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Abstract In this paper the author reviews methodology of a version of the global
Galerkin that was developed and applied in a series of his earlier publications. The
method is based on divergence-free basis functions satisfying all the linear and homo-
geneous boundary conditions. The functions are defined as linear superpositions
of the Chebyshev polynomials of the first and second types that are combined in
divergence free vectors. The description and explanations of treatment of boundary
conditions inhomogeneities and singularities are given. Possible implementation for
steady state solvers, path-continuation, stability solvers and straight-forward integra-
tion in time are discussed. The most important results obtained using the approach
are briefly reviewed and possible future applications are deliberated.
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1 Introduction

This paper revisits a version of the global Galerkin method whose development
started in the author’s PhD thesis [16] and, being continued later, resulted in an
effective approach for stability analysis of model incompressible flows, so that well
known and less known results had being published continuously from 1994 until
2005. Several years ago I was asked to present this approach again, and it triggered
some interest among several young colleagues. It is mainly their interest that inspired
me to review all that was done and to make a more or less consistent description of
all the technical details, which were distributed over several papers, and sometimes
omitted. Naturally, I added some comments on my personal current opinion of what
was done and what possibly can be done in future.
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354 A. Gelfgat

The development of this approach started in the era when computer memory was
measured in kilobytes, so that even storage of a large matrix was a problem. The only
way to reduce the required memory was reducing the number of degrees of freedom
of numerical method. Since discretization of the flow region (domain) requires fine
grids, the decrease of number of degrees of freedom was sought in different versions
of global weighted residual methods, called also spectral methods. These methods
do not discretize the domain, and approximate solutions as truncated series of basis
functions. It was shown by many authors that weighted residuals methods allow for
a very significant reduction of degrees of freedom (see, e.g., [9]). Straight-forward
application of these methods to incompressible fluid dynamics involves so-called
algebraic constraints that are related to the boundary conditions and the continuity
equation. Removal of these constraints by an appropriate choice of basis functions
would decrease the number of degrees of freedom even more. The construction
of such basis functions, is the main topic of this text. For problems with periodic
boundary conditions the choice of Fourier series is natural, and also allows for appli-
cation of the fast Fourier transform when the non-linear terms are evaluated by the
pseudo-spectral approach. However, the choice of basis functions is not so obvious
for non-periodic boundary conditions. Quite an apparent idea to linearly combine
some well-known functions, e.g., the Chebyshev polynomials, into expressions that
satisfy linear and homogeneous boundary conditions of a problem, appears in Orszag
[54, 55]. To the best of the author’s knowledge, this is the first appearance of this
idea, at least in CFD. Many authors, including this one, rediscovered this way of
constructing the basis functions (see Sect. 9).

The next step was to combine these linear superpositions into a two-dimensional
divergence-free vector, for which Chebyshev polynomials of the first and second
kinds fit very well [16, 17]. The Galerkin method based on the divergence-free basis
functions, that satisfy all linear and homogeneous boundary conditions (LHBC in
the further text), really allowed for noticeable reduction of the number of degrees of
freedom, as was already shown in Gelfgat and Tanasawa [17]. Later, the computer
power grew, so grew possibilities of applications of the method. A relatively small
amount of degrees of freedom resulted into Jacobian matrices of relatively small size,
which already could be treated numerically for computation of steady flows, as well
as for solution of the eigenvalue problems associated with the flows linear stability
[20–22]. The divergence free functions were extended to cylindrical coordinates,
which allowed us to consider flow in the rotating disk—cylinder system and to
obtain first stability results (Gelfgat et al. [18]) for this configuration.

Since then a number of different problems addressing steady state flows, possible
multiplicity of states, and stability were solved for different flows in two-dimensional
rectangular cavities and cylinders. The periodic circumferential coordinate in the
cylindrical geometry allows one to study stability of an axisymmetric base flow with
respect to three-dimensional perturbations. The linearized problem for the 3D dis-
turbances separates for each circumferential Fourier mode, so that the final answer is
obtained by consideration of several 2D-like problems. Subsequently, a considerable
amount of results was obtained for stability of flows in cylinders, which were driven
by rotation of boundaries, buoyancy convection, and magnetic field.
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The first attempt to study 3D instability in Cartesian coordinates was done in
Gelfgat [24] for the Rayleigh–Bénard problem in rectangular box, which considers
stability of quiescent fluid heated from below. No attempts were made by the author
to study stability of fully developed 3D flow. At the same time, the three-dimensional
bases found an unexpected application for visualization of incompressible 3D flows
[39].

