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a b s t r a c t 

The problem of natural convection in a laterally heated three-dimensional cubic cavity under the ac- 

tion of an externally imposed magnetic field is revisited. Flows at the Rayleigh number Ra = 10 6 and the 

Hartmann number Ha = 100 , and three different orientations of the magnetic field are considered. The 

problem is solved using two independent numerical methods based on the second order finite-volume 

discretization schemes on structured Cartesian grids. Convergence toward grid-independent results is ex- 

amined versus the grid refinement and near-wall grid stretching. Converged benchmark-quality results 

are obtained. It is shown that for convection flows with a strong magnetic field a steep, sometimes ex- 

tremely steep, stretching near some of the boundaries is needed. Three-dimensional patterns and integral 

properties of the converged flow fields are reported and discussed. It is shown that the strongest mag- 

netic suppression is yielded by the field directed along the imposed temperature gradient. The horizontal 

magnetic field perpendicular to the imposed temperature gradient stabilizes the main convection roll and 

leads to a flow with higher kinetic energy and heat transfer rate than in the non-magnetic case. Applica- 

bility of the quasi-two-dimensional model to natural convection flows in a box is discussed. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The magnetoconvection, i.e., thermal convection in an electri-

cally conducting fluid affected by a magnetic field, is found in

many astro- and geophysical (e.g., in star atmospheres or liq-

uid planetary cores) and technological (e.g., in liquid-metal com-

ponents of future nuclear fusion reactors, semiconductor crystal

growth, casting of steel or aluminum, liquid metal batteries) sys-

tems (see, e.g., [ 1–5 ]). The distinctive feature of such magneto-

hydrodynamic (MHD) flows is their modification by the Lorentz

body force that appears as the result of the interaction between

the magnetic field and the induced electric currents permeating

the fluid. If the magnetic field is strong, the modification is quite

profound. Its main elements are: (i) suppression of turbulence, (ii)

anisotropy of the flow structures, which become elongated or even

two-dimensional in the direction of the magnetic field, and (iii) de-

velopment of thin MHD boundary layers near the walls (see [ 6 ] for

a review). 

It has been recently understood that the suppression of turbu-

lence by the magnetic field does not necessarily mean that the
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ow acquires a simple laminar steady-state form. On the contrary,

rowth of the MHD-specific convection instability modes that have

eak or zero variations along the magnetic field lines and, thus,

re not suppressed, may lead to unsteady, essentially nonlinear and

omplex flow dynamics [ 7 –16 ]. 

The MHD modification of the flow presents additional chal-

enges to numerical modeling. The challenges become especially

erious in the cases of strong imposed magnetic field identifiable

s those with large values of the Hartmann number Ha , which we

efine in Section 2 of the paper. The main source of the challenges

s the numerical stiffness of the problem due to the strong sepa-

ation between the smallest and largest length and time scales. As

n example, the Hartmann and sidewall boundary layers develop-

ng near the walls, respectively, perpendicular and parallel to the

agnetic field, have the typical thickness ∼ H a −1 and ∼ H a −1 / 2 . In

ddition to carrying strong gradients of velocity and electric po-

ential, the layers are the locations of the larger part of the electric

urrents flowing in the fluid. 

The numerical simulation experience accumulated over the re-

ent years has shown that fine resolution of the MHD boundary

ayers is essential for accuracy of a computational model. For the

agnetoconvection flows, this has been convincingly demonstrated

n [ 7,8,11 ]. Even moderately insufficient resolution in these areas,

or example, by fewer than 6–7 grid points within the Hartmann

https://doi.org/10.1016/j.compfluid.2018.08.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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Fig. 1. Sketch of the considered flow configuration. Laterally heated three- 

dimensional cubic box under the effect of external magnetic field of three possible 

directions. 
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ayer, can lead to not just quantitative errors, but also to a qualita-

ively incorrect picture of the entire flow. 

Another conclusion of the recent computational work is that

imulations of high- Ha MHD flows require special attention to the

iscretization schemes applied to the electromagnetic fields (elec-

ric potential and current) and Lorentz force field [ 17 –22 ]. In the

ows with electrically insulated walls, where the electric currents

lose entirely within the liquid, a conservative discretization lead-

ng to global conservation of electric charge and momentum ap-

ears to be essential. Lack of this conservation property may lead

o unphysical features, such as spurious oscillations of velocity

ear the walls, and numerical instability [17] . The conservative

iscretization was realized in the framework of finite-difference

nd finite-volume methods on staggered [ 17,20 ] and collocated

 18,19,22 ] grids. The resulting algorithms were successfully applied

o flows with Ha up to 10 0 0 (see, e.g., [ 18 –20,7,8,10,11,23 ]). The sit-

ation appears to be different in flows with electrically conducting

alls, where electric charge is not globally conserved within the

uid. As shown in [ 21 ], the conservation property is less impor-

ant and may even have a slight detrimental effect on the scheme’s

tability in such flows. 

The modeling of magnetoconvection in the case of a strong

agnetic field was identified in [ 24 ] as one of the key problems

f computational MHD. The configuration of natural convection in

 laterally heated rectangular box with a uniform horizontal mag-

etic field was proposed as a possible benchmark. The choice was

ustified by the characteristic magnetoconvection phenomena, such

s near-wall vertical jets, expected in this configuration [ 12 ] as

ell as by relevance to the design of liquid metal blankets for nu-

lear fusion reactors [ 4 ]. 

This paper continues the work on development of computa-

ional methods for high- Ha MHD flows. The model problem of con-

ection in a cubic box with lateral heating and an imposed mag-

etic field of three different orientations is solved. This is an ex-

ended version of the benchmark problem suggested in [ 24 ]. Sim-

lar solutions were attempted, on much lower level of numerical

delity, in [ 25,26 ]. We obtain high-accuracy three-dimensional so-

utions, which may serve for future benchmarking of MHD codes.

he effects of grid refinement, grid clustering, and various ap-

roaches to discretization are explored. The three-dimensional flow

atterns are discussed and visualized using the novel approach

roposed in [ 27,28 ]. 

