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Abstract We propose two techniques aimed at improving the convergence rate of
steady state and eigenvalue solvers preconditioned by the inverse Stokes operator and
realized via time-stepping. First, we suggest a generalization of the Stokes operator so
that the resulting preconditioner operator depends on several parameters and whose
action preserves zero divergence and boundary conditions. The parameters can be
tuned for each problem to speed up the convergence of a Krylov-subspace-based
linear algebra solver. This operator can be inverted by the Uzawa-like algorithm,
and does not need a time-stepping. Second, we propose to generate an initial guess
of steady flow, leading eigenvalue and eigenvector using orthogonal projection on a
divergence-free basis satisfying all boundary conditions. The approach, including the
two proposed techniques, is illustrated on the solution of the linear stability problem
for laterally heated square and cubic cavities.

Keywords CFD · Krylov methods · Newton solver · Eigenvalue solver
Linear stability

1 Introduction

Stability of fluid flows, is one of the classical and oldest topics of theoretical fluid
dynamics, has attracted much attention during the last decades. With the growth of
computational power and fast development of numerical methods of linear algebra, it
has become possible to study stability of numerically calculated flows. This requires
the development of non-linear steady state solvers and the solution of eigenproblems
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148 A. Gelfgat

for matrices of extremely large size. For a description of the topic and the prob-
lems being solved, the reader is referred to review papers of Theofilis [21], Dijkstra
et al. [7], and Juniper et al. [14]. Existing computational methods and computer
power can be used to study linear stability of two-dimensional flows relatively eas-
ily. Disturbances of these flows are usually assumed to be either two-dimensional or
three-dimensional with prescribed spatial periodicity in one dimension, e.g., span-
wise or circumferential. The family of such quasi-two-dimensional problems is
called BiGlobal by Theofilis [21] and Juniper et al. [14]. Computational study of
instability of fully three-dimensional flows without any preliminary assumptions
about disturbances remains challenging for computational simulations. Difficulties
are usually caused either by insufficiently powerful computer resources, or by an
enormous slowdown of convergence of numerical methods successfully applied to
the two-dimensional problems. Thus, development of robust numerical methods for
three-dimensional stability problems is one of the most challenging problems of
computational fluid dynamics.

One of the efficient and most popular approaches for application of Krylov-
subspace linear algebra solvers to computation of incompressible flows and study of
their stability was proposed by Tuckerman and Barkley [22] and Tuckerman et al.
[23]. Within this approach, assuming availability of an efficient time-dependent CFD
code, Krylov vectors are generated via time stepping. Some necessary details regard-
ing this are given below. This approach was successfully applied to a variety of two-
dimensional problems, among which we cite only several recent ones [2, 4, 5, 27, 28]
for example. Applying this technique to three-dimensional problems usually leads
to a very slow convergence, so that the final result cannot be obtained in a reasonable
time.

As is argued in Tuckerman and Barkley [22] and Tuckerman et al. [23], the
time-stepping method for calculation of Krylov vectors can be interpreted as pre-
conditioning by an inverse Stokes operator. The latter serves as a starting point for
this study. Assuming a pressure/velocity coupled time integration we show how the
Stokes preconditioning can be generalized. This allows for a faster convergence of
the innermost iterative process, which produces Krylov vectors via iterative inver-
sion of the preconditioned operator. Then, to reduce the number of outer iterations of
either the Newton or Arnoldi solver, we propose to generate an initial guess which is
close to the solution using projections on divergence-free bases. We argue also that
having a good initial guess of the leading eigenvalue and eigenvector, the Arnoldi
process can be replaced by a simpler and faster converging inverse iteration.

Application of the proposed approach is illustrated on the well-known problem of
convection in square and cubic laterally heated cavities. For square cavities we repro-
duce the previously published results of Gelfgat [12] for the critical Grashof number
corresponding to the steady—oscillatory transition (Hopf bifurcation). Finally, we
succeed in computing the critical Grashof numbers also for laterally heated three-
dimensional cubic boxes with different thermal boundary conditions on horizontal
and spanwise boundaries. The latter results are obtained by means of linear stability
analysis for the first time.

In the following we consider a system consisting of momentum and continuity
equations for an incompressible flow with velocity u and pressure p
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∂u
∂t

� −∇ p + L(u) + N(u, u) + f , div(u) � 0, (1,2)

where L, N symbolize linear and bilinear operators, and f for density of bulk forces
(see [7, 22, 23] for the details). It is assumed that the above equations are supplied
with boundary conditions for all velocity components. We discuss two consecutive
tasks: to calculate a steady state (U, P) of Eqs. (1) and (2) using the Newton iteration,
and to calculate the leading eigenvalue of the problem linearized in the vicinity of
the calculated steady state. The linearized time-dependent equations are

∂u
∂t

� −∇ p + L(u) + NU (u), div(u) � 0. (3,4)

Clearly, the boundary conditions for Eqs. (3) and (4) are homogeneous, and are
obtained after linearization (if needed) of the boundary conditions of Eqs. (1) and
(2).

Considering the test problems, we show how a critical parameter corresponding
to the instability threshold can be obtained by consecutive application of the two
tasks described above.