The following text starts from a brief description of the weighted residuals and
Galerkin method formulated for an incompressible fluid dynamics problem. Then
the proposed way of construction of basis functions is explained, starting from a
one-dimensional two-point problem. Treatment of inhomogeneities and boundary
conditions singularities is explained. This follows by discussion of the resulting
dynamical system and explanations of how it was treated in the cited works, as well
as how it can be treated for fully 3D problems. After that, several illustrative examples
are presented. Finally, a discussion of possible future studies is given.

2 The Problem and the Numerical Method

We consider flow of incompressible fluid in a two-dimensional rectangle 0 ≤ x ≤
Ax, 0 ≤ y ≤ Ay, or in a three-dimensional box 0 ≤ x ≤ Ax, 0 ≤ y ≤ Ay, 0 ≤ z ≤ Az.
The rectangular shape of the domain is the main restriction for all the following.
Below we discuss how this restriction can be relaxed to a canonical shape, i.e.,
the domain bounded by the coordinate surfaces belonging to a certain system of
orthogonal curvilinear coordinates. The momentum and continuity equations for
velocity v and pressure p (Re is the Reynolds number) read

∂v
∂t

+ (v · ∇)v � −∇p +
1

Re
�v + f (2.1)

∇ · v � 0 (2.2)

We assume also that boundary conditions for all the three velocity components are
linear and homogeneous, e.g., the no-slip conditions on all the boundaries. The
Eq. (2.1)–(2.2) can be considered together with other scalar transport equations for,
e.g., temperature and/or concentration, an example of which will be given below.

To formulate the Galerkin method we assume that the solution v belongs to a space
of divergence-free vectors satisfying all the (linear and homogeneous) boundary

conditions, LHBC. Assume that vectors
{
ϕK

}∞
K�1 form a basis in this space. Then

the solution v can be represented as

v �
∞∑

K�1

cKϕK . (2.3)
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The coefficients cK can be obtained by evaluation of inner products of Eq. (2.3) by
a basis vector ϕL:

〈v, ϕL〉 �
∞∑

K�1

cK 〈ϕK , ϕL〉, L � 1, 2, 3, . . . (2.4)

Here we assumed that the space is supplied by an inner product 〈·, ·〉, which is yet to
be defined. If the functions

{
ϕK

}∞
k�1 form the orthogonal basis, then the coefficients

cK are obtained as

cK �
〈
v,ϕK

〉
〈
ϕK ,ϕK

〉 , K � 1, 2, 3, . . . (2.5)

However, if the basis functions are not orthogonal, the expressions (2.4) form an
infinite system of linear algebraic equation, which can be solved only with a certain
truncation. Keeping only N first terms in the series (2.3) and defining a vector of
coefficients c � {c1, c2, c3, . . . , cN }, the first N coefficients can be obtained as

c � G−1f , GKL � 〈
ϕK ,ϕL

〉
, fL � 〈

v,ϕL

〉
. (2.6)

Here G is the Gram matrix, and N is the truncation number.
In the relations (2.4)–(2.6) we assumed that the vector v is known. If it is unknown,

the coefficients cK can be obtained only approximately by minimization of residual of
the governing equations. To show a way for their calculation, we first assume that the
coefficients cK are time-dependent and the basis functions

{
ϕK

}∞
k�1 depend only on

coordinate values. Then the representation (2.3) defines a time- and space-dependent
function v. Note that the continuity Eq. (2.2), as well as all the boundary conditions
are already satisfied because v belongs to the space . Clearly, the solution we are
looking for also belongs to this space, so that the momentum equation is the only
one to be solved. Now we rewrite the momentum Eq. (2.1) in two additional and
equivalent forms

∂v
∂t

+ (v · ∇)v + ∇p − 1

Re
�v − f � R � 0 (2.7)

∂v
∂t

� −∇p +
1

Re
�v − (v · ∇)v + f (2.8)

Here R is residual of the momentum equation. If v is the solution then R ≡ 0. For a
general case we assume that all possible residuals belong to a certain functional space

, which is also supplied by an inner product 〈·, ·〉W . Assume also that
{
φK

}∞
K�1

is a basis in . Then the requirement of the zero residual will be equivalent to the
requirement that the residual R is orthogonal to all the basis functions φK , namely

〈
R,φK

〉
W � 0, K � 1, 2, 3, . . . (2.9)
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The Eq. (2.9) form an infinite set of non-linear time-dependent ODEs that must
be solved to find the time-dependent coefficients cK (t). However, this system of
equations is not closed yet, since nothing is said about the pressure. To proceed, we
assume that the pressure belongs to a space of scalar time-dependent functions,
differentiable at least two times into the domain, with the basis {sK }∞K�1. The pressure
is represented as

p �
∞∑

K�1

dK (t)sK . (2.10)