. Formulation of the problem 

We consider a natural thermal convection flow in a three-

imensional cubic box shown in Fig. 1 . The length of the cube

ide is L . The vertical walls at x = 0 , L are kept at constant values

f temperature, T hot and T cold , respectively, while those at z = 0 , L

nd y = 0 , L are perfectly thermally insulated. The fluid has elec-

rical conductivity σ , kinematic viscosity ν , thermal diffusivity α,

nd density ρ = ρ0 [ 1 − β( T − T cold ) ] , where β is the thermal ex-

ansion coefficient and ρ0 is the fluid density at temperature T cold .

he system is affected by a constant and homogeneous externally

enerated magnetic field of magnitude B 0 directed along one of the

oordinate axes (see Fig. 1 ). We assume that the magnetic Prandtl

nd Reynolds numbers are very small, so that the quasi-static ap-

roximations can be used, in which the flow-induced perturba-

ions of the magnetic field are neglected in comparison with the

mposed magnetic field in the expressions for the Ohm’s law and

orentz force [ 6 ]. Denoting the unit vector in the direction of the

agnetic field by b , the dimensionless governing equations in the

oussinesq approximation read 

∂v 
∂t 

+ 

(
v · ∇ 

)
v = −∇p + G r −1 / 2 �v + θe z + HaG r −1 / 2 J × b, (1)
ϕ = Ha ∇ · ( v × b ) , (2) 

 = −∇ϕ + Ha ( v × b ) , (3)

 · v = 0 (4) 

∂θ

∂t 
+ ( v · ∇ ) θ = P r −1 G r −1 / 2 �θ. (5) 

here the dimensionless parameters of the problem are the Hart-

an number 

a = B 0 H ( σ/ ρ0 ν) 
1 / 2 

, (6) 

he Grashof number 

r = gβ( T hot − T cold ) H 

3 / ν2 , (7) 

nd the Prandtl number 

 r = ν/α. (8) 

In (1) –(6) , the non-dimensional temperature is θ =
( T − T cold ) / �T , with the temperature scale defined as

T = T hot − T cold . The length, velocity, time, pressure, electric

otential, and electric current are rendered dimensionless using,

espectively, the box size L , free-fall speed U = ( gβ�T L ) 1 / 2 , L / U,

0 U 

2 , UB 0 L / Ha , and σUB 0 / Ha . 

The walls allow no slip: 

 = 0 at all the walls . (9) 

The walls are perfectly electrically insulated. As already speci-

ed, they are perfectly thermally insulated with the exception of

he two opposing vertical walls maintained at constant tempera-

ures. The boundary conditions for the dimensionless temperature

nd electric potential are: 

= 1 , 
∂ϕ 

∂x 
= 0 at x = 0 , (10)

= 0 , 
∂ϕ 

∂x 
= 0 at x = 1 , (11)

∂θ

∂y 
= 0 , 

∂ϕ 

∂y 
= 0 at y = 0 , 1 , (12)

∂θ = 0 , 
∂ϕ = 0 at z = 0 , 1 . (13)
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Fig. 2. Illustrations of the grid arrangement systems used in the study. (a) The fully staggered grid applied in the Method I in the case of the magnetic field b = e x . (b) The 

collocated grid applied in the Method II for an arbitrary magnetic field b . 
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3. Computational approach 

One of the goals of the study is to cross-verify the results us-

ing two independent computational methods for MHD flows. Brief

accounts of the methods are provided in this section. Detailed de-

scriptions are available in the references given below. 

3.1. Method I 

The method is based on the finite-volume discretization scheme

described in [ 29,30 ]. The electromagnetic part of the scheme has

been added for the present study. The method includes direct cal-

culation of steady states done by Newton iterations as in [ 31 ] and

integration of the governing equations in time as in [ 30 ]. 

The semi-implicit projection algorithm is based on the second-

order backward differentiation formula for the time deriva-

tive [ 29,30 ]. This requires solution of six elliptic (Poisson and

Helmholtz) equations for the three velocity components, pressure,

temperature, and electric potential. 

The spatial discretization is conducted on a structured, non-

uniform, Cartesian grid in the manner illustrated in Fig. 2 a. The

fully staggered arrangement similar to that in [ 17 ] is utilized. The

central points of the cells ( x i , y j , z k ) are used to approximate pres-

sure and temperature. The velocity components are approximated

at the centers of the faces: u 
i + 1 

2 
, j,k 

, v 
i, j+ 1 

2 
,k 

, w 

i, j,k + 1 
2 

. Interpolation

between the nodes is done similarly to [ 32 ] so that the integrals∫ 
V ( v · ∇ ) v · v dV and 

∫ 
V ( v · ∇ ) θ · θdV yield analytical zero if calcu-

lated by the quadrature formulas based on the finite volume cells.

The schemes are reported in [ 33 ]. 

The central points of the cell edges are used to approximate

the electric potential. This part of the arrangement is done dif-

ferently for different directions of the magnetic field. As an ex-

ample, Fig. 2 (a) illustrates the case of b = e x , in which we use

ϕ 

x 

i, j+ 1 
2 

,k + 1 
2 

. Similarly, the cases of b = e y and b = e z require, respec-

tively, ϕ 

y 

i + 1 
2 

, j,k + 1 
2 

and ϕ 

z 

i + 1 
2 

, j+ 1 
2 

,k 
. Only one of the fields is computed

and used as the potential ϕ in each of the specific configurations

of the magnetic field considered in this paper. A superposition of

all three magnetic fields has to be used at an arbitrary b (this sit-

uation requiring interpolation of the Lorentz force components is

not considered further in our discussion). 

The discretization of the momentum, temperature and pressure

equations follows the classical staggered grid scheme and, there-

fore, consistent and conservative (see, e.g., [ 32 ]). For the electro-

magnetic part, the fully staggered arrangement allows us to build

a consistent discretization on a compact stencil, which does not

require interpolation and conserves the electric charge exactly. 
We will illustrate the scheme for the case of b = e x shown in

ig. 2 (a). The y - and z -components of the electric current are eval-

ated as 

 y | i, j,k + 1 2 
= −

ϕ 

x 
i, j+ 1 2 ,k + 1 2 

− ϕ 

x 
i, j− 1 

2 ,k + 1 2 

y j+ 1 2 
− y j− 1 

2 

+ w i, j,k + 1 2 
, (14)

 z | i, j+ 1 2 ,k 
= −

ϕ 

x 
i, j+ 1 2 ,k + 1 2 

− ϕ 

x 
i, j+ 1 2 ,k − 1 

2 

z k + 1 2 
− z k − 1 

2 

− v i, j+ 1 2 ,k 
. (15)

The right-hand side of the potential Eq. (2) is computed as 

 · ( v ×b ) | i, j+ 1 2 ,k + 1 2 
= 

w i, j+1 ,k + 1 2 
− w i, j,k+ 1 2 

y j+1 − y j 
+ 

v i, j+1 ,k +1 − v i, j+1 ,k 

z k +1 − z k 
. 

(16)

The combination of the discretized gradient components in

 14 , 15 ] and divergence in [ 16 ] gives the consistent second-order

pproximation of the Laplacian in the left-hand side of [ 2 ] on a

ompact stencil. Finally, the components of the Lorentz force in the

omentum equation are computed immediately at the respective

enters of the cell faces as 

( J × b ) y | i, j+ 1 2 ,k 
= J z | i, j+ 1 2 ,k 

, ( J × b ) z | i, j,k + 1 2 
= −J y | i, j,k + 1 2 

. (17)

We note that at b = e x the x -component of the force is zero,

nd the current component J x does not interact with the magnetic

eld. 

To resolve the boundary layers, especially the thin Hartmann

ayers developing at the walls perpendicular to the magnetic field,

he grid points need to be strongly clustered towards the bound-

ries. The clustering is achieved via the coordinate transformation

 = 0 . 5 + 0 . 5 

tanh [ s ( ξ − 0 . 5 ) ] 

tanh ( 0 . 5 s ) 
, (18)

here ξ is the transformed coordinate, in which the grid is uni-

orm, and s is the stretching parameter that determines the degree

f clustering. Larger s means smaller distances between neighbor-

ng grid points near the boundaries and larger distances in the cen-

ral part of the box. 

