyses of the problem [1, 13—17]. This led to
different decompositions of a solution in power series of
Marangoni or Reynolds numbers. However, all the known
analytical approximations of the solution are limited with
rather low values of the Marangoni number.

The numerical investigation of an effect of the thermo-
capillary force on the motion of a droplet in a uniform
fluid flow was started by Rivkind and Sigovtsev [18]. For-
mulation of the problem and method of solution used in
[18] did not allow to calculate the drift velocity. The first
complete numerical analysis, including solution of the full
Navier-Stokes and energy equations together with calcula-
tion of the drift velocity, was carried out by Szymzyk and
Siekmann [19] for Marangoni and Reynolds numbers not
larger than 100, and Prandtl number varying from 0.01 to
100. These results were improved by Balasubramaniam and
Lavery [20] who extended their calculations up to
Ma = 1,000 and Re = 2,000, and reported dependence of
the drift velocity on Marangoni, Reynolds, and Prandtl
numbers.

The problem of electro-Aydrodynamic (EHD) fluid mo-
tion around an electrically conducting drop, immersed in an
electrically conducting fluid and subjected to a uniform
electric field, was formulated by Taylor et al. [21] who
obtained solution of the problem in the Stokes limit, and
showed experimental verification of the obtained solution. A
system, that consists of an electrically conducting drop
surrounded by an electrically conducting fluid in an external
electric field, does not contain any inhomogeneous volume
charge in the stationary state. On the other hand, non-
uniformly distributed electric charges are accumulated on
the interface of the two liquids with different electrophysical
properties. Interaction of the surface charge with the electric
field creates electrostatic force, the tangential component of
which produces a fluid flow along the surface.

Griffiths and Morrison [22, 23] analyzed the influence of
EHD flow described by Taylor [21] on heat and mass
transfer from a translating drop. Chang, Carleson and Berg
[24, 25] investigated the influence of an electric field on the
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terminal velocity of a translating drop, together with heat
and mass transfer to the drop. The analysis of Chang and
Berg [25] showed that the terminal velocity of the concen-
tration-capillary drift of a single-drop may either decrease
or increase in the presence of the electric field. This analysis
included Stokes solution for the velocity and convection-
diffusion problem for the concentration.

As a rule, thermocapillary drift of drops and bubbles is
not very fast. The issue of increasing the drift velocity is
associated with various technological processes of material
manufacturing in microgravity, where gas bubbles have to
be removed from liquid phase. The present work deals with
preliminary numerical estimation of influence of an im-
posed electric field on the thermocapillary migration of a
single bubble in an electrically conducting fluid. Mentioned
above surface electric force does not create any drift, but
affects the thermocapillary fluid motion in two ways: by the
interaction of two surface forces; and by an additional
effect of convective heat transfer that alters the temperature
distribution on the surface, and hence the thermocapillary
force. It is shown that the influence of the electric field on
the drift velocity strongly depends on the Prandtl and
Marangoni numbers, and the ratio of characteristic values
of the thermocapillary and the electric forces.

It should be noticed that there may be at least two
additional mechanisms of fluid motion in the electric field.
The first one is connected with dependence of surface
tension on the electric potential (so-called electrocapillarity
[26]), and the second one appears because of a dependence
of the electric permeability on the temperature (electrocon-
vection [27, 28]). Nevertheless we believe, that for complete
understanding of the whole phenomenon the influence of all
the three mechanisms on the thermocapillary migration of
drops and bubbles should be studied separately.

2 Formulation of the Problem

The problem of the thermocapillary migration of a single

bubble in an electric field is formulated with the following

assumptions:

o Shape of the bubble remains spherical.

® Dependence of the surface tension on the temperature is
linear. Dependence of all the other properties of the
liquid on the temperature is negligibly small.

® Electric field is parallel to the temperature gradient.

® Time necessary to create a stationary distribution of the
electric charge on the surface of the bubble is much less
than R*/V?%, — the characteristic time of the thermocap-
illary drift.