The equation of pressure is formed in the standard way, by applying the divergence
operator to both sides of the momentum Eq. (2.1), which yields

�p � −div
[
(v · ∇)v − f

]
. (2.11)

Boundary conditions needed to be supplied to this equation will be discussed later.
Note, that the velocity representation (2.3), even in the truncated form used below,
guarantees zero velocity divergence. Since the Laplacian and divergence operators are
evaluated analytically, they commute in every approximate (truncated) formulation.
We introduce the residual D of the pressure equation

D � �p + div
[
(v · ∇)v − f

]
. (2.12)

For the residual D we demand only piecewise continuity in all spatial directions, so
that it formally belongs to another space of scalar functions. This space is denoted
as , its basis as {qK }∞K�1, and the scalar product as 〈·, ·〉D. Now, for the solution of
the problem represented by v and p, the scalar non-linear algebraic equations

〈D, qL〉D � 0, L � 1, 2, 3, . . . (2.13)

must be added. Equation (2.13) define the coefficients dK (t) and must be satisfied
together with the Eq. (2.9). Note that these equations do not contain the time derivative
and, therefore, are algebraic constraints for the ODEs (2.9).

Obviously, and . To build a numerical procedure for obtaining Nv and
Np first coefficients of the velocity and pressure series (2.3) and (2.10), we truncate
the series together with the residual projection Eqs. (2.9) and (2.13). These results in

v ≈
∑Nv

K�1
cK (t)ϕK ,

〈
R,φL

〉
W

� 0, L � 1, 2, 3, . . . , Nv, (2.14)

p ≈
∑Np

K�1
dK (t)sK , 〈D, qM 〉D � 0, M � 1, 2, 3, . . . , Np, (2.15)

which defines Nv non-linear ODEs and Np non-linear algebraic constraints for cal-
culation of the time-dependent coefficients cK (t) and dK (t). Altogether, it is called
method of weighted residuals [7, 9, 14]. The ODEs and the algebraic constraints
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resulting from projections of the momentum and pressure equation residuals onto
the basis functions are∑Nv

K�1
ċK (t)

〈
ϕK ,φM

〉
W � −

∑Nv

K�1

∑Nv

L�1
cK (t)cL(t)

〈(
ϕL · ∇)

ϕK , φM
〉
W

−
∑Np

K�1
dK (t)〈∇sK , φM 〉W +

1

Re

∑Nv

K�1
cK (t)

〈
�ϕK , φM

〉
W

+ 〈f , φM 〉W , M � 1, 2, 3, . . . , Nv (2.16)∑Np

K�1
dK (t)〈�sK , qJ 〉D � −

∑Nv

K�1

∑Nv

L�1
cK (t)cL(t)

〈∇ · (ϕL · ∇)
ϕK , qJ

〉
D

+ 〈∇ · f , qJ 〉D, J � 1, 2, 3, . . . , Np (2.17)

Following common definitions,
{
ϕK

}∞
k�1 and {sK }∞K�1 are called coordinate basis

systems, while
{
φK

}∞
k�1 and {qK }∞K�1—projection basis systems.

Note that the weighted residuals method can be formulated also for coordinate
basis functions that do not satisfy some or all boundary conditions. Fletcher [14]
distinguishes between the coordinate functions that satisfy only (linear) differential
equation, satisfy only boundary conditions, and do not satisfy anything, calling these
three cases boundary, interior, and mixed, respectively. Within this classification, and
noticing that the equations are non-linear, we discuss mainly interior methods.

To arrive to the Galerkin formulation we assume that the boundary conditions do
not explicitly involve time. Then l.h.s. of Eq. (2.8) satisfies the LHBC of the velocity
and is divergence-free. Then, the same can be said about the r.h.s. of Eq. (2.8), and
finally about the residual of the momentum equation R defined in Eq. (2.7). Thus,
for the time-independent boundary conditions, the residual R belongs to the space

, so that we can choose φK � ϕK for all K . Also assuming that the coordinate
systems

{
ϕK

}∞
k�1 and {sK }∞K�1 are usually built from the trigonometric functions

or polynomials that are differentiable infinite number of times, the residual D will
also be differentiable infinite number of times. Since the physical problem does not
specifies any pressure boundary conditions, we can assume that both p and D belong
to the same space , and to choose qK � sK for all K . Thus, we arrive to a particular
version of the weighted residuals method, in which the coordinate and projection
basis systems coincide. This version is known as the Galerkin or Boubnov—Galerkin
method.