It is well known that steep grid stretching causes numerical

ifficulties, which are connected to the extremely small distances

etween neighboring grid nodes. In particular, the iterative meth-

ds of solution of elliptic equations may lose convergence. Our

omputational experience shows that with the large stretching pa-

ameters used below, approximately at s ≥ 5, the most effective

ultigrid and Krylov-subspace based iterative solvers fail to con-

erge. This difficulty is overcome by using the tensor-product-

actorization (TPF) and tensor-product-Thomas (TPT) solvers, as de-

cribed in [ 29 ]. These solvers yield analytical solution to within the
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omputer arithmetic precision. Additionally, the required amount

f arithmetic operations remains the same for all the possible val-

es of the governing parameters, which makes the solvers espe-

ially attractive for calculations at large Reynolds or Grashof num-

ers (see [ 29 ] for numerical examples). However, for the steep

tretching applied here, an additional effort is needed. Thus, the

ne-dimensional eigenvalue decompositions, needed for TPT and

PF, are calculated with quadruple precision, after which only their

ouble-precision part is used. This allows us to have 16 correct dig-

ts in the computed eigenvalues and eigenvectors, which further

educes the numerical errors. Furthermore, the Thomas algorithm

uffers from numerical instability in the case of Neumann bound-

ry conditions [ 33 ], which is the case for pressure and electric po-

ential equations. To avoid this problem, a more computationally

emanding TPF algorithm is used for calculation of the pressure

nd the potential. 

.2. Method II 

The method uses the discretization scheme first introduced as

cheme B in [ 22 ]. The scheme was expanded to include the ef-

ects of heat transfer and thermal convection and implicit treat-

ent of temperature diffusion and viscous terms in [ 7,8,10 ]. The

ethod was validated in comparison with experimental data and

horoughly tested for accuracy and efficiency in simulations of

HD flows at high Reynolds, Grashof, and Hartmann numbers (see,

.g., [ 7,8,10,11,23,34 ]). The scheme is valid for an arbitrary three-

imensional non-uniform magnetic field (see [ 7 ] for an example of

uch computations). 

The method solves the unsteady governing equations in the

orm nearly identical to ( 1 )–(5) . The only difference is that the

qs. (2) and (3) do not include the factor Ha in the right-hand

ides due the absence of the factor H a −1 in the typical scales for

he electric potential and current. The steady states are found as

esults of convergence of time-dependent solutions. The time dis-

retization is of the second order and based on the backward-

ifference scheme with explicit two-layer approximation of nonlin-

ar and force terms. The heat conduction and viscous terms are in-

egrated implicitly to avoid the diffusive stability limits on the time

tep. The standard projection (fractional step) algorithm is used to

atisfy incompressibility. 

A structured Cartesian grid is used. The grid is non-uniform,

ith points clustered toward two sets of parallel walls according

o the coordinate transformation [ 18 ]. The grid remains uniform in

he third direction due to the limitations imposed by the elliptic

olver discussed below. 

The spatial discretization scheme is of the second order and

ased on the principles proposed in [ 18,19,35 ]. It uses the collo-

ated grid arrangement illustrated in Fig. 2 (b). All the flow vari-

bles and all the governing equations are approximated at the cen-

ral points of the cells ( x i , y j , z k ). The method also uses the nor-

al fluxes of velocity and electric current at the central points

f the cell faces: F x | i + 1 
2 

, j,k 
, G x | i + 1 

2 
, j,k 

, F y | i, j+ 1 
2 

,k 
, G y | i, j+ 1 

2 
,k 

, F z | i, j,k + 1 
2 

,

 z | i, j,k + 1 
2 

. The velocity fluxes F are determined at the velocity cor-

ection step using the classical Rhie and Chow interpolation (see,

.g., [ 22 ]). The current fluxes are evaluated as proposed in [ 18 ]: 

 x | i + 1 2 , j,k = −ϕ i +1 , j,k −ϕ i, j,k 

x i +1 − x i 
+ 

˜ ( v × b ) x | i + 1 2 , j,k , (19) 

ith analogous formulas for G y | i, j+ 1 
2 

,k 
and G z | i, j,k + 1 

2 
. The wave

bove the second term in the right-hand side of [ 19 ] indicates that

he term is the result of the linear interpolation from the cell-

enter points to the face centers. In order to calculate the Lorentz

orce, the components of the electric current J at the cell centers

re obtained from the current fluxes by linear interpolation. The
onlinear terms of the momentum and heat equations are writ-

en in the divergence form and discretized using central differences

ased on the fluxes and interpolations of velocity and temperature

t the neighboring half-integer points (see [ 22 ] for details). 

As explained in detail in [ 18,19,22 ], the evaluation of divergence

perator via the velocity or current fluxes leads to consistent ap-

roximation of the elliptic equations for pressure and electric po-

ential on a compact stencil. The entire scheme is highly conser-

ative. In the non-diffusive limit, the solution of the discretized

quations exactly conserves mass, momentum, electric charge and

nternal energy, while kinetic energy is conserved with a dissipa-

ive error of the 3rd order. 

The elliptic equations for pressure, electric potential, tempera-

ure, and velocity are solved by the direct method based on the

ombination of the Cosine Fast Transform in the direction, in which

he grid is uniform, and cyclic reduction for the discretized two-

imensional elliptic problems for the transform coefficients. 

.3. Visualization of three-dimensional velocity fields 

For visualization of three-dimensional velocity fields we im-

lement the method proposed for incompressible flows in [ 27 ].

ivergence-free projections of velocity are made on the three sets

f coordinate planes: ( x,y ), ( y,z ), and ( x,z ). We compute three pro-

ections v 1 , v 2 , v 3 of the velocity field v on the subspaces formed

y the divergence-free velocity fields having only two non-zero

omponents. Consider, for example, the subspace of the coordi-

ate plane ( x,z ) formed by all vectors a , such that a = [ a x , 0 , a z ] ,

 · a = ∂ a x /∂ x + ∂ a z /∂ z = 0 , and the components a x and a z satisfy

he no-slip boundary conditions, where necessary. Denote the pro-

ection of the velocity field on this subspace as v 1 and the similar

rojections on the subspaces defined in planes ( y,z ) and ( x,y ) as v 2 
nd v 3 , respectively. Thus, we obtain three vector fields, each of

hem having only two non-zero components, and each component

eing a three-dimensional scalar function: 

 1 = 

[ 

u 1 ( x, y, z ) 
0 

w 1 ( x, y, z ) 

] 

, v 2 = 

[ 

0 

v 2 ( x, y, z ) 
w 2 ( x, y, z ) 

] 

, v 3 = 

[ 

u 3 ( x, y, z ) 
v 3 ( x, y, z ) 

0 

] 

. (20)