® Fluid surrounding the bubble is electrically conducting.

® Dependence of all the properties of the liquid on the
electric field is negligibly small.

o Electrical conductivity inside the bubble is zero.

® Joule heat and viscous heat dissipation are neglected.

@ Viscosity and thermal diffusivity inside the bubble are
negligibly small.

® Temperature gradient far from the bubble is constant.

o Electrical field far from the bubble is constant and homo-
geneous.

o Fluid flow does not influence the electric field.

Microgravity sci. technol. VIII/1 (1995)

Ry
R
QJ 2, Vyrin
EO

T=A@Z+Vy )

Fig. 1. System of coordinates and sketch of the computational
domain

Under these assumptions the spherical bubble migrates
parallel to the direction of the temperature gradient with a
constant drift velocity V,,,,. The problem is formulated in a
spherical coordinate system with the origin placed at the
center of the bubble and the polar axis parallel to the
temperature gradient (see fig. 1). The system of coordinates
moves together with the bubble in such a way that the
origin of the coordinate system always coincides with the
center of the bubble. The problem is considered in a com-
putational domain 0 <r* < R*, 0 < 6 < n. Temperature at
r* = R is assumed to be equal to T% = A*(z* + V%,,t*),
where A* is the external temperature gradient, Vi is the
drift velocity of the bubble, and ¢* is time (here star
denotes the dimensionalized variables).

After introducing a new function T* as T* =T* +
A*VY ,t*, where T* is the temperature of the fluid, and
using R*, R*?|v, v/R*, gv?/R*? A*R* and E, as scales of
the length, the time, the velocity, the pressure, the tempera-
ture, and the electric field respectively, the problem in the
non-dimensionalized form is described with the momentum
equation

0

5+ OV)o = —Vp +Au, (1)
the continuity equation

dive =0, (2
the energy equation

oT 1

== ) =— AT, 3
a1 + Vaine + @V)T P AT, (3)
and the equation for the electric potential

Ap =0 (4

where v is the velocity, p is the pressure, Pr =v/y is the
Prandtl number, v is the kinematic viscosity, and y is the
thermal diffusivity of the fluid, R is the radius of the
bubble, ¢ is the density; ¢ is the potential of the electric
field.
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The boundary conditions of the problem in non-dimen-
sionalized form are the following:
at the boundary of the computational domain r = R :
?=0¢,(R,,0) (5

U, = Ve €08 (0), vy =V, sin (0),

T =R_,cos (), for OSOSg;

6
O cos@ L+ o Ecpsm ©
T T T TR e T T T =0sE
at the axis of symmetry 0 =0, n:
ov, or oo
b =0, =5=0, 50-% 260" €
at the surface of the bubble r = 1:
aT ex _ in a(pex — 0
b=0, 5-=0, ¢==g" =0 (8)
0 (v _ OT | B9~ (e 09 dp™
8r<r>— Mg +E =g (s’“ or or ) ©)

at the centre of the bubble r = 0 only one boundary condi-
tion for the electric potential is necessary:

o(r =0) =0. (10)

In egs. (5)-(10) Mn = —(0y/dT)(AR?/(¢v?)) and El=
&€& E3R?/(gv?) are non-dimensional parameters defined as
ratios of the characteristic thermocapillary force and the
characteristic electrostatic surface force to the characteristic
viscous force. y is the surface tension coefficient, ¢, is the
electric permeability of the vacuum, ¢ is the specific electric
permeability, and E, is the intensity of the electric field far
from the bubble. Superscripts in and ex correspond to areas
inside and outside the bubble, respectively. If 0y/0T < 0 the
bubble migrates towards the temperature gradient, and in
the opposite direction if dy/0T > 0.