2 Krylov-Subspace-Iteration-Based Newton and Arnoldi
Methods via Time Steppers

In Krylov-subspace-based Newton and Arnoldi methods Krylov subspace iterations,
BiCGstab(2) or GMRES [25], usually are applied to compute the next Newton cor-
rection, or a next Krylov vector for the Arnoldi process [6]. For the corresponding
formulations and some details the reader is referred to Dijkstra et al. [7], van der Vorst
[25], Edwards et al. [6], and references therein. The Krylov basis vectors are defined
by an initial vector v0 and a matrix A as v0, Av0, A2v0, . . . , Anv0, . . .. In Krylov
subspace methods the solution of a linear algebraic equation system is approximated
as a linear superposition of the n Krylov vectors. Calculation of the Krylov basis is
straightforward if the action of A can be carried out on a vector, whether or not A
is represented as a matrix. When Newton’s method or linear stability analysis are
applied to incompressible flows, A is the Jacobian matrix of Eqs. (3, 4). Its action
on a vector (u, p) reduces to computation of the r.h.s of Eq. (3), where pressure is
evaluated to satisfy the constraint (4). Therefore, calculation of pressure for the next
Krylov vector necessarily contains an implicit part, e.g., solution of the pressure Pois-
son equation [6]. Also, for many incompressible flows, especially three-dimensional
ones, the Jacobian matrix is ill-conditioned, which causes additional slowdown of
convergence when its inverse is needed, e.g., for Newton and shift-and-invert Arnoldi
iteration. Owing to the same reason conjugate-gradient type methods also experience
slowdown of convergence.

gelfgat@tau.ac.il



150 A. Gelfgat

The above computational problems can be partially overcome by the approach
proposed by Tuckerman and Barkley [22] and Tuckerman et al. [23], based on the
assumption that numerical time integration of Eqs. (1) and (2) is successfully realized.
This approach is briefly described below.

For the following derivation, we follow Tuckerman and Barkley [22] and assume
that during time integration the pressure in Eq. (1) is obtained as a solution of the
pressure Poisson equation with the right hand side bilinear with respect to the velocity
u. This allows us to incorporate the pressure gradient into the bilinear term N(u, u) �
N(u)u, so that a semi-implicit time integration scheme is defined as

1

δt
(U(t + δt) − U(t)) � LU(t + δt) + N(U(t), U(t))+ f, (5)

from which the velocity at the next time step is evaluated as

U(t + δt) � (I − δt L)−1
{
U(t) + δt

[
N(U(t), U(t)) + f

]}
. (6)

Using Eq. (6), the difference between two consecutive time steps can be expressed
as

U(t + δt) − U(t) � (I/δt − L)−1{[N(U(t)) + L]U(t) + f }. (7)

Making the same assumptions about pressure, the next Newton correction du is a
solution of the following linear problem

(NU + L)du � [N(U) + L]U+ f, (8)

where (NU + L) is the Jacobian matrix of the right hand side (r.h.s.) of Eq. (5). Using
(I/δt − L)−1 as a preconditioner, we observe that the r.h.s. of the preconditioned
problem

(I/δt − L)−1(NU + L)du � (Iδt − L)−1{[N(U) + L]U + f } (9)

coincides with the r.h.s. of Eq. (7), so that it can be computed as a difference between
two consecutive time steps.

Assuming that the linear problem (9) is solved using a Krylov subspace iteration
method, each next Krylov vector vn+1 is evaluated as

vn+1 � (I/δt − L)−1(NU + L)vn. (10)

It is easy to see that the r.h.s. of Eq. (10) can be evaluated as a difference between
two consecutive time steps of the linearized Eqs. (2). Assuming u(t) � vn ,

vn+1 � u(t + δt) − u(t) � (I/δt − L)−1{[NU (u(t)) + L]u(t)}. (11)
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The last equation can be applied also for calculation of the Krylov basis for the
Arnoldi iteration if eigenvalues of the linearized Eqs. (2) are needed. Clearly, to
apply Eqs. (7) and (11) for Krylov-subspace based Newton or Arnoldi methods, one
needs only velocity values computed by performing a time step.

Now, trying to generalize the above approach to other pressure/velocity segregated
time steppers we note that the difference between two time steps in Eqs. (7) and (11)
assume that the calculated velocity fields not only satisfy all the boundary conditions,
but are also divergence-free. The latter means that the expression (I/δt − L)−1 is
not just a three-dimensional Helmholtz operator, since its action must result in a
divergence-free velocity field satisfying all the boundary conditions. In the projection
and fractional time step methods it implicitly includes also parts for calculation of
pressure and the correction step for velocity. Thus, for those semi-implicit time
integration schemes, where only linear terms are calculated at the next time step,
(I/δt − L)−1 can be interpreted as the inverse Stokes operator [22, 23]), whose
definition will be given below.

Following Tuckerman et al. [23], here are some additional comments. First, the
inverse of the Stokes operator is considered here as a part of the time-stepping
algorithm, so that at the end of each time step the boundary conditions are satisfied
and the velocity is divergence-free. The latter is crucial for convergence of any Krylov
subspace methods, since Krylov vectors must be also divergence-free and satisfy the
boundary conditions, which are linear and homogeneous for the linearized problem. If
the continuity equation is satisfied with insufficient accuracy, or boundary conditions
are altered, the Krylov vectors will not belong to the correct linear space, and Krylov
iterations will not converge. This can be observed by a straightforward numerical
experiment. Second, the size of the time step δt plays a role of the iteration parameter
and must be chosen to maximize the convergence. Usually it is much larger than
those used for the time integration. Recently, Beaume et al. [3] discussed how this
parameter can be chosen basing on ratios of the time, diffusion and convection scales.

3 On Possible Extensions of the Time Stepper Approach

Pressure/velocity segregated methods (e.g. fractional step, projection, influence
matrix and others) are usually used for time integration of the incompressible momen-
tum and continuity equations. For these approaches, the time step and the Stokes
operator are an inherent part of discretization and/or computational algorithm, and
cannot be altered. At the same time, pressure/velocity coupled methods, e.g., Edwards
et al. [6], Acharya et al. [1], Feldman and Gelfgat [8], Vitoshkin and Gelfgat [26]
and references therein, allow for some more freedom, which is discussed below. In
the following we assume that all differential operators are approximated numerically
by matrices, so that the numerical inverse of an operator is the inverse of the cor-
responding matrix. Using the notation of Vitoshkin and Gelfgat [26], we represent
the three-dimensional Stokes operator S as a 4×4 operator matrix that acts on the
vector of unknowns (u, v, w, p) and produces the r.h.s. (Ru, Rv, Rw, 0)

gelfgat@tau.ac.il



152 A. Gelfgat

S

⎡
⎢⎢⎣

u
v
w
p

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎢⎢⎢⎣

Hu 0 0 −∇x
p

0 Hv 0 −∇ y
p

0 0 Hw −∇ z
p

∇x
u ∇ y

v ∇ z
w 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u
v
w
p

⎤
⎥⎥⎦ �

⎡
⎢⎢⎢⎣

Ru

Rv

Rw

0

⎤
⎥⎥⎥⎦. (12)

Here ∇x , ∇ y and ∇ z are the first derivatives in the x, y and z directions, H � �− I/δt
are Helmholtz operators, � is the Laplacian operator, and I is the identity operator.
The lower indices show on which variable an operator acts. By assigning the lower
indices, we emphasize that boundary conditions can be different for different velocity
components, that different scalar variables can be assigned to different staggered
grid nodes, and that numerical discretization of the same differential operators can
be different for different scalar variables.