The two-dimensional divergence of each vector field vanishes:

 i v ( v 1 ) = d i v ( x,z ) ( v 1 ) = 

∂ u 1 

∂x 
+ 

∂ w 1 

∂z 
= 0 (21)

 i v ( v 2 ) = d i v ( y,z ) ( v 2 ) = 

∂ v 2 
∂y 

+ 

∂ w 2 

∂z 
= 0 (22)

 i v ( v 3 ) = d i v ( x,y ) ( v 3 ) = 

∂ u 3 

∂x 
+ 

∂ v 3 
∂y 

= 0 . (23)

This allows us to define a vector potential for each of the vector

elds, which has only one non-zero component: 

 1 = ∇ × �1 ; �1 = ( 0 , �y ( x, y, z ) , 0 ) , (24) 

 2 = ∇ × �2 ; �2 = ( �x ( x, y, z ) , 0 , 0 ) , (25) 

 3 = ∇ × �3 ; �3 = ( 0 , 0 , �z ( x, y, z ) ) . (26) 

Evidently, the three-dimensional function �y ( x, y, z ) coincides

ith the streamfunction of v 1 in each plane y = const and can be

nterpreted as an extended streamfunction. Similar interpretations

re valid for �x and �z . As a result, the fields v 1 , v 2 and v 3 are tan-

ent to the corresponding vector potential isosurfaces, and can be

nterpreted as divergence-free projections of the velocity field on

he coordinate planes. Arguments for uniqueness of these projec-

ions, and different methods to compute them are given in [ 27,28 ].
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Table 1 

The total kinetic energy E kin and Nusselt number Nu calculated by 

the two methods on grids of various sizes and various degrees of 

stretching. The magnetic field is parallel to the x -axis, i.e., parallel to 

the applied temperature drop H a x = 100 . 

Method I 

s 100 150 200 250 

1 E kin 0.00498 0.00531 0.00553 0.00568 

Nu 4.236 4.300 4.342 4.372 

3 E kin 0.00574 0.00595 0.00607 0.00614 

Nu 4.384 4.426 4.448 4.462 

6 E kin 0.00637 0.006407 0.00642 0.00643 

Nu 4.503 4.511 4.514 4.516 

9 E kin 0.00644 0.00645 0.00646 0.00646 

Nu 4.514 4.519 4.520 4.521 

12 E kin 0.00644 0.00645 0.00646 0.00646 

Nu 4.508 4.517 4.519 4.521 

Method II 

s 64 128 256 

Uniform E kin 0.00609 0.00636 0.00644 

Nu 4.503 4.514 4.530 

s x = 4 , E kin 0.00641 0.00645 0.00646 

s z = 3 Nu 4.530 4.525 4.524 

s x = 6 , E kin 0.00642 0.00645 0.00646 

s z = 4 Nu 4.537 4.526 4.521 
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Examples of convective flows in a laterally heated cube visual-

ized by this technique can be found in [ 27 ] . In these examples the

isosurfaces of �y correspond to the main convection roll, in which

the fluid ascends along the hot wall and descends along the cold

one. The additional three-dimensional motion represented as two

pairs of antisymmetric circulations in the ( y, z ) and ( x, y ) planes

and is depicted by the isosurfaces of potentials �x and �z . 

4. Results 

The simulations are performed at the same non-dimensional

parameters as in [ 26 ]: a cubic cavity, the Prandtl number P r =
0 . 054 , the Rayleigh number Ra = GrP r = 10 6 , and the Hartmann

number Ha = 100 , except for the test case, in which the magnetic

field is absent. The orientation of the magnetic field along the x,

y , or z axis is indicated in the following discussion by the use of,

respectively, Ha x , Ha y , or Ha z . 

The computed flows are analyzed using three-dimensional dis-

tributions and one-dimensional profiles of flow variables, and the

integral parameters: the total kinetic energy 

E kin = 

1 

2 

1 ∫ 
0 

1 ∫ 
0 

1 ∫ 
0 

v 2 d xd yd z, (27)

and the Nusselt number on the hot wall 

Nu = −
1 ∫ 

0 

1 ∫ 
0 

(
∂θ

∂x 

)
x =0 

d yd z. (28)

Note that owing to the conservative scheme properties, the

Nusselt number calculated at any cross-section x = x 1 as 

N u x 1 = 

1 ∫ 
0 

1 ∫ 
0 

(
uθ − ∂θ

∂x 

)
x = x 1 

d yd z 

attains the same value if calculated by the quadrature formula

based on the length of grid cell sides. 

All the solutions with the magnetic field are found to be lam-

inar and time-independent. This has been determined using the

Method I and Method II by computing time-dependent solutions

for a sufficiently long time to assure convergence to asymptotic

steady states. These states obtained in the way just described or

via the Newton’s iterations with Method I are visualized and ana-

lyzed later in this section. 

We note that the absence of time-dependency is not surprising

from the physical viewpoint at such a combination of Ra and Ha .

It is attributed to the suppression of velocity fluctuations by the

magnetic field. 

Test simulations have been performed at zero magnetic field.

Following [ 35 ] we estimate for this flow that the thermal bound-

ary layer near the heated vertical plate that needs to be resolved

has dimensionless thickness ∼0.0567, the average Kolmogorov dis-

sipation scale is ∼0.0167, and the time step is supposed to be not

larger than 0.00165. In our calculations with 150 3 grid nodes and

s = 3 . 7 we had 27 nodes inside the boundary layer, the maximal

value of ( �x �z ) 1/2 is 0.01287, which is smaller than the estimated

Kolmogorov dissipation scale, and the time step used was 0.001.

The calculated flow demonstrates irregular oscillations character-

ized by several dominant dimensionless frequencies varying be-

tween approximately 0.01 and 0.1. The flow averaged in time over

the time interval of 100 units is shown in Fig. 3 . The isotherms

show that temperature boundary layers develop near the bound-

aries x = 0 , 1 . The distribution of �y in Fig. 3 (b) shows the main

convection roll with the axis in the y -direction. It can also be ob-

served that the secondary structures in the ( y, z ) and ( x, y ) planes
re shifted towards the boundaries x = 0 , 1 and z = 0 , 1 , respec-

ively. The time-averaged integral parameters are E kin = 0 . 0218 and

u = 6 . 593 . Note that for these parameters the calculations of [ 26 ]

n the noticeably coarser grid arrived to the flow with Nu = 7 . 2 . 

.1. Integral flow characteristics 

The integral flow characteristics for all computed flows are

isted in Tables 1 –3 . The grid size and the degree of grid stretching

re varied in wide ranges: 100 3 –250 3 and 1 ≤ s ≤ 12 for the Method

, and 64 3 to 256 3 and zero stretching (a uniform grid) to s = 6 for

he Method II. The grid stretching is chosen to be the same in

ll three directions in the Method I. In the Method II, the grid is

lways uniform in one direction and stretches differently (always

tronger along the magnetic field) in the other two directions. 