The drift velocity V,,, has to be defined from the re-
quirement of the balance of all the forces acting on the
surface of the bubble. This leads to an additional equation

v,

1 v
= — 2 3 0 in2
F=2n J[vo(l 3 cos? (0)) — sin (20) 50 i ()] =

— p cos (0) sin (0):| dg =0. (11)

r=1

The formulation of the problem given by egs. (1)—(11)
needs the following comments:

® We do not define the velocity scale with the use of
dimensionalized thermocapillary force - [v] = —(dy/
OT)(AR/(gv)), and the corresponding Reynolds number
Re = Mn = —(3y/0T)(AR?/(gv?)) as usually is accepted
in problems of thermocapillary convection [20, 29]. This
is because in the considered problem two independent
forces create the flow, and hence there is no way to
choose one of them for definition of the velocity scale.
Thus, we do not describe the non-dimensional parameter
Mn, which is the ratio of the characteristic thermocapil-
lary force to the characteristic viscous force, as the
Reynolds number. Definition of the Marangoni number
Ma = Mn - Pr = —(0y/0T)(AR?/(gvy)) used here is the
same as usual [20, 29].

o The formulation given by eqs. (1)—(11) is not restricted
with requirement of high electric conductivity of the
surrounding fluid. None of the non-dimensional parame-
ters Mn, Pr, El contains the electric conductivity, so the
formulation of the problem may be extended also to fluids
that are not perfect conductors of electricity. The station-
ary state will be correctly described if time, necessary for
accumulation of the stationary surface charge, is much
less than the characteristic time of the thermocapillary
drift. The last one may be estimated as R*/ Vi Re-
ported by Taylor et al. [21] experimental observation of
EHD flow, which was caused by non-uniform distribution
of the surface charge, was done with the use of a silicone
oil drop immersed in the mixture of castor oil and corn
oil. All the liquids used in this experiment usually are
considered as dielectrics.

® The Joule heating of the surrounding fluid is described by
the non-dimensionalized source term (oR*E2/(Pr- 1))
(Vo)? in the energy equation (3). Here ¢ is the electric
conductivity, A is the heat conductivity. It is clear, that this
term is important for large values of ¢ and small values
of Pr, which is characteristic for melts of metals and
semiconductors. On the other hand, this term is negligibly
small for transparent fluids, such as water or organic oils
usually used in experiments. Since the present numerical
analysis does not refer to any concrete fluid, and was done
to see the distinct interaction of EHD and thermocapil-
lary convective flows in a numerical experiment, we ne-
glected the Joule heating in the mathematical model.

Pr=1
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Fig. 2. Comparison of the present results with
the results of Balasubramaniam and Lavery
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unknown functions, » is the num-

°
L

ber of the time step. Superposition
of the analytical solution obtained
by Balasubramaniam and Chai
[29] for the thermocapillary drift
with Pr =0, and the analytical
solution of Taylor et al. [21] for
EHD flow around a bubble in the

0
Iy

-2+

-3

-4

F Y
o0

Stokes limit was used as an initial
condition.

The test calculations were done
for Pr =1 and El =0. Compari-
son of the obtained results with
the results of Balasubramaniam
and Lavery [20] is shown in fig. 2.

T
5 4 3 2 4

(a) ®)

Fig. 3. Streamlines (upper part) and isotherms (lower part) of the flows for Pr = 7. (a) Mn = 10,
El =0, Ma =70, V,y = 2.75 (b) Mn = 0, El = 100, Ma =0, V,,,,, = 0

With the assumptions made the problem for the electric
field may be solved separately. In the case of the constant
and homogeneous external electric field an analytical solu-
tion of the problem is known [21]. For the vanishing
electric conductivity inside the bubble the following expres-
sions define the electric potential inside and outside the
bubble:

2r?