To discuss possible extensions of the time-stepping approach, we note that eval-
uation of the next Krylov vector (10) can be formally represented as[

vn+1

pn+1

]
� M−1

[
(NU + L)vn

0

]
(13)

where M−1 is a preconditioning operator, and we arrive at the approach described
above if M � S. An extension of the time-stepping approach would mean that
M �� S. Simultaneously, it means that the next Krylov vector cannot be obtained
via time stepping, so that the numerical inverse of the operator M is needed. Also,
any preconditioner operator M−1 must provide two essential properties of its action:
the resulting velocity field must be divergence-free and must satisfy all the boundary
conditions. Note that in the inverse Stokes operator (12), the divergence-free velocity
results from its last row and column, while boundary conditions are incorporated into
Helmholtz operators. Therefore, a straightforward extension will be a replacement
of the Helmholtz operators by second order elliptic differential operators (all α-s and
β-s are positive)

Q(u,v,w) � αx
(u,v,w)

∂2

∂x2
+ α

y
(u,v,w)

∂2

∂y2
+ αz

(u,v,w)

∂2

∂z2
− β(u,v,w), (14)

so that the preconditioner matrix becomes

M �

⎡
⎢⎢⎢⎢⎢⎣

Qu 0 0 −∇x
p

0 Qu 0 −∇ y
p

0 0 Qu −∇ z
p

∇x
u ∇ y

v ∇ z
w 0

⎤
⎥⎥⎥⎥⎥⎦. (15)
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The boundary conditions should be incorporated into operators Q(u,v,w), so that the
inverse of M yields a divergence-free field satisfying the boundary conditions, as
does the inverse Stokes operator. The nine values of α-s and three values of β-s must
be optimized for the fastest convergence. Clearly, there are too many parameters
to optimize just by a numerical experiment. However, some partial optimization
is possible, and as is illustrated below, can be quite effective. It is stressed also that
optimization of the preconditioner may speed up a Krylov-subspace iteration process,
but it cannot alter, for example, the number of Newton iterations needed. It should
be emphasized also that at this stage we depart from the time-stepping concept and
compute the action of (NU + L) on a vector directly.

The inverse of matrix M can be calculated by an Uzawa-like method proposed
by Vitoshkin and Gelfgat [26].1 First, the matrix M is LU decomposed as⎡

⎢⎢⎢⎢⎢⎣

Qu 0 0 −∇x
p

0 Qv 0 −∇ y
p

0 0 Qw −∇ z
p

∇x
u ∇ y

v ∇ z
w 0

⎤
⎥⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 I 0

∇x
u Q−1

u ∇ y
v Q−1

v ∇ z
w Q−1

w I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Qu 0 0 −∇x
p

0 Qv 0 −∇ y
p

0 0 Qw −∇ z
p

0 0 0 C

⎤
⎥⎥⎥⎥⎦,

(16)

C � ∇x
u Q−1

u ∇x
p + ∇ y

v Q−1
v ∇ y

p + ∇ z
w Q−1

w ∇ z
p. (17)

Then the action of M−1

⎡
⎢⎢⎣

u
v
w
p

⎤
⎥⎥⎦ � M−1

⎡
⎢⎢⎢⎣

Ru

Rv

Rw

0

⎤
⎥⎥⎥⎦ (18)

is calculated in three following steps

1. Solve û � Q−1
u Ru , v̂ � Q−1

v Rv and ŵ � Q−1
w Rv for û, v̂ and ŵ.

2. Solve p � −C−1
(∇u

x û + ∇v
y v̂ + ∇v

z ŵ
)

for p.
3. Solve u � û + Q−1

u ∇x
p p, v � v̂ + Q−1

v ∇ y
p p, and w � ŵ + Q−1

w ∇ z
p p.

The elliptic operators Q can be inverted either by multigrid or Krylov subspace
iterations, or by the eigenvalue decomposition based TPF or TPT method, as
proposed in Vitoshkin and Gelfgat [26]. The most time consuming step is the inverse
of the matrix C . Here we note that action of this matrix on a scalar field p can be
represented as

1a similar approach was proposed by Tau [20]
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Cp � div
[
Q−1gradp

] � ∇ · [
Q−1∇ p

]
, Q �

⎡
⎢⎣

Qu 0 0

0 Qv 0

0 0 Qw

⎤
⎥⎦. (19)

Applying the inner product based on the volume integral (V is the flow region and
A is its boundary)

〈 f, g〉 �
∫

V
f gdV, 〈u, v〉 �

∫
V

u · vdV, (20)

we obtain

〈Cp, p〉 �
∫

V
p∇ · [

Q−1∇ p
]
dV �

∫
V

∇ · [
pQ−1∇ p

]
dV −

∫
V

Q−1∇ p · ∇ pdV .

(21)

The first integral in the above equality (21)∫
V

∇ · [
p Q−1∇ p

]
dV �

∫
A

[
pQ−1∇ p

]
d A � 0 (22)

imposes velocity boundary conditions via action of Q−1, like in the step 3 of the above
algorithm, and therefore this integral may vanish on the boundary A. This happens,
for example, when all the boundary conditions are no-slip. Since the operator Q,
consisting of negative definite elliptic operators, is also negative definite, the second
integral in Eq. (21) is negative, so that 〈Cp, p〉 > 0, and the matrix C is positive
definite. The latter allows for application of Krylov subspace methods dedicated to
positive definite matrices [25].