An obvious reason to choose the Galerkin method among all possible weighted
residual formulations follows from the fact that . By projecting on a “smaller”
space , we expect that with increase of the truncation number convergence will be
faster. Another, less obvious and more profound reason follows from definition of
the inner products via volume integrals. For scalar and vector functions defined into
the domain V and on its boundary we define

〈f (x, y, z), g(x, y, z)〉ρ �
∫

V
ρ(x, y, z)fgd V , (2.18)

〈u(x, y, z), v(x, y, z)〉ρ �
∫

V
ρ(x, y, z)u · vd V, (2.19)
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where ρ(x, y, z) > 0 is the weight function. The simplest and the most robust formu-
lation is obtained with the unity weight ρ(x, y, z) � 1, for which the inner products
(2.18), (2.19) may also have some physical meaning. For example, the norm produced
by (2.19) becomes doubled dimensionless kinetic energy. An important additional
advantage of the unity weight follows from consideration of the inner product of
gradient of an arbitrary scalar field f (x, y, z) by divergence free vector u(x, y, z).
Assume that � is the domain boundary, n its normal, and that the component of u
normal to the boundary vanishes. Keeping in mind that ∇ · u � 0 and u · n � 0, we
have

〈∇f , u〉1 �
∫

V
∇f · ud V �

∫
V

[∇ · (f u) − f ∇ · u
]
d V �

∫
V

∇ · (f u)d V �
∫

Γ

f u · n dΓ � 0

(2.20)

Thus, if the velocity does not penetrate the boundary, and the inner product is chosen
as in (2.19), the projection of the pressure gradient on all the velocity basis functions
vanishes. This means that equation systems (2.16) and (2.17) separate, so that velocity
can be calculated from (2.14) without any knowledge about pressure. The pressure
then can be computed from (2.15) using the previously found velocity field. In this
case Eq. (2.16) become∑Nv

K�1
ċK (t)

〈
ϕK ,ϕM

〉
1 � −

∑Nv

K�1

∑Nv

L�1
cK (t)cL(t)

〈(
ϕL · ∇)

ϕK ,ϕM

〉
1

+
1

Re

∑Nv

K�1
cK (t)

〈
�ϕK ,ϕM

〉
1 +

〈
f ,ϕM

〉
1, M � 1, 2, 3, . . . , Nv

(2.21)

This is the formal Galerkin formulation for calculation of an approximate solution
of a problem. Note that the exclusion of pressure by the Galerkin projection (2.20)
is not restricted to only closed flow regions with non-penetrative boundaries. The
inhomogeneity in the velocity boundary conditions can be removed by change of
variables, which is discussed below in more detail.

To proceed we need to explain how to build basis functions, which are divergence-
free and satisfy the whole set of LHBC. Then we will discuss how to handle inhomo-
geneous boundary conditions, curvilinear coordinates, and weight functions others
than the unity one.

3 Basis Functions

We start from the question of how to satisfy all the LHBC for a scalar unknown
function. We assume that the basis functions for all three-dimensional time-dependent
scalar variables, e.g., temperature and/or concentration, are represented as products
of some one-dimensional bases. Thus for a function θ(x, y, z, t) defined in a box
0 ≤ x ≤ Ax, 0 ≤ y ≤ Ay, 0 ≤ z ≤ Az we are looking for representation in the form
of the tensor (Kronecker) product of one-dimensional bases
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θ(x, y, z, t) �
∑Nz

k�1

∑Ny

j�1

∑Nx

i�1
dijk(t)fi(x)gj(y)hk(z), (3.1)

Here dijk(t) are unknown time-dependent coefficients, Nx, Ny, Nz are the truncation
numbers specified in each spatial direction separately, and fi(x), gj(y), hk(z) are one-
dimensional bases that must be defined in each direction. The three-dimensional
basis corresponding to those defined in the previous chapter is

FJ (x, y, z) � fi(x)gj(y)hk(z), J � Nx
[
Ny(k − 1) + j − 1

]
+ i (3.2)

Clearly, the global index J can be defined as a function of the 1D indices i, j, k
differently, but the definition chosen must be kept through the whole computational
process. Starting from here we will use capital letters for the global indices, and
small letters for the one-dimensional ones.