Using eq. (11), the balance of tangential stress at the
surface of the bubble given by eq. (9) may be rewritten as:

o/fv oT 9 .
[5(7">]’=I = —Mn- [@1}' +ZEI~ cos (0) sin (6). (13)

3 Numerical Method and Test Calculations

"= % Eyrcos (0), ¢ = Eo(r + L) cos (6). (12)

The problem (1)-(11) was solved with the finite volume
method using predictor-corrector semi-implicit scheme for
straight-forward integration in time. The complete numeri-
cal procedure is described in detail in [30].
Straight-forward integration in time was carried out
until convergence to a stationary solution was reached. An
additional formal equation
g%:amﬂ, for § >0 (14)
was added to the problem for obtaining the drift velocity in
the same computational process. Here F is defined in eq.
(11), @ and B are constants to be obtained empirically. It is
obvious that a constant value of ¥, corresponds to F = 0.
The additional eq. (14) was used after a correct value of
Vanipe Was localized with the secant method. Our numerical
experiments showed that convergence of the whole numeri-
cal process can be reached with 8 =1 and o of the same
order of magnitude with Mn. Ar, where At is the time step.
Convergence was supposed to be reached when all the
unknown functions (the fluid velocity, the pressure, the
temperature, and the drift velocity) satisfied the stopping
criterion ||f"*' —f*|/| /| <103, where f is one of the
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The test calculations were carried
out for the same value of R =5,
and with the same uniform grid
consisting of 64 nodes in r- and 32
nodes in 6O-direction, as it was
used in [20]. Then calculations were repeated on the twice
finer grid consisting of 128 x 64 nodes.

Fig. 2a shows dependence of the non-dimensional drift
velocity scaled by Mn on the parameter Mn. The scaled
values of V,,, correspond to the scaling used in [20]. As it
was mentioned above, the Reynolds number defined in [20]
coincides with parameter Mn used here. Increase of Variss
with the increase of Mn is more apparent with the scaling
used in the present work, as is illustrated in fig. 2b, where
the logarithmic scales are used for both ¥V, and Mn. As it
is seen from fig. 2, all the results are in good agreement. The
largest discrepancy in values of ¥V, is observed at Mn = 1,
but even in this case the discrepancy is less than 3 %.

In the case of E/ #0 only Stokes solution obtained in
[21] was used for test calculations. Good convergence to the
Stokes solution was obtained with the use of zero initial
conditions. Taking into account that finite difference ap-
proximation of the non-linear terms in the Navier-Stokes
and the energy equations was checked in the case of E/ =0,
Mn #0, the test calculations were considered to be com-
pleted.

4 Results

The numerical analysis was carried out for two values of
the Prandtl number, Pr =0.01 and Pr =7, and the ratio
El/Mn varying from 0 to 40. A uniform finite difference
grid in r-direction was used for R, <10, and a non-uni-
form grid with Chebyshev nodes shifted to the interval
[1,R,] for R, >10. The grid in O-direction was always
uniform. The number of nodes varied from 80 to 130 in
r-direction and from 40 to 60 in #-direction.

The patterns of calculated flows are plotted in figs. 3—5.
Streamlines of the flow are shown in the upper halves of the
plots, and the isotherms of the shifted temperature
T =T — V,,,t are shown in the lower parts. Arrows on the
streamlines indicate the direction of fluid flow in the coordi-
nate system connected with the bubble.

Fig. 3 illustrates thermocapillary flows without electric
field (fig. 3a), and EHD flows without thermocapillary
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The calculated dependence of the

drift velocity on the electric field is

illustrated in fig. 6 where ratio

Vaint(El #0) | V40 (El = 0) is plot-

ted versus the ratio EI/Mn. The

parameter El/Mn is the ratio of the

characteristic electrostatic surface

force to the characteristic thermo-

capillary force, and characterizes
the relative contribution of both
forces to the resulting flow. It is
5 clear that flow with a small ratio
El/Mn will be close to the thermo-
capillary flow without an electric
field.

@ ®)

4.1 Case of Pr =0.01

Fig. 4. Streamlines (upper part) and isotherms (lower part) of the flows for Pr = 0.01. (a)
Mn=1, Ma=001, El=10, V,,=0397; (b) Mn=100, Ma=1, EI= 2,000,
Varin = 41.1

In the case of Pr=0.01 (fig. 6a),
the dependence of V,,, on the ratio
Ei/Mn strongly depends on the
value of Mn or, since Ma =

Mn - Pr, on the value of Ma. When

the Marangoni number is relatively

small, the drift velocity decreases

with the increase of the electric field

at least for the considered values of

El/Mn. But for larger values of Ma

the drift velocity decreases when the

ratio E//{Mn is less than approxi-
mately 8, and then increases with
the increase of El/Mn.