4 On Implementing the Newton and Arnoldi Iteration in
“Direct Mode”

In this section we assume that all velocity boundary conditions are linear and uniform,
e.g., no-slip conditions. Note that non-uniformity of a linear boundary condition can
always be removed by a change of variables, so that only linearity is an essential
requirement. Under the assumption made the solution belongs to a linear space W
of divergence-free vectors satisfying all the boundary conditions. Following [6], we
rewrite Eq. (13) as

vn+1 � �(NU + L)vn. (23)
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We define � as a projection operator that projects a given 3D velocity vector on
W. If the projection operator is known, Eq. (23) yields a straightforward way for
producing Krylov basis vectors for the inner iteration loop needed for both Newton
and Arnoldi methods.

It is not clear, however, how to build this projection operator for a general numeri-
cal method. The Chorin projection and similar projectors used in the velocity/pressure
segregated time steppers usually alter boundary conditions for tangent velocity. An
example of such a projector was given in Edwards et al. [6], where a pseudospectral
method was applied. The projector is based on solution of the pressure equation
derived by applying the divergence operator to the momentum Eq. (1) and including
the no-slip boundary condition in the definition of the corresponding operator. A
closer look shows that this approach is correct only when divergence and the Lapla-
cian operator commute, which is true for spectral and pseudospectral methods with
analytic evaluation of derivatives. When lower-order methods are implemented, e.g.,
finite differences, volumes or elements, the approximations of divergence and Lapla-
cian operators do not commute near the boundaries, which makes the approach of
Edwards et al. [6] inapplicable.

An obvious version of the projector � is calculation of the orthogonal projection
onto a set of basis functions

{
q i

}∞
i�1 ⊂ W. The functions q i must be divergence-free

and satisfy all the homogeneous boundary conditions. As a rule, the basis functions
are unknown, and must be defined for each problem separately. One possible way,
based on linear superpositions of the Chebyshev polynomials was proposed in Gelfgat
[10, 11], where all the definitions are given and technical details are described. This
approach allows one to calculate coefficients ci of a truncated series

vn+1 � �(NU + L)vn ≈
∑K

i�1
ci qi (24)

by applying orthogonal (Galerkin) projections on the basis functions qi . This process
and the truncated sum (25) yields an approximation of the projection operator �, if
the truncation number K is large enough. Here we note that the basis sets of Gelfgat
[10, 11] are not orthogonal, which requires the computation and inversion of the
Gram matrix. The latter task becomes too CPU-time consuming for large values of
K , so that we propose here to apply these projections with relatively short truncations.
This will produce a rough approximation of a true numerical solution within a shorter
computational time. Then this rough approximation can be used as an initial guess
either for computations with a larger K , or for the complete computation using the
above preconditioner.

The whole computational process, which includes computation of (i) a steady
flow and (ii) the corresponding leading eigenvalue, proceeds as follows. First the
Newton method is applied in the projected mode (23) with the projections calculated
as truncated sums (24) for gradually increasing truncation numbers, e.g., 103, 203,
and 303 for a 3D flow. The latter means approximation of the grid solution by 10–30
basis functions in each spatial direction. The result obtained for a smaller truncation
number is used as an initial guess for the larger one. The approximate steady state
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obtained for the largest truncation is used as an initial guess for the Newton iteration
preconditioned as in Eq. (18), which yields the converged numerical solution on
a given grid. Since calculation of the leading eigenvalue at small truncations may
be meaningless, only the largest truncation number is used to perform the Arnoldi
iteration in the projected mode. Since this Arnoldi iteration is being run in the direct
mode, it can be set to compute the eigenvalue with the largest real part [16, 18].
The result yields an approximation of the leading eigenvalue and the eigenvector.
The approximate leading eigenvalue defines the shift for the Arnoldi iteration in the
shift-and-invert mode preconditioned by Eq. (18).

If the leading eigenvalue and eigenvector are known approximately, an alterna-
tive way to calculate the correct ones is by inverse iteration, which starts from the
approximate eigenvector and is performed for the shifted Jacobian matrix. As above,
the approximate eigenvalue defines the shift. Since inverse iteration converges to the
eigenvector, with a good initial guess it can require lesser computational time than
calculation of a representative Krylov basis needed for the Arnoldi approximation.

In many cases we need to calculate a critical parameter (e.g., Reynolds number
Re) that corresponds to the leading eigenvalue having zero real part. In these cases,
our outer computational loop solves equation Real[λ(Re)] � 0, for which we use
the secant method. For each value of Re we perform the above stages (i) and (ii),
i.e. calculate the (i) corresponding steady flow, and (ii) the leading eigenvalue of the
problem linearized near the computed steady state. For calculation of steady flow, we
approximate the solution by truncated sums (24) when the current Reynolds number
is noticeably different from the previous one, so that a good initial guess is unknown.
When the secant method iterations approach the solution, the difference between
the current and the previous Reynolds number becomes small, so that the previous
solution is used to guess the next one. If the initial parameter (Re) is chosen close to
the critical one, the secant method converges in fewer than 10 iterations. Note that the
secant method can be applied first to the projected equation, so that an approximation
of the critical parameter is computed. Starting from this approximate parameter value,
the full shift-and-invert mode for calculation of the leading eigenvalue is applied,
and the secant method is restarted for computation of the final result.