If all the boundary conditions for θ are linear and homogeneous, the functions
fi(x), gj(y) and hk(z) must satisfy the boundary conditions posed in the x-, y-, and
z- directions, respectively. Assume now, that there are M boundary conditions in the
x-direction posed in the form

∑L

l�0
αmlf

(l)(xm) � 0, m � 1, 2, . . . , M . (3.3)

Hereαml are known coefficients, l is the derivative number, and xm are the borders (that
are parts of coordinate surfaces x � xm) where the boundary conditions are posed.
For the following we can also extend (3.3) by assuming that negative l correspond
to integrals, and that surfaces x � xm are not necessarily the boundary points, but
also can lie inside the flow region, as it happens in a two-fluid example below. Now
assume that a set of functions {sk(x)}∞k�1 forms a basis in, say, C∞([0, Ax]). It can
be, for example, a trigonometric Fourier basis, or a set of orthogonal polynomials
defined on [0, Ax]. For some reasons we choose this basis for representation of the
solution, but the functions sk(x) do not satisfy the boundary conditions (3.3). We
build an alternative basis by considering superpositions of M + 1 consequent basis
functions as

rk(x) �
∑M

n�0
βnksk+n(x) (3.4)

Substituting rk(x) into the boundary conditions (3.3) we obtain

∑L

l�0
αml

∑M

n�0
βnks(l)

k+n(xm) � 0, m � 1, 2, . . . , M (3.5)

For each k the relations (3.5) form a system of M equations that can be used to
find M + 1 coefficients βnk . To make the equations solvable we choose β0,k �
1, that leaves us with M linear algebraic equations for M remaining coefficients
βnk for every fixed k. The matrix of this system will be regular if the boundary
conditions (3.3) are independent. In this way, the functions rk(x) are fully defined and
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satisfy all the boundary conditions (3.3). Obviously they form a basis in the subspace
span{rk(x)} ⊂ C∞([0, Ax]), which contains functions that satisfy conditions (3.3)
and are differentiable infinite number of times. In this way we form bases fi(x), gj(y)
and hk(z) for the representation (3.1).

In the following all the examples will be based on the Chebyshev polynomials of
the first and the second type, Tk(x) and Uk(x), briefly described in the Appendix A.
In the further text these polynomials will always be chosen as the basis {sk(x)}∞k�1.

3.1 Example: Two-Point Boundary Value Problem

Consider a two-point boundary value problem for θ(x) posed on the interval 0 ≤
x ≤ 1 with the two (M � 2) boundary conditions

a0θ
′(0) + b0θ(0) � 0, a1θ

′(1) + b1θ(1) � 0, (3.1.1)

where a0, b0, a1, b1 are known coefficients. Recalling the Chebyshev polynomials
and taking into account β0,k � 1, our new basis functions are defined as

rk(x) �
∑2

n�0
βnkTk+n(x) � Tk(x) + β1kTk+1(x) + β2kTk+2(x). (3.1.2)

The boundary values of the Chebyshev polynomials and their derivatives are given
in Appendix A. Substituting rk(x) into the boundary conditions (3.1.1) and using Eqs.
(A.3) and (A.5), we obtain two equations for the coefficients β1k and β2k :

−β1k
[
2a0(k + 1)2 + b0

]
+ β2k

[
2a0(k + 2)2 + b0

] � −2a0k2 − b0 (3.1.3)

β1k
[
2a1(k + 1)2 + b1

]
+ β2k

[
2a1(k + 2)2 + b1

] � −2a1k2 − b1 (3.1.4)

These equation are easily solved analytically, which yields

β1k �
(
2a1k2 + b1

)[
2a0(k + 2)2 + b0

] − (
2a0k2 + b0

)[
2a1(k + 2)2 + b1

]
[
2a0(k + 1)2 + b0

][
2a1(k + 2)2 + b1

]
+
[
2a1(k + 1)2 + b1

][
2a0(k + 2)2 + b0

] ,
(3.1.5)

β2k �
(
2a1k2 + b1

)[
2a0(k + 1)2 + b0

]
+
(
2a0k2 + b0

)[
2a1(k + 1)2 + b1

]
[
2a0(k + 1)2 + b0

][
2a1(k + 2)2 + b1

]
+
[
2a1(k + 1)2 + b1

][
2a0(k + 2)2 + b0

] ,
(3.1.6)

and defines a new basis, which satisfy both boundary conditions. This idea was
introduced in Orszag [54] for two-point homogeneous Dirichlet boundary conditions,
and in Orszag [55] for boundary conditions of the Orr-Sommerfeld equation. It was
formalized for an arbitrary set of boundary conditions (3.1.1) in Gelfgat [16]. Note
that for a similar problem defined on the interval 0 ≤ x ≤ Ax we need only to replace
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x by x/Ax in Eq. (3.1.2), while the expressions (3.1.5) and (3.1.6) will be only slightly
altered.