The difference in the dependence
of V., on El[Mn for different val-
ues of Ma is caused by two different
tendencies of the effect of the elec-

Fig. 5. Streamlines (upper part) and isotherms (lower part) of the flows for Pr = 7. (a) Mn = 1,
Ma =7, El = 20, V,,,, = 0.939; (b) Mn = 10, Ma = 70, El = 100, V4, = 7.19

force (fig. 3b) for Pr =7. Comparison of the two plots
shown in fig. 3 leads to two main conclusions.

(1) The direction of EHD flow consisting of two toroidal
vortices generally does not coincide with the direction
of the thermocapillary flow, which is non-uniform only
near the bubble. This may lead to distortion of the
thermocapillary flow in the vicinity of the bubble and,
as it will be shown, to slow down the thermocapillary
drift.

Two toroidal vortices of the EHD flow drive cold and
hot fluid towards the line 6 =n/2 (fig. 3b). This in-
creases the temperature gradient along the surface of
the bubble, and consequently increases the thermocapil-
lary force. Thus, changes of the temperature on the
surface of the bubble, caused by EHD convective heat
transfer, may intensify the thermocapillary convection
and increase the drift velocity. The resulting effect of
the electric field on the drift velocity of the bubble
depends on which of two tendencies prevails.

2

20

tric field on the thermocapillary
convection around a bubble. This
may be figured out from the analy-
sis of flow patterns plotted in figs. 4
and S.

In the case of small Marangoni number (e.g., Mn =1,
Ma = Mn - Pr =0.01) and the ratio E//Mn less than ap-
proximately 10, the streamlines of the flow remain the same
shape as is illustrated in fig. 3a. After the ratio E//Mn
exceeds 10, the interaction between the two forces leads to
appearance of a small vortex ahead of the migrating bubble
(fig. 4a). On the part of the bubble surface, connected with
this small vortex, the surface velocity is opposite to the
direction of the drift. This leads to a decrease of the drift
velocity seen in the curve corresponding to Ma = 0.01 in
fig. 6a. The isotherms of the flow in the case Ma =0.01
remain symmetric with respect to the plane 6 = n/2, which
means that the effect of convective heat transfer is weak.

When the parameter Mn is larger (e.g., Mn =10,
Ma = Mn - Pr =0.1) the thermocapillary force is stronger
and the additional vortex does not appear. Distribution of
the temperature when E//Mn < 10 is also close to symmet-
ric with respect to the line 8 = n/2, which indicates that the
heat transfer is still driven mainly by heat conduction. As in
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the case of Ma =0.01 the electric force slows down the
thermocapillary drift (fig. 6a). On the contrary, when the
parameter El increases such that E//Mn > 10, the symmetry
of the isotherms becomes visibly broken near the bubble
(fig. 4b). This means that influence of the thermocapillary
force on the convection of heat becomes larger. Since the
Marangoni number is maintained constant, one can con-
clude that the growth of the thermocapillary force is caused
by the increased temperature gradient on the surface of the
bubble. The increase of the temperature gradient is a se-
quence of the convection created by the electric force. The
growth of the thermocapillary force affects the drift velocity
too. ¥, begins to grow with the growth of the electric field
when El/Mn > 10 (fig. 6a).

Similar changes in the patterns of the isolines and the
isotherms are observed for larger values of Mn (fig. 6a).
Since both forces are larger than those in the previous
cases, both effects of decrease and increase of the drift
velocity are stronger, and in the case Mn = 100 an abrupt
change from decreasing to increasing V,,, takes place at
El/Mn ~ 8 (fig. 6a).