Our first conclusion is that convergence to grid-independent re-

ults is achieved for all three orientations of the magnetic field

nd for both the computational methods. The asymptotic accu-

ate values that can be determined with a reasonably high cer-

ainty are listed in Table 4 . At the same time, the convergence

ehavior varies significantly with the choice of the computa-

ional method as well as with the orientation of the magnetic

eld. 

Fast convergence is observed at H a x = 100 or H a z = 100 , i.e.,

hen the magnetic field is parallel to the imposed temperature

rop or vertical (see Tables 1 and 3 ). Even the crudest grids

100 3 points for Method I and 64 3 points for Method II) give re-

ults within few percent of the asymptotic values if sufficiently

trong grid stretching is used. The grids with 150 3 points and s = 6

Method I) and 128 3 points and ( s x , s z ) = ( 4 , 3 ) or ( 3 , 4 ) for, re-

pectively, H a x = 100 or H a z = 100 (Method II) appear sufficient for

ccurate simulations. 

The convergence is noticeably slower in the case of the span-

ise magnetic field, i.e., at H a y = 100 (see Table 2 ). For the Method

, the calculations with the weakest grid stretching ( s = 1 ) pro-

uce quite wrong results. The accuracy improves dramatically on

rids with strong stretching ( s = 9 and s = 12 ) and appears to

each an acceptable level on the grids of 150 3 points at s = 12

r 200 3 points at s = 9 . The situation is better in the case of the

ethod II, where the results obtained on the uniform grids are not
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Fig. 3. Three-dimensional temperature and velocity fields for the time-averaged flow at Ra = GrPr = 10 6 without magnetic field. Calculations are performed using the Method 

I on the grid of 150 3 points with the stretching parameter s = 3 . 7 . The isotherms θ = 0 . 1 , 0 . 5 , and 0.9 are plotted in (a). The velocity is visualized in (b)–(d) by vector 

potentials of divergence-free velocity projections and projections of velocity vectors on selected planes. Maximum and minimum values of the velocity potentials are: (b) 

−0.0766, 0.0 0 0395; (c) −0.0209, 0.0193; (d) −0.0160; 0.0184. Levels plotted are: (b) −0.03; (c) ± 0.001; (d) ± 0.009. 
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ery far from the asymptotic values. The grid of 128 3 points and

( s x , s y ) = ( 3 , 4 ) appears sufficient. Nevertheless, the convergence is

lower than at the other orientations of the magnetic field. 

Our results can be compared with those of [ 26 ], which shows

u = 4 . 766 for H a x = 100 , Nu = 7 . 135 for H a y = 100 , and Nu =
 . 0 02 for H a z = 10 0 . We attribute the substantial difference ob-

erved in all three cases to the crude grid (64 3 or 128 × 40 2 uni-

ormly distributed points) and the non-conservative discretization

sed in [ 26 ]. 

The effect of the magnetic fields of various orientations on the

inetic energy and heat transfer is summarized in Table 4 , where

he results are compared with those at Ha = 0 . Considering the

act of suppression of velocity fluctuations by an imposed mag-

etic field, one would expect reduction of E kin and Nu in the MHD

ows. This is observed in our results when the magnetic field is

ligned with the temperature drop or oriented vertically. In com-

arison to the non-magnetic case, the kinetic energy is reduced

pproximately three-fold at H a x = 100 and two-fold at H a z = 100 .

trong reduction of Nu is also observed. 

The effect of the magnetic field is clearly different when the

eld is in the spanwise direction, i.e., at H a y = 100 . We see that

oth E kin and Nu increase in comparison to the non-magnetic case.

he reasons for such a seemingly counterintuitive behavior will be-

ome clear when we consider the transformation of the flow struc-
ure. 
.2. Scalar fields 

The effects of the magnetic field and grid parameters on the

istributions of temperature θ and electric potential ϕ are dis-

ussed in this section. 

For the temperature, a nearly horizontal shape of the isotherms

n the interior of the box indicates strong convective mixing (see

he non-magnetic case illustrated in Fig. 3 as an example). This is

ot observed in the flows at H a z = 100 (see Fig. 4 ) and H a x = 100

not shown). The suppression of the convective mixing is also re-

ealed by the reduced values of Nu shown in Table 4 . The situation

s different in the flow with H a y = 100 , which demonstrates high

egree of mixing resulting in nearly horizontal isotherms in the

iddle of the domain (see Fig. 5 ) and increased value of Nu . 

The effect of the grid size and stretching on the temperature

istribution is observed for all three orientations of the magnetic

eld. Fig. 4 illustrates the effect for the case of H a z = 100 . For dif-

erent grids and stretching parameters we observe different steep-

ess of the isotherm θ = 0.5 in the central part of the cavity, as

ell as different deformation of the isotherms θ = 0.1 and 0.9 in

he boundary regions. Again, we observe that for the Method I,

teep stretching (100 3 grid, s = 9) yields better results than a re-

ned grid with an insufficient stretching (250 3 grid, s = 1). This ef-

ect becomes even more pronounced in the case of the spanwise

agnetic field, directed along the y -axis (see Fig. 5 ). 
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Fig. 4. Isotherms θ = 0 . 1 , 0 . 5 , and 0.9 for Pr = 0.054, Ra = 10 6 , Ha z = 100 calculated on different grids with different stretching by the Methods I and II. 
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Similar grid-dependency can be seen in the patterns of isobars

(not shown here). Even more profound effects of the grid param-

eters on the results are observed in the patterns of equipotential

surfaces that are shown in Figs. 6 –8 for the three magnetic field di-

rections. In all three cases, the structures of the potential field ob-

tained on different grids, for different stretchings and by different

numerical methods are qualitatively similar. Quantitatively, how-

ever, we see substantial deviations of the fields obtained by the

Method I on weakly stretched grids with s = 1 from the converged

results. This evidently leads to incorrectly computed electromag-

netic force and, consequently, the flow and temperature fields. We

see this sensitivity of the electric potential to the details of the

numerical procedure as requiring special attention. The potential
s routinely ignored in visualization and analysis of MHD solutions.

s we have just demonstrated, the electric potential is a sensitive

easure of solution accuracy and should be a part of benchmark-

ng along with the temperature and velocity. 

In the case of the spanwise magnetic field H a y = 100 the po-

ential distribution is nearly two-dimensional (with weak variation

long the magnetic field lines) with thin layers of sharp potential

radients near the walls at x = 0 , 1 and z = 0 , 1 (see Fig. 8 ). We

lso note that owing to the symmetry of the problem, the equipon-

ential surfaces form patterns with rotational symmetry, so that in

ases of the magnetic field along the x -, y -, and z -axis, the symme-

ry is with respect to rotation around the x -, y -, and z -centerlines

f the box, respectively. 
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Fig. 5. Isotherms θ = 0 . 1 , 0 . 5 , and 0.9 for Pr = 0.054, Ra = 10 6 , Ha y = 100 calculated on different grids with different stretching by the Methods I and II. 
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The results obtained by both the methods were also examined

y comparing one-dimensional profiles of solution variables. Such

rofiles are poorly suited for visualization of the three-dimensional

ow structure, but allow for a better demonstration of quantitative

ifferences. An exam ple is given in Fig. 9 for the temperature pro-

les. We clearly see that disagreement between the not converged

nd converged results is the smallest in the case of H a x = 100 ,

hen the magnetic suppression of the flow is the strongest. The

isagreement is the largest in the case of the spanwise magnetic

eld H a y = 100 , for which the suppression of the bulk flow is the

eakest, however changes of the flow pattern are significant (see

elow). Here we would like to reiterate that, in agreement with the

t  
isualization in Fig. 4 , the profile corresponding to the converged

olution shows nearly uniform temperature distribution in the in-

erior of the box and sharp temperature gradients near the walls

t x = 0 , 1 . This is consistent with the large value of Nu reported

or H a y = 100 in Table 4 . 