3.2 Two-Dimensional Divergence-Free Basis

To construct basis functions, which are two-dimensional divergence-free vectors
satisfying all the boundary conditions, we start from constructing a divergence-
free basis that does not involve yet any boundary conditions. Using the Chebyshev
polynomials, and assuming the flow region is a rectangle 0 ≤ x ≤ Ax, 0 ≤ y ≤ Ay,
we define

wij �

⎧⎪⎨
⎪⎩

w(x)
ij

w(y)
ij

⎫⎪⎬
⎪⎭ �

⎧⎪⎪⎨
⎪⎪⎩

Ax
2i Ti

(
x

Ax

)
Uj−1

(
y

Ay

)
−Ay

2j Ui−1

(
x

Ax

)
Tj

(
y

Ay

)
⎫⎪⎪⎬
⎪⎪⎭, i, j � 1, 2, 3, . . . (3.2.1)

w0j �
⎧⎨
⎩

Ax
2 Uj−1

(
y

Ay

)
0

⎫⎬
⎭, wi0 �

⎧⎨
⎩

0
Ay

2 Ui−1

(
x

Ax

)
⎫⎬
⎭ (3.2.2)

Applying the relation (A.2), it is easily seen that ∇ · wij � 0. Now, to implement
the boundary conditions and to keep the divergence zero, we keep the x- and y-
components of the vector dependent on each other, like in (3.2.1). To do that we
implement all the velocity boundary conditions in the x-direction in the x-dependent
part of the vector, and do the same in the y-direction. In the x-direction the boundary
conditions are posed at x � 0 and x � Ax for the two velocity components, so that
we have four boundary conditions in total. The same takes place in the y-direction.
Thus, we construct the basis using linear superpositions of five (4 + 1) consecutive
Chebyshev polynomials. This results in

ϕij(x, y) �

⎧⎪⎪⎨
⎪⎪⎩

Ax
2

∑4
m�0

σim
i+m Ti+m

(
x

Ax

)∑4
m�0 τjmUj+m−1

(
y

Ay

)
−Ay

2

∑4
m�0 σimUi+m−1

(
x

Ax

)∑4
m�0

τjm

j+m Tj+m

(
y

Ay

)
⎫⎪⎪⎬
⎪⎪⎭ (3.2.3)

It is easy to check that ∇ · ϕij � 0. The coefficients σim and τjm must be found by
substituting ϕij in the boundary conditions. For example, assume that the rectangle
has a stress free boundary at y � Ay, while all the other boundaries are no-slip. This
leads to the following boundary conditions for velocity v:

v(x � 0, y) � v(x � Ax, y) � v(x, y � 0) � 0, vy
(
x, y � Ay

) � ∂vx

∂y

(
x, y � Ay

) � 0 (3.2.4)

The assignment σi0 � τi0 � 1 and substitution of (3.2.3) into (3.2.4) yields
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σi1 � σi3 � 0, σ02 � −8

3
, σ04 � 4

3
(3.2.5)

σi2 � − i

i + 2
− (i + 1)(i + 4)2

i(i + 2)(i + 3)
, σi4 � (i + 1)(i + 4)

i(i + 3)
, i > 0 (3.2.6)

τ01 � 2

7
, τi1 � 2

i2 + 2i + 1

i3 + 5i2 + 7i
, i > 0 (3.2.7)

τ02 � −16

7
, τi2 � −2

i4 + 8i3 + 26i2 + 40i + 24

i4 + 8i3 + 22i2 + 21i
, i > 0 (3.2.8)

τ03 � −6

7
, τi3 � −2

i2 + 4i + 3

i3 + 5i2 + 7i
, i > 0 (3.2.9)

τ04 � 4

7
, τi4 � i4 + 8i3 + 22i2 + 27 + 12

i4 + 8i3 + 22i2 + 21i
, i > 0 (3.2.10)

3.3 Three-Dimensional Divergence-Free Basis

Generalization of the 2D basis functions for a three-dimensional case is not straight-
forward, since it is unclear how to produce divergent-free vectors, similar to those
defined in (3.2.3), that will form a complete set of basis functions. To use a similar
approach, we need to make several additional evaluations.