In the case of Mn = 1,000 we could calculate only flows
with El/Mn < 15. Larger values of EI//Mn gave rise to
time-wise oscillations of the numerical solution. It should
be noticed that among oscillatory instabilities of the ther-
mocapillary or EHD flow there may be an additional insta-
bility mechanism connected with the two tendencies of
increase or decrease of the drift velocity. The mathematical
model used here does not describe a non-stationary flow
with oscillating drift velocity, so appearance of an oscilla-
tory numerical solution was considered as a limit of appli-
cability of the mathematical model or the numerical
method.

4.2 Case of Pr=7

In the case of Pr =7 (fig. 5) the convective heat transfer is
stronger, and the effect of increase of the drift velocity in
the increasing electric field prevails. As it is seen from fig.
6b the growth of V,,, with the growth of El/Mn is faster

for larger values of Ma. The asymmetry of the isotherms,
caused by the thermocapillary convection, is noticeable for
Mn > 1. Small vortex ahead of the moving bubble appears
in the case Mn =1, El > 1 (Ma =17, see also fig. 5a) as it
took place for Pr = 0.01 (fig. 4a). As it was noticed, appear-
ance of this additional vortex slows down the thermocapil-
lary drift. But in the case of Pr =7 the EHD convection
increases the temperature gradient on the rear part of the
moving bubble (fig. 5a), and hence increases the thermo-
capillary force there. This leads to the prevailing effect of
increase of the drift velocity.

In the case of Mn = 10 (Ma = 70, see fig. 5b) the temper-
ature gradient in the rear part of the bubble increases
sharply with the increase of EI/Mn. This leads to very
intense thermocapillary convection of heat, and hence to
the rapid increase of the drift velocity, as it can be seen
from fig. 6b.

5 Conclusions

The described analysis shows that the electric field has dual
influence on the thermocapillary drift of a single bubble.
The thermocapillary flow around the bubble may be slowed
down by the electrohydrodynamic (EHD) flow. On the
other hand the convective heat transfer, created by the
EHD flow, increases the temperature gradient along the
surface of the bubble, and hence increases the thermocapil-
lary force.

In the case of small Prandtl number, Pr =0.01, the
thermocapillary drift is slowed down by the interaction
between the thermocapillary and EHD flow, when the
Marangoni number is small (of the order of 10-2 or less).
For larger values of the Marangoni number, at least
for 0.1 < Ma <1, the slowing down effect exists only for
small values of the ratio E//Mn, and is replaced by inten-
sifying one with the increase of El/Mn. The mathematical
model and the numerical method used in the present
work do not allow to extend last conclusion for larger values
of the Marangoni number, such as Ma = 10 (Mn = 1,000) or
more.

12 | 8 T
Pr=0.01 [ ] Pr=7 /‘L
i T e
W ) /
£ £,
= y = ‘
£ o8- e — £ // //
> — >, (/1__/ Fig. 6. Dependence of the drift velocities on
L — the ratio El[Mn for different values of
the Marangoni number. (a) Pr =0.01, <
0.6 } o Mn=1, Ma=0.01, A Mn =10, Ma = 0.1,
0 10 20 30 40 0 10 20 30 40 O Mn=100, Ma=1 O Mn= 1000,
Ma=10;, ) Pr=7 <& Mn=0l1,
El/Mn El/Mn Ma=07,A Mn=1,Ma=7,0 Mn =10,
(a) (b) Ma =70
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In the case of moderate Prandtl number, Pr =7, the
convective heat transfer caused by electrohydrodynamic
flow is stronger and intensification of the thermocapillary
drift prevails for all considered values of the Marangoni
number. The growth of the drift velocity with the increase
of El/Mn in this case becomes faster for larger values of
Ma.

The preliminary results presented here approve the
proposition that the terminal velocity of the thermocapil-
lary drift of a gas bubble may be increased by an imposed
electric field. The noticeable growth of the drift velocity
may take place in fluids with relatively large Prandtl num-
ber. On the other hand, decrease of the drift velocity in an
imposed electric field may occur in low-Prandtl-number
fluids.
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