5 Test Problem

For the following numerical experiments we choose the same test problems as in
Vitoshkin and Gelfgat [26]. We consider natural convection of an incompressible
fluid in a 2D square or 3D cubic cavity, whose opposite sidewalls are kept at con-
stant and different temperatures Thot and Tcold . The flow is described by Boussi-
nesq equations that are rendered dimensionless taking the cube side length H as
a characteristic scale, and H 2/ν, ν/H , and ρν2/H 2 as scales of the time t , the
velocity v and the pressure p, respectively. Here ν is the fluid kinematic viscos-
ity and ρ is the density. The temperature is rescaled to a dimensionless function
using the relation T → (T − Tcold)/(Thot − Tcold). Additionally, the dimensionless
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time, velocity and pressure are scaled, respectively by Gr−1/2, Gr1/2, and Gr , where
Gr � gβ(Thot − Tcold)H 3/ν2 is the Grashof number, g is the gravitational accelera-
tion and β is the thermal expansion coefficient. The resulting system of momentum,
energy and continuity equations reads

∂T

∂t
+ (v · ∇)T � 1

PrGr1/2
�T (25)

∂v
∂t

+ (v · ∇)v � −∇ p +
1

Gr1/2
�v + T ez (26)

∇ · v � 0 (27)

Here Pr � ν/α is the Prandtl number, and α is the thermal expansion coefficient.
All the boundaries are assumed to be no-slip. Two vertical boundaries at x � 0, 1
are kept isothermal, so that

T (x � 0, y, z) � 1, T (x � 1, y, z) � 0 (28)

Other boundaries are assumed to be either perfectly thermally conducting or
perfectly thermally insulated, which will be specified for each case separately. Further
details can be found in Gelfgat [8], Feldman [9], and Vitoshkin and Gelfgat [26],
and references therein. In the following calculations the energy Eq. (25) was also
preconditioned by an inverse elliptic operator

QT � αx
T

∂2

∂x2
+ α

y
T

∂2

∂y2
+ αz

T

∂2

∂z2
− βT (29)

The equations were discretized by the finite volume method in space and three-
level second order backward derivative in time. The corresponding Stokes-like pre-
conditioner operators were inverted as described in the Sect. 3. All the details on the
numerical approach used are given in Feldman and Gelfgat [8], Feldman [9], and
Vitoshkin and Gelfgat [26].

6 Some Computational Experiments

In all examples described below the calculations in full mode were done using the
preconditioning matrix M−1 that was inverted using the algorithm of Sect. 3. Cal-
culations in the projected mode did not involve any preconditioning.
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6.1 Two-Dimensional Problems

For a two-dimensional test problem we considered convection of air (Pr � 0.71) in
a square laterally heated cavity with perfectly thermally insulated horizontal bound-
aries. All calculations in this section are carried out on a PC with an Intel® Core™
i7 dual processor.

First we examine convergence of the Newton method. The Newton correction
du in Eq. (8) was calculated using either BiCGstab(L) (Slejipen and Fokkema [17]
or FGMRES(m) (van der Vorst [25]). The inner iterations for solution of a linear
equation system with the matrix C (step 2 of the algorithm described in Sect. 3)
were done using the ORTHOMIN(2) method [29]. The convergence criteria was
|du/U | < 10−8 pointwise.

To examine convergence of the Newton method we calculate steady state flow at
Gr � 108, using a calculated steady flow at Gr � 5 × 107 as an initial guess on the
staggered and stretched grid with 100 × 100 nodes. For the case considered and for
all the preconditioners used, the BiCGstab(L) method did not converge for L = 2, 4,
and 6. The FGMRES method always converged for m � 300.

The first calculation was carried out for the Stokes preconditioner S−1, Eq. (12),
applying δt � 10, which corresponds to the generalized preconditioner M−1,
Eq. (15), with all α-s equal to unity and all β-s equal to 0.1. For this case, the
Newton iterations converge in 650 s. By varying α-s and β-s, we found that the
computational time can be reduced to 280 s using all the β-s equal to 10−8 that
corresponds to δt � 108. Further variation of these parameters causes of the total
computational time to increase.

The problem with the above calculation is the FGMRES(m) method with a very
large restart number, m � 300. Such a long restart may not be affordable due to
memory restrictions for a 3D problem represented on a 1003 or finer grid. To use
the BiCGstab(L) method, which requires less memory, we first apply the Newton
iteration in the direct projected mode (see Sect. 4), calculating an approximate guess
of the correct grid solution. For the 302, 402 and 502 truncations it takes 95, 170,
and 530 s, respectively, using BiCGstab(4), while BiCGstab(2) does not converge.
The steady state can be calculated applying BiCGstab(4) and using the approximate
guess as the initial state. The calculation takes 480, 390, and 345 s for initial states
calculated by 302, 402 and 502 truncation, respectively.

The next objective is convergence of the eigensolver and possible optimization
of the preconditioner matrix parameters. For the following numerical experiments
we calculated the leading eigenvalue λ � (−0.03356, 0.67265), and its eigenvector
at Gr � 108 by the Arnoldi and inverse iteration methods. For implementation of
the Arnoldi method we used the ARPACK library with restarting after calculation
of 20 Krylov vectors [18]. The code for the inverse iteration method was written by
the author. Using parameters optimized for the Newton method, i.e. all α-s equal
to unity and all β-s equal to 10−8 the calculations were completed in 6530 and
5400 s for Arnoldi and inverse iteration methods, respectively. Changing all β-s to
the value 0.1 reduces the times to, respectively, 5550 and 3780 s. A series of further
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numerical experiments showed that these times can be decreased with the following
choice of parameters: with αx

u � α
y
u � αx

v � α
y
v � αx

T � 1, α
y
T � 0.5, βu �

βv � 3 · 10−3, βT � 0.04 the Arnoldi iteration converges in 3660 s, and the inverse
iteration converges in 2930 s. We observe that the inverse iteration converges faster,
which can be expected if the complex shift of the Jacobian matrix is close to the
eigenvalue. In the above calculations the shift was (0, 0.67).

The next two examples illustrate computation of the critical Grashof number. We
use the preconditioner parameters found above without further optimization, and
approximate projections on a subspace of divergence-free functions to obtain a good
initial guess for the Newton method and inverse iteration. For the Arnoldi iteration in
the direct projected mode, we use the EB13 routine of the HSL library, which allows
also for Chebyshev acceleration of the starting vectors [16].