Assume that v � (u, v, w) is a divergence-free three-dimensional vector that
satisfies the no-slip conditions on all the boundaries of the rectangular box 0 ≤ x ≤
Ax, 0 ≤ y ≤ Ay, 0 ≤ z ≤ Az . Since ∇ · v � ∂u/∂x + ∂v/∂y + ∂w/∂z � 0, so that
w � −∫(∂u/∂x + ∂v/∂y)dz, a 3D incompressible vector field can be decomposed
as

v �
⎛
⎝ u

v
w

⎞
⎠ �

⎛
⎝ u

0
w1

⎞
⎠ +

⎛
⎝ 0

v
w2

⎞
⎠, w1 � −

∫ z

0

∂u

∂x
dz, w2 � −

∫ z

0

∂v

∂y
dz (3.3.1)

Since both vectors v(x,z) � (u, 0, w1) and v(y,z) � (0, v, w2) are divergence-free, this
decomposition shows that the divergence-free velocity field can be represented as
superposition of two fields having components only in the (x, z) or (y, z) planes. For
each of two vectors we can construct basis functions similar to (3.2.3)

ϕ
(x,z)
ijk (x, y, z) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ax
2

∑4
l�0

âil
(i+l) Ti+l

(
x

Ax

) 4∑
m�0

b̂jmTj+m

(
y

Ay

)∑ñ
n�0 ĉknUk+n−1

(
z

Az

)
0

− Az
2

∑4
l�0 âilUi+l−1

(
x

Ax

)∑4
m�0 b̂jmTj+m

(
y

Ay

)∑ñ
n�0

ĉkn
(k+n)

Tk+n

(
z

Az

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.3.2)
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ϕ
(y,z)
ijk (x, y, z) �

⎡
⎢⎢⎢⎢⎢⎢⎣

0

Ay
2

∑4
l�0 ãilTi+l

(
x

Ax

)∑4
m�0

b̃jm
(j+m)

Tj+m

(
y

Ay

)∑ñ
n�0 c̃knUk+n−1

(
z

Az

)

− Az
2

∑4
l�0 ãilTi+l

(
x

Ax

)∑4
m�0 b̃jmUj+m−1

(
y

Ay

)∑ñ
n�0

c̃kn
(k+n)

Tk+n

(
z

Az

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.3.3)

As above, the coefficients âil , b̂jm, ĉkn, ãil , b̃jm, and c̃kn are defined after substitution
of the functions in the boundary conditions. Note that the number of polynomials
included in the linear superpositions in z-direction, ñ + 1, is not defined yet. This
is because at z � Az only the sum w1(x, y, Az) + w2(x, y, Az) is zero, while the
boundary values of w1(x, y, Az) and w2(x, y, Az) are not known. An example of such
decomposition can be found in Gelfgat [39]. Therefore there are only three boundary
conditions in the z-direction to be satisfied by the basis functions ϕ

(x,z)
ijk and ϕ

(y,z)
ijk , so

that ñ � 3. It is still possible to use these bases, but to satisfy the boundary conditions
for w at z � Az, an additional algebraic constraints will be needed. Note that there
is no such a problem if boundary conditions in the z-direction are periodic.

Let us assume now that ñ � 4 in (3.3.2) and (3.3.3), so that the functions ϕ
(x,z)
ijk

and ϕ
(y,z)
ijk are divergence-free and satisfy all the boundary conditions. In this case,

using (3.2.5) and (3.2.6),

âil � ãil � b̂il � b̃il � ĉil � c̃il � σil , b̂j1 � b̃j1 � b̂j3 � b̃j3 � b̂j4 � b̃j4 � 0, b̂j2 � b̃j2 � − (j + 2)2

j2
(3.3.4)

Projection of the solution v on span
{
ϕ

(x,z)
ijk

}
and span

{
ϕ

(y,z)
ijk

}
results in a vector ṽ

ṽ �
⎛
⎜⎝ ũ

0
w̃1

⎞
⎟⎠ +

⎛
⎜⎝ 0

ṽ

w̃2

⎞
⎟⎠, (3.3.5)

which is divergence-free, satisfies all the boundary conditions, but may not be a
good approximation of v because set of the basis functions still is not complete. To

complete the basis we notice that span
{
ϕ

(x,z)
ijk

}
and span

{
ϕ

(y,z)
ijk

}
project the velocity

on the (x, z) and (y, z) planes, so that it is straight-forward to add projections on
the (x, y) planes as well. Thus, similarly to (3.3.2) and (3.3.3) we add another set of
divergence-free basis functions satisfying all the boundary conditions