.3. Velocity profiles 

The calculated velocity fields are compared using one-

imensional profiles, which allows us to emphasize the compu-

ational problems related to the grid coarseness and insufficient
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Fig. 6. Equipotential surfaces for Pr = 0.054, Ra = 10 6 , Ha x = 100 calculated on different grids with different stretching by the Methods I and II. The levels ϕ = 2 . 0 , 4.0 and 6.0 

are shown. In this figure and in Figs. 7 and 8 , the free additive constant in the definition of the potential is fixed by setting the minimum value of ϕ to zero. 
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stretching, as well as to illustrate the structure of the velocity

boundary layers. 

Profiles of the x -component of velocity are shown in Fig. 10 .

The main elements of the profiles are the two strong horizontal

jets near the top and bottom walls z = 0 , 1 (see Fig. 10 (a)–(c)). The

jets are a part of the main convection roll and observed for all

the magnetic field directions, as well as for the non-magnetic con-

vection flow. The profiles show antisymmetry with respect to the

mid-plane of the box z = 0 . Under the magnetic field effect, the

boundary layers at z = 0 , 1 become thinner, as already noticed in

the two-dimensional simulations [ 13 ]. As shown in Fig. 10 (b), the

vertical magnetic field leads to a nearly linear distribution of veloc-

ity between the jets. The spanwise magnetic field (see Fig. 10 (c))

results in the flow, in which the horizontal velocity in the core of
he box is practically zero, but the jets near the top and bottom

alls are much stronger than in the other two cases. 

The profiles in Fig. 10 (d)–(f) reveal the complex structure of

he jets by showing the distributions of the velocity component

 along the y -axis at x = 0 . 5 , z = 0 . 05 , i.e., approximately at the

ocation of the strongest flow in the bottom jet. We see that at

 a x = 100 and H a z = 100 the jets have complex three-dimensional

hapes with higher velocity near the walls at y = 0 , 1 . The ampli-

ude of the variation of u along y is in both cases stronger than for

he time-averaged profile obtained at Ha = 0 (not shown). 

We do not observe noticeable convergence or stretching-

ependency problems when the magnetic field is directed along

he x- axis ( Fig. 10 (a)–(d)). These problems become more profound

hen the magnetic field is vertical ( Fig. 10 (b) and (e)), and really
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Fig. 7. Equipotential surfaces for Pr = 0.054, Ra = 10 6 , Ha z = 100 calculated on different grids with different stretching by the Methods I and II. The levels ϕ = 2 . 0 , 4.0 and 6.0 

are shown. 
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trong when the field is directed along the y -axis ( Fig. 10 (c)–(f)).

imilarly to what was observed for temperature and electric poten-

ial, simulations based on the Method I and using grids with weak

tretching, s = 1 , do not yield the profiles of the velocity compo-

ent u close to the converged ones. 

The structure of another part of the main convection roll,

amely the vertical jets near the hot ( x = 0 ) and cold ( x = 1 ) verti-

al walls, is presented in Fig. 11 . The jets are clearly visible in the

rofiles along the horizontal central line y = z = 0 . 5 (see Fig. 11 (a)–

c)). The maximum velocity is about the same at H a y = 100 and

 a z = 100 , but about three times smaller at H a x = 100 . The effect

an be attributed not just to the general strong suppression of the

ow at H a x = 100 documented earlier, but also to the widening of

he jets and disappearance of the core with nearly zero vertical ve-
ocity (cf. Fig. 11 (a)–(c)). We also note that the boundary layers at

 = 0 , 1 are narrowed by the magnetic fields of all three orienta-

ions in comparison to the non-magnetic case. 

The structure of the vertical jet along the y -axis is illustrated

n Fig. 11 (d)–(f). As for the horizontal jets, we see high-amplitude

ariation revealing strong three-dimensionality of the flow struc-

ure at H a x = 100 and H a z = 100 , and the nearly flat profile caused

y the magnetic field at H a y = 100 . Thin boundary layers are visi-

le near the walls at y = 0 , 1 in three cases. As for the profiles in

ig. 10 , comparison with the non-magnetic case reveals higher de-

ree of three-dimensionality at H a x = 100 and H a z = 100 and thin-

er boundary layers. 

The profiles in Fig. 11 generally confirm the conclusions made

bove in regard of the effect of grid size and stretching on the ve-
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Fig. 8. Equipotential surfaces for Pr = 0.054, Ra = 10 6 , Ha y = 100 calculated on different grids with different stretching by the Methods I and II. The levels ϕ = 2 . 0 , 4.0 and 

6.0 are shown. 

Fig. 9. Temperature profiles along the line y = z = 0 . 5 in flows with three different orientations of the magnetic field, on different grids with different stretching computed 

by the Methods I and II. 
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Fig. 10. Profiles of the x- component of velocity u in flows with three different orientations of the magnetic field computed on different grids with different stretching by 

the Methods I and II. The profiles are drawn along the lines (a)–(c) x = y = 0 . 5 , (d)–(f) x = 0 . 5 , z = 0 . 05 . 

Fig. 11. Profiles of the z- component of velocity w in flows with three different orientations of the magnetic field computed on different grids with different stretching by 

the Methods I and II. The profiles are drawn along the lines (a)–(c) y = z = 0 . 5 , (d)–(f) x = 0 . 05 , z = 0 . 5 . 
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Table 2 

The total kinetic energy E kin and Nusselt number Nu calculated by 

the two methods on grids of various sizes and various degrees of 

stretching. The magnetic field is parallel to the z -axis, i.e., parallel to 

the gravity force H a z = 100 . 

Method I 

s 100 150 200 250 

1 E kin 0.00895 0.00938 0.00966 0.00985 

Nu 5.181 5.227 5.260 5.283 

3 E kin 0.00994 0.0102 0.0104 0.0105 

Nu 5.293 5.326 5.344 5.355 

6 E kin 0.0108 0.0108 0.0109 0.0109 

Nu 5.387 5.393 5.396 5.398 

9 E kin 0.0109 0.0109 0.0109 0.0109 

Nu 5.394 5.399 5.401 5.402 

12 E kin 0.0108 0.0109 0.0109 0.0109 

Nu 5.388 5.397 5.400 5.401 

Method II 

s 64 128 256 

Uniform E kin 0.0106 0.0109 0.0109 

Nu 5.523 5.430 5.408 

s x = 3 , E kin 0.0109 0.0109 0.0109 

s z = 4 Nu 5.423 5.408 5.404 

s x = 4 , E kin 0.0109 0.0109 0.0109 

s z = 6 Nu 5.427 5.409 5.403 

Table 3 

The total kinetic energy E kin and Nusselt number Nu calculated by 

the two methods on grids of various sizes and various degrees of 

stretching. The magnetic field is parallel to the y -axis, i.e., horizon- 

tal and orthogonal to the applied temperature drop H a y = 100 . 

Method I 

s 100 150 200 250 

1 E kin 0.00807 0.00960 0.0112 0.0125 

Nu 7.070 4.989 5.0 0 0 5.543 

3 E kin 0.0132 0.0158 0.0174 0.0186 

Nu 5.647 5.976 6.153 6.264 

6 E kin 0.0228 0.0235 0.0239 0.0241 

Nu 6.600 6.644 6.665 6.678 

9 E kin 0.0245 0.0247 0.0248 0.0248 

Nu 6.706 6.716 6.719 6.721 

12 E kin 0.0244 0.0247 0.0248 0.0249 

Nu 6.700 6.718 6.722 6.723 

Method II 

s 64 128 256 

Uniform E kin 0.0244 0.0245 0.0248 

Nu 6.901 6.787 6.731 

s x = 3 , E kin 0.0255 0.0250 0.0250 

s y = 4 Nu 6.839 6.761 6.736 

s x = 4 , E kin 0.0257 0.0251 0.0250 

s y = 5 Nu 6.849 6.763 6.748 

Table 4 

The estimated grid-independent values of the total kinetic energy E kin 

and Nusselt number Nu for various orientations of the magnetic field. 

The time-averaged values at zero magnetic field are included for com- 

parison. 

Configuration Ha = 0 H a x = 100 H a y = 100 H a z = 100 

E kin 0.022 0.0065 0.025 0.011 

Nu 6.59 4.52 6.75 5.40 
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locity distribution. The effect is relatively mild at H a x = 100 and

H a z = 100 , but becomes strong at H a y = 100 when the Method I is

used (see Fig. 11 (c) and (f)). 

The y -component of velocity v is noticeably smaller than the

other two. This component is not a part of the main convection

roll, but the result of the flow’s three-dimensionality, which neces-

sarily develops owing to the pressure drop between the box cen-
er and the borders y = 0 , 1 as well as the Lorentz force. Its pro-

les (not plotted) show that this component is also characterized

y the steep boundary layers developing near the x, z = 0 , 1 walls.

he grid- and stretching dependencies of the y- velocity profiles are

imilar to those observed for the other velocity components. 

.4. Three-dimensional flow structure 

The converged flows calculated at all the three orientations of

he magnetic field are visualized in Figs. 12 –14 in the same manner

s for the flow at Ha = 0 in Fig. 3 . These three-dimensional flow vi-

ualizations help us to better understand the effect of the magnetic

eld on the flow. For the purpose of possible future comparisons,

he minimum and maximum values of the velocity potentials, as

ell as the plotted levels, are reported in the captions. 

When the magnetic field is directed along the x -axis, i.e., paral-

el to the externally applied temperature gradient, we observe the

lready documented suppression of the convection flow. The am-

litude of the variation of the velocity potentials decreases sub-

tantially in comparison with the non-magnetic case (cf. the data

n the captions of Figs. 3 and 12 ). This is in agreement with the

eduction of the Nusselt number and the total kinetic energy re-

orted in Table 4 . The vector potential patterns in Fig. 12 show

hickening of the boundary layers at x = 0 , 1 compared with the

ero magnetic field case (cf. Figs. 3 c and 12 c). The flow remains es-

entially three-dimensional, although the velocity gradients in the

agnetic field direction are reduced in the core of the box. It can

e also observed, that the vector potential patterns of Fig. 12 are

artially similar to those reported in [ 27 ] for the flow at a larger

randtl number. This recalls a certain similarity between the elec-

romagnetic damping and increase of viscosity, also discussed in

he previous studies. 

The plots in Fig. 13 show that the vertical magnetic field also

uppresses the flow, but not as strongly as the x -directed field. This

s seen in the integral characteristics listed in Table 4 , and by the

ifference between the maximum and minimum values of the ve-

ocity potentials listed in the captions of Figs. 3 and 13 . Note that

he main circulation rolls have qualitatively different shapes in the

ases of the x- and z- directed fields (cf. Figs. 12 (a) –13 (a)). We

lso observe that the secondary vortices near the walls at x = 0 , 1

re shifted toward these walls (see Fig. 13 (c)), and the correspond-

ng motion in the central part of the cube weakens. Contrarily, the

econdary vortices forming near the walls at z = 0 , 1 are shifted

owards the central part of the box, out of the boundary layers

see Fig. 13 (d)). A stronger suppression of flow between the bor-

ers y = 0 , 1 and the flow in the central part of the cube, as is seen

lso in Fig. 11 a, can be connected to relatively large components of

 -velocity in this region, as is seen in Fig. 13 (c)–(d). 

In the case of the spanwise magnetic field H a y = 100 , we ob-

erve the main circulation roll of nearly two-dimensional form

ith very weak gradients of velocity along the y -axis outside the

artmann boundary layers (see Fig. 14 (a)–(b)). The circulations in

he ( y, z ) and ( x, y ) planes are shifted into the boundary layers ad-

acent to the boundaries x = 0 , 1 and z = 0 , 1 , respectively. We note

hat weak 3D motion remains near these boundaries. 

Fig. 14 illustrates the following explanation of the increase of

he flow’s kinetic energy and Nusselt number in the flow with

 a y = 100 in comparison with the non-magnetic case (see Table 4 ).

nlike the fields oriented along the x - and z -axes, the spanwise

agnetic field is aligned with the axis of the main convection roll

nd, thus, does not suppress this roll except by the viscous friction

n the Hartmann boundary layers at y = 0,1. At the same time, the

agnetic field suppresses the secondary convection structures due

o the substantial y -derivative of velocity associated with them.

his stabilizes the main roll and reduces the kinetic energy transfer

rom it to smaller three-dimensional structures. As proven by our
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Fig. 12. Visualization of the velocity field for H a x = 100 by vector potentials of divergence free velocity projections. Maximum and minimum values of the velocity potentials 

are: (a,b) −0.0465, 0.0 0 030 0; (c) ± 0.00825; (d) ± 0.00370. Levels plotted are: (a) −0.021; (b) −0.029; (c) ± 0.003; (d) ± 0.0022. 
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imulations, the total kinetic energy and heat transfer rate increase

n the result of this transformation. 

We note that strong coherent convection rolls aligned with an

mposed magnetic field are observed in other convection flows at

igh Ha [7,8,11,36] . In many cases, it leads to apparently paradox-

cal behavior characterized by high-amplitude temperature oscilla-

ions or, as in our case, increase of the kinetic energy and Nusselt

umber. 

.5. Applicability of the Q2D model to natural convection flows 

As the last step of the analysis, we utilize the computed

ow fields to consider the question of validity of the quasi-two-

imensional (Q2D) model of MHD flows [ 37 ] in the case of natural

onvection in a box. The reasoning and conclusions presented be-

ow are not entirely new, but the supporting contribution of com-

rehensive three-dimensional modeling is new and, we believe,

aluable. 

The Q2D model was originally derived for an isothermal flow

long a duct with electrically insulated walls and imposed trans-

erse magnetic field, but applied to many other configurations

ince then (see, e.g., [ 9,16,38 ] for convection flow examples). The

ormal conditions of the model’s validity is that the Hartmann

umber Ha and the Stuart number N ≡ B 2 0 σ L/ ρ0 U = H a 2 /Re , where

e is the Reynolds number, are both much larger to one. In essence,

he model assumes that under the action of a strong magnetic

eld, the flow acquires a state with velocity components virtu-

lly uniform along the field lines except for the exponential dis-
ributions within the thin Hartmann boundary layers. Wall-to-

all integration in the field direction produces equations for two-

imensional integrated variables with the electromagnetic effect

educed to linear friction at the Hartmann walls. 

The model can only be rigorously derived if the walls of the

ow domain are perfectly electrically insulated. The fact that it be-

omes invalid in convection flow with electrically conducting walls

as highlighted in [15] . 

In our simulations, Ha = 100 , while the value of N can be esti-

ated using Re = G r 1 / 2 (following from the definition of the typi-

al velocity and length scales in Section 2 ) as N = 2.32. This is not

igh enough for the flow to be in true Q2D state in the sense of

37] , but sufficient to observe whether or not the transformation

oward such a state occurs. The analysis is based on the computed

hree-dimensional flow structures and profiles, such as shown in

igs. 4 –14 . 

The Q2D model is invalid when the magnetic field is in the x -

r z -direction. In both the cases, the field is perpendicular the main

onvection roll, so it crosses either the vertical or horizontal pair

f jets of opposite directions forming near the walls. Transforma-

ion of the flow into a state with velocity uniform along the mag-

etic field would require complete destruction of the jets and dras-

ic change of the flow’s topology. Our results as well as the results

f the studies [ 39,40 ] conducted for the case of vertical magnetic

eld do not indicate that such a transformation is likely. Rather,

urther increase of the strength of the magnetic field is expected

o narrow the jets and shift them toward the walls. 
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Fig. 13. Visualization of the velocity field for H a z = 100 by vector potentials of divergence free velocity projections. Maximum and minimum values of the velocity potentials 

are: (a,b) −0.0584, 0.00504; (c) ± 0.0251; (d) ± 0.0105. Levels plotted are: (a) −0.0122; (b) −0.0266; (c) ± 0.025; (d) ± 0.007. 
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The applicability of the Q2D model is geometrically possible

in the case of the magnetic field along the y -axis, i.e., along the

axis of the main convection roll. As we have already discussed in

Section 4.4 , the magnetic field stabilizes the roll and suppresses

its three-dimensional secondary instabilities. Figs. 4, 8, 10 (f), 11 (f),

and 14 show development of the core of the flow with weak gra-

dients along the magnetic field lines. At the same time, we have

already observed that weak three-dimensional motion remains ac-

tive near the boundaries at x = 0 , 1 and z = 0 , 1 (see Figs. 14 (c) and

(d)). One can say that the pattern of the potential �x ( Fig. 14 (c))

supports the validity of the Q2D approximation, while pattern of

�z ( Fig. 14 (d)) shows that there exists 3D motion near the hori-

zontal boundaries. We conclude that the Q2D is likely to be ap-

plicable to the configuration with the spanwise magnetic field, al-

though further studies based on the comparison between the Q2D

and 3D results at higher Ha and N are necessary before the final

conclusion can be made. 

5. Concluding remarks 

Numerical simulations of natural convection in a box with im-

posed magnetic fields of three different orientations were per-

formed for the case of large Rayleigh and Hartmann numbers. Two

numerical methods and grids of various sizes and degrees of near-

wall clustering were used. The convergence to grid-independent

results was achieved for both methods, but the details of conver-

gence were found to vary significantly depending on the method

and the orientation of the magnetic field. In particular, we have
ound that, while all the configurations require strong grid cluster-

ng toward the walls, the requirements are particularly stringent in

he case of the spanwise (oriented horizontally along the axis of

he main convection roll) magnetic field. 

The two numerical methods demonstrated convergence to the

ame grid-independent solutions. At the same time, the conver-

ence was achieved on smaller grids and with weaker wall cluster-

ng when the Method II based on the conservative discretization on

 collocated grid was used. The effect was particularly pronounced

n the case of the spanwise magnetic field. We do not have a con-

incing explanation of the difference between the performances of

he two methods, but would like to note that similar differences

ere indicated by the tests conducted in [ 17 , 18 ], where the dis-

retizations similar to those of our Methods I and II were used.

he effect warrants further analysis, which can be considered as a

art of the general study of performance of MHD codes for high- Ha

ows [ 24 ]. 

The analysis of the flow structure and integral properties has

hown that the magnetic field parallel to the imposed temperature

rop yields the strongest suppression of the flow and convection

eat transfer. The suppression is weaker in the case of the verti-

al magnetic field. The spanwise magnetic field stabilizes the main

onvection roll and leads to increase of the flow’s kinetic energy

nd Nusselt number in comparison to the non-magnetic case. 

It is interesting to relate the transformation of the flow struc-

ure and the performance of the two numerical models. The fastest

onvergence and weakest dependence on the grid stretching is ob-

erved at H a x = 100 . In the cases of vertical and spanwise magnetic
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Fig. 14. Visualization of the velocity field for H a y = 100 by vector potentials of divergence free velocity projections. Maximum and minimum values of the velocity potentials 

are: (a,b) −0.0510, 0.00571; (c) ± 0.00642; (d) ± 0.0101. Levels plotted are: (a) −0.04; (b) −0.048; (c) ± 0.002; (d) ± 0.006. 
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elds, the flow develops thinner boundary layers, which makes the

onvergence slower and increases the demand for the stretching

teepness. Observing the patterns of the temperature, electric po-

ential and velocity fields we conclude that the steep stretching

ear the boundaries orthogonal to the magnetic field is crucial.

egarding the stretching near the other boundaries, we observe

hat a smoother stretching or even a uniform grid can yield faster

onverging results. Apparently, the optimal stretching is problem-

ependent and should be fit for each problem separately. 

Our final comment is on the applicability of the Q2D model to

he natural convection flows in a box. The model is not applica-

le when the magnetic field is in the x - or z -direction, i.e., when it

s perpendicular to the axis of the main convection roll. The flow

pproaches two-dimensionality in the case of the spanwise mag-

etic field. Accurate Q2D results are expected in this configuration

t higher Hartmann and Stuart numbers. 
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