The first calculation of the critical Grashof number was performed for the cav-
ity with perfectly thermally conducting horizontal walls, so that the temperature is
prescribed there as

T (x, z � 0) � T (x, z � 1) � 1 − x . (30)

This case is relatively easy since instability sets in before thin boundary layers are
developed. The whole computation performed is detailed in Table 1. The steady
state flow calculated at Gr � 106 was taken as the initial condition for following
tests. To illustrate the proposed computation process, we calculate the steady state
applying consecutive orthogonal projections on 102, 202, and 302 divergence-free
truncated bases, and use the last result as an initial guess to compute the steady
state. In this way, the steady state at Gr � 2.5 · 106 was calculated in 50.5 s, which
can be compared with 280 s needed for the same calculation without the orthogonal
projections approximation. After the steady solution is obtained, its eigenvalue is
approximated by projecting the flow and all the Krylov vectors onto a 302 basis.
Here, under “number of main iterations” in Table 1, we report the number of restarts
needed for convergence of the Arnoldi method that was restarted after computation
of 100 Krylov vectors. The next calculation of steady flow and its leading eigenvalue
is carried out for Gr � 2.525 · 106. Since the Grashof number is altered only by
1% we do not need orthogonal projections to approximate the steady solution and
use the formerly calculated flow as an initial guess (see Table 1). The two calcu-
lated eigenvalue approximations are used to linearly extrapolate the real part of the
eigenvalue to zero, and to estimate the critical Grashof number value Grcr . Apply-
ing the secant method we obtain Gr � 2.9018 · 106 for the next parameter value
at which the steady state and leading eigenvalue should be computed. Repeating
the whole sequence of calculations, we obtain the next approximation of Grcr until
arriving at Grcr � 2.9387 ·106, for which approximation of the leading eigenvalue is
(−7.952×10−6, 1.587). The real part of the latter is considered as a numerical zero.
At this stage we switch from calculation of approximate eigenvalues to computation
of true ones. Applying the inverse iteration with the calculated complex shift and
using the approximate eigenvector as the initial one, we obtain the leading eigenvalue
λ � (

9.824 · 10−7, 1.587
)
, whose real part appears to be even smaller than that of the
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Table 1 Stability study of convection of air in a square laterally heated cavity with conducting
horizontal walls. Calculations start from a steady state at Gr= 106. 100×100 stretched grid. Precon-
ditioner parameters: for Newton method: αx

u � α
y
u � αx

v � α
y
v � αx

T � α
y
T � 1, βu � βv � 10−8;

For inverse iteration: αx
u � α

y
u � αx

v � α
y
v � αx

T � 1, α
y
T � 0.5, βu � βv � 3 · 10−3, βT � 0.04.

Calculation on 2 Intel i7 2.93 GHz CPUs
Gr Stage CPU

time, sec
Number
of main
iterations

Number of
BiCGstab(4)
iterations

Time for
inverse
of C
matrix

Calculated
eigenvalue

2.5×106 Projection on 10×10 basis
functions

3.6 5 136 (−0.0236, 1.604)

Projection on 20×20 basis
functions

7.1 3 237

Projection on 30×30 basis
functions

12.5 2 264

Full Newton iteration 27.3 3 20 26.1

Eigensolver in a direct
projected mode

32.7 41

2.525×106 Full Newton iteration 36.2 2 30 30.9 (−0.0221, 1.603)

Eigensolver in a direct
projected mode

32 41

2.9018×106 Projection on 10×10 basis
functions

2.4 4 97 (−1.822×10−3,
1.589)

Projection on 20×20 basis
functions

8.9 4 279

Projection on 30×30 basis
functions

13.7 2 293

Full Newton iteration 27.9 2 20 26.1

Eigensolver in a direct
projected mode

32 41

2.9355×106 Full Newton iteration 36.2 2 30 31.5 (−1.609×10−4,
1.587)

Eigensolver in a direct
projected mode

32 41

2.9387×106 Full Newton iteration 19.6 1 16 16.6 (−7.952×10−6,
1.587)

Eigensolver in a direct
projected mode

32 41

Inverse iteration in full mode 575 4 194 534 (9.824×10−7,
1.587)

approximate one. This means that approximation with 302 basis functions is rather
accurate for the case considered. The values obtained for Grcr and I m(λ) are in
complete agreement with earlier results of Gelfgat [12] obtained by a different com-
putational approach. Note that most of computational time needed for calculations
in the full mode is spent inversing the matrix C, which is the most CPU-time con-
suming part of the computational process and is analogous to calculation of pressure
in time-dependent incompressible CFD.
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Table 2 illustrates the whole computational process of calculation of the critical
Grashof number in the case of perfectly thermally insulated horizontal boundaries
of the square cavity

∂T

∂z
(x, z � 0) � ∂T

∂z
(x, z � 1) � 0. (31)

The critical Grashof in this case is almost two orders of magnitude larger than the
previous one [12], so that convergence of all methods applied noticeably slows down.
Consider, e.g., computation of steady flow at Gr � 1.5 ·108, using the steady state at
Gr � 108 as an initial guess. With orthogonal projection approximation using con-
sequently 402, 452, and 502 basis functions and the BiCGstab(4) method, the whole
computation consumes 1520 s. The same computation without orthogonal projec-
tions consumes 1920 s using the BiCGstab(4) and only 330 s using FGMRES(300).
Starting from this value of the Grashof number it was impossible to obtain a computa-
tional process converging to Grcr . This happens because there are several eigenvalues
with close real parts, so that the real part of the leading eigenvalue is no longer a
smooth function of the Grashof number (see Table 2 and explanations below).

To obtain a converging computational process we had to start from Gr � 2.1·108.
To compute the initial steady state we have to perform parameter continuation with
relatively small increments of Gr , so that first we compute the steady state at Gr �
1.8 · 108, and only starting from it, the needed solution at Gr � 2.1 · 108 is obtained.
Using consequently 402, 452, and 502 orthogonal projection approximations we arrive
at the steady state in 2840 s using BiCGstab(4) iterations for computation of Newton
corrections, and alternatively in 2780 s applying the FGMRES(300) method. Note
that in this case the Newton iterations without orthogonal projections do not converge.
Calculation of this steady state is followed by the calculation of Grcr . The whole
process is reported in Table 2.