ϕ
(x,y)
ijk (x, y, z) �

⎡
⎢⎢⎢⎢⎢⎣

Ax
2

∑4
l�0

āil
(i+l) Ti+l

(
x

Ax

)∑4
m�0 b̄jmUj+m−1

(
y

Ay

)∑4
n�0 c̄knTk+n

(
z

Az

)
−Ay

2

∑4
l�0 āilUi+l−1

(
x

Ax

)∑4
m�0

b̄jm
(j+m)

Tj+m

(
y

Ay

)∑4
n�0 c̄knTk+n

(
z

Az

)
0

⎤
⎥⎥⎥⎥⎥⎦

(3.3.6)
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Similarly to the previous functions, for the no-slip boundary conditions posed on all
boundaries,

āil � b̄il � σil, c̄k1 � c̄k3 � c̄k4 � 0, c̄k2 � − (k + 2)2

k2
(3.3.7)

Finally, we are looking for a three-dimensional solution as

v ≈
L(x,y)∑
i�0

M (x,y)∑
j�0

N (x,y)∑
k�0

C(x,y)
i,j,k (t)ϕ(x,y)

ijk (x, y, z)

+
L(x,z)∑
i�0

M (x,z)∑
j�0

N (x,z)∑
k�0

C(x,z)
i,j,k (t)ϕ(x,z)

ijk (x, y, z)

+
L(y,z)∑
i�0

M (y,z)∑
j�0

N (y,z)∑
k�0

C(y,z)
i,j,k (t)ϕ(y,z)

ijk (x, y, z) (3.3.8)

Projection of residual of the momentum equation on all three bases yields three sets
of ODEs for calculation of the three sets of time-dependent coefficients C(x,y)

i,j,k , C(x,z)
i,j,k ,

and C(y,z)
i,j,k . Since the basis functions are not orthogonal it will be necessary to inverse

the Gram matrix that is formed as

G �

⎡
⎢⎢⎢⎢⎢⎢⎣

〈
ϕ

(x,y)
ijk ,ϕ

(x,y)
pqr

〉 〈
ϕ

(x,y)
ijk ,ϕ(x,z)

pqr

〉 〈
ϕ

(x,y)
ijk ,ϕ

(y,z)
pqr

〉
〈
ϕ

(x,z)
ijk ,ϕ

(x,y)
pqr

〉 〈
ϕ

(x,z)
ijk ,ϕ(x,z)

pqr

〉 〈
ϕ

(x,z)
ijk ,ϕ

(y,z)
pqr

〉
〈
ϕ

(y,x)
ijk ,ϕ

(x,y)
pqr

〉 〈
ϕ

(y,x)
ijk ,ϕ(x,z)

pqr

〉 〈
ϕ

(y,z)
ijk ,ϕ

(y,z)
pqr

〉

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.3.9)

A simple numerical test for the no-slip boundary conditions and equal truncation
numbers (starting from 4 and larger) in each direction and for each set of the functions
shows that the Gram matrix is singular. This means that some of the functions are
linear dependent and must be excluded. Basing on the above discussion, we see
that in the case of periodic boundary conditions in the z-direction, all the set (3.3.6)
can be omitted. However, some functions of this set must be added in the case of
no-slip boundaries. This shows that the complete set of linearly independent basis
functions differs for different boundary conditions. Unfortunately, the author could
not arrive to a rigorous mathematical procedure that would allow one to know which
functions must be excluded at certain boundary conditions. At the same time, a simple
numerical experiment can be helpful.

Considering the no-slip conditions at all the boundaries, we varied N (y,z) in the last
sum of Eq. (3.3.7). In other words, we varied truncation number in the z-direction
for the functions defined in (3.3.6) only. We found that taking N (y,z) � 0, i.e.,
one basis function in the z-direction, we obtain a regular Gram matrix. Increase
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of N (y,z) to N (y,z) ≥ 1, makes the Gram matrix singular. Furthermore, taking a
single basis function in the z-direction, with the third index k ≥ 1, which means
polynomials of larger degrees in (3.3.6), also results in a singular Gram matrix. This
shows that the addition of the first polynomial in the z-direction, corresponding to
N (y,z) � 0, is essential, while all the other can be omitted. Using (3.3.7), this first
polynomial is 8

(
z − z2

)
. Returning to the sets (3.3.2) and (3.3.3) with the coefficients

defined in (3.3.4), we observe that the polynomials corresponding to the x- and y-
vector components start form the second degree, while those corresponding to the
z-component start from the third one. Thus, the missing polynomial of the degree
two must be added with the help of another set (3.3.6).

3.4 Basis Functions in