The computational process starts from calculation of the approximate leading
eigenvalue at Gr � 2.1·108 and at a 1% larger Grashof number Gr � 2.121·108. The
approximate leading eigenvalues are computed with 502 truncation. In both cases we
observe two leading eigenvalues with non-zero and zero imaginary parts respectively
(Table 2). The real parts of these two eigenvalues approach zero at different rates,
so that one, most unstable at lower Gr , is replaced by another one whose negative
real part becomes larger, i.e., closer to zero. The estimation of Grcr by the linear
extrapolation cannot be correct here, therefore we repeat calculation of the steady
state and its approximate eigenvalue at a close Grashof number, Gr � 2.1527 · 108.
The next linear extrapolation is rather good for the current leading eigenvalue with
the zero imaginary part (Table 2), however, the next calculation at Gr � 2.3198 ·108

reveals that a third eigenvalue has the largest real part. Its imaginary part is non-
zero, but an order of magnitude smaller than that of the first one. This eigenvalue
remains leading for the rest of the computational process. First we find the Grashof
number at which the real part of the approximate leading eigenvalue vanishes, which
is Gr � 2.48418 · 108. Then, applying the inverse iteration, we find the value
Grcr � 2.26019 · 108, which is correct for the 100×100 grid considered, however
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Table 2 Stability study of convection of air in a square laterally heated cavity with insulated
horizontal walls. Calculations start from a steady state at Gr= 2 × 108. 100×100 stretched grid.
Preconditioner parameters: for Newton method: αx

u � α
y
u � αx

v � α
y
v � αx

T � α
y
T � 1, βu �

βv � 10−8; For inverse iteration: αx
u � α

y
u � αx

v � α
y
v � αx

T � 1, α
y
T � 0.5, βu � βv �

3 · 10−3, βT � 0.04. Calculation on 2 Intel i7 2.93 GHz CPUs
Gr Stage CPU

time,
sec

Number
of main
itera-
tions

Number of
BiCGstab(4)
iterations

Time for
inverse
of C
matrix

Calculated
eigenvalue

2.1×108 Projection on 40×40 basis
functions

1155 6 10630

Projection on 45×45 basis
functions

739 5 2464

Projection on 50×50 basis
functions

254 4 4859

Full Newton iteration 688 3 571 661

Eigensolver in a direct
projected mode

70 41 (-0.02175,
3.4178)

2.121×108 Full Newton iteration 1411 2 1221 1325

Eigensolver in a direct
projected mode

263 167 (-0.01309, 0)

2.15275×108 Full Newton iteration 743 2 649 698

Eigensolver in a direct
projected mode

602 397 (-0.01306, 0)

2.23198×108 Full Newton iteration 1167 3 998 1097

Eigensolver in a direct
projected mode

495 326 (-
0.002529,0.3158)

2.25102×108 Full Newton iteration 686 2 605 643

Eigensolver in a direct
projected mode

259 167 (0.4003×10−3,
0.3154)

2.248418×108 Full Newton iteration 383 1 338 359

Eigensolver in a direct
projected mode

381 247 (0.5905×10−5,
0.3154)

Inverse iteration in full mode 2263 5 2129 (1.772×10−2,
0.31488)

2.250666×108 Full Newton iteration 288 1 260 269

Inverse iteration in full mode 3665 5 3449 (1.4301×10−2,
0.31483)

2.260067×108 Full Newton iteration 1306 2 1161 1224

Inverse iteration in full mode 3643 7 3134 (1.85608×10−4,
0.31456)

2.260190×108 Full Newton iteration 329 1 307 307

Inverse iteration in full mode 2715 5 2567 (1.1227×10−6,
0.31456)
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it is not grid-converged yet [12]. Note that we did not need computations of steady
states in the approximate projected mode, except the first one, since the difference
between the current and the next Grashof number was smaller.

6.2 Three-Dimensional Problems

Three-dimensional calculations consume much longer CPU times, compared to the
2D ones, so that optimization of the preconditioner matrix parameters by a series of
numerical experiments is not affordable. For the following calculations we extend
optimal 2D parameters to the 3D case. Also, due to memory restrictions we can-
not apply any of the GMRES algorithms with large restart numbers, and we use
BiCGstab(4). As above, the Arnoldi method for projected solutions is used in the
direct mode with restart after every 50 Krylov vectors and Chebyshev acceleration.
As in the 2D case, the inner iterations for calculation of the matrix C were done by
the ORTHOMIN(2) method.

Table 3 presents an example of calculation of steady states and the critical Grashof
number for convection in a cube with perfectly conducting horizontal and spanwise
boundaries. With the boundary condition (28) on the lateral boundaries this reads

T (x, y � 0, z) � T (x, y � 1, z) � T (x, y, z � 0) � T (x, y, z � 1) � 1 − x .

(32)

Computation of the instability threshold starts from obtaining a steady flow at
Gr � 3.5 · 106 using the calculated steady state at Gr � 2.8 · 106 as an initial guess.
The BiCGstab(L) iterations applied directly for calculation of the Newton corrections
do not converge for L= 2, 4, and 6. A convergent process was obtained by applying
orthogonal projections on the bases of 103, 203 and 303 functions (Table 3). We
observe that most of the computational time was spent for calculation of an approx-
imate solution on the 303 basis, after which calculation of the steady state became
faster and converged in a noticeably shorter time within a much smaller number of
iterations.

The whole computational process reported in Table 3 is similar to those reported
in Table 1 for the corresponding 2D case, but consumes significantly more CPU time
on a computationally more powerful platform. It converges to Grcr � 3.4136 · 106

with ωcr � I m(λ) � 1.7651. Results of similar calculations on the 1003 grid, where
horizontal and spanwise boundaries are either thermally conducted or insulated, are
summarized in Table 4. These results are in a good agreement with the results of
time-dependent simulations [13, 15, 19]. In all the three-dimensional calculations,
we observe again that most of CPU time needed for calculation in the full mode
is spent for inverting the matrix C. Finding a more efficient method for that is the
main objective for further application of the proposed numerical technique to finer
3D grids.
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Table 3 Stability study of convection of air in a cubic laterally heated cavity with perfectly con-
ducting horizontal and spanwise walls. Calculations start from a steady state at Gr � 2.8 ·106. 1003

stretched grid. Preconditioner parameters for Newton method: α
(x,y,z)
(u,v,w,T ) � 1, β(u,v,w,T ) � 10−8,

and for inverse iteration: α
(x,y,z)
(u,v,w) � 1, β(u,v,w) � 10−3, α

(x,z)
T � 1, α

y
T � 0.5, βT � 0.04. Calcu-

lation on 32 AMD Abu Dhabi 2. 3 GHz CPUs
Gr Stage CPU

time,
sec

Number
of main
itera-
tions

Number of
BiCGstab(4)
iterations

Time
for
inverse
of C
matrix

Calculated
eigenvalue

3.5×106 Projection on 103 basis
functions

1607 5 243 (−0.7648×10−2,
1.7609)

Projection on 203 basis
functions

5178 4 590

Projection on 303 basis
functions

37369 3 873

Full Newton iteration 13135 5 120 11510

Eigensolver in a direct
projected mode

272295 83

3.5035×106 Full Newton iteration 6370 2 27 5650 (−0.7407×10−2,
1.7609)

Eigensolver in a direct
projected mode

301080 8287

3.6110×106 Projection on 103 basis
functions

6258 5 254 (−0.2430×10−3,
1.7598)

Projection on 203 basis
functions

35623 4 605

Projection on 303 basis
functions

269437 3 691

Full Newton iteration 53290 5 153 49015

Eigensolver in a direct
projected mode

289010 83

3.614655×106 Full Newton iteration 8950 2 28 (−0.8109×10−5,
1.7598)

Eigensolver in a direct
projected mode

287713 83

Inverse iteration in full mode 3614655 6 746 (+0.12275×10−2,
1.7632)

3.615017×106 Full Newton iteration 4424 2 14 4030 (+0.12296×10−2,
1.7632)

Inverse iteration in full mode 32610 2 230 28790

3.401940×106 Projection on 103 basis
functions

5998 5 240 (+0.74802×10−3,
1.7652)

Projection on 203 basis
functions

36595 4 571

Projection on 303 basis
functions

334180 3 668

Full Newton iteration 44539 5 138 425180

Inverse iteration in full mode 87204 5 515 77698

(continued)
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Table 3 (continued)
Gr Stage CPU

time,
sec

Number
of main
itera-
tions

Number of
BiCGstab(4)
iterations

Time
for
inverse
of C
matrix

Calculated
eigenvalue

3.414158×106 Full Newton iteration 9556 2 35 8566

Inverse iteration in full mode 55548 4 352 48942 (+0.37743×10−4,
1.7651)

3.413571×106 Full Newton iteration 5490 2 17 5019 (+0.22938×10−6,
1.7651)

Inverse iteration in full mode 37467 3 216 33699

Table 4 Critical Grashof number and critical oscillation frequencies for buoyancy convection in a
laterally heated cube calculated on 1003 stretched grid

Horizontal boundaries Spanwise boundaries Grcr ωcr � I m
(
λleading

)
Conducting Conducting 3.4136 × 106 1.7642

Conducting Insulated 3.3831 × 106 1.6489

Insulated Conducting 1.2259 × 108 0.9579

Insulated Insulated 4.2524 × 107 0.05395

7 Conclusions

We have proposed extensions of the time-stepping-based approach of Tuckerman and
Barkley [22] and Tuckerman et al. [23] for application of the Krylov-subspace-based
Newton and Arnoldi iterations to computation of steady incompressible flows and
study of their stability. The approach of Tuckerman and Barkley [22] and Tuckerman
et al. [23] is based on an existing code that performs numerical integration in time and
is interpreted as preconditioning by the inverse Stokes operator. In the present study,
we argue that convergence can be improved by modification of the Stokes operator.
Similarly to the Stokes operator, this modification keeps Krylov vectors divergence-
free and satisfying the boundary conditions, but also contains scalar parameters that
can be tuned to speed up the convergence.

As an example, we propose to replace the Helmholtz operators, which are parts
of the Stokes operator, by general elliptic operators leaving the boundary conditions
untouched. Using two-dimensional convective flow as an example, we show that
coefficients of the elliptic operators can be optimized so that the total computational
time noticeably decreases. The resulting computational process is fully disconnected
from any time-stepping algorithm. At the same time, the proposed preconditioner
matrix can be inverted by methods applied for pressure/velocity coupled time inte-
gration, like the extended Uzawa method proposed by Vitoshkin and Gelfgat [26],
as well as direct and multigrid methods described in Feldman and Gelfgat [8] and
references therein.
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We also argue that orthogonal projection of the whole problem on a truncated
divergence-free basis yields divergence-free Krylov vectors, and allows one to per-
form Newton and Arnoldi iterations without additional implicit sub-steps. The pro-
jected solution is, in fact, an approximation of the true grid solution, and can be used as
an initial guess for the complete computation. In particular, using projections allows
for larger increments in parameter continuation calculations, and provides estimates
of the leading eigenvalue and eigenvector needed to start either the Arnoldi or inverse
iteration that are based on shifting and inverting the Jacobian matrix.

The proposed numerical approach is illustrated using the well-known problem
of oscillatory convection of air in laterally heated square (2D) and cubic (3D) cavi-
ties. For 2D problems, we successfully recalculated previously published results of
Gelfgat [12]. To the best of the author’s knowledge, results for the 3D cavities are
obtained by linear stability analysis for the first time and compare well with several
results of direct numerical simulation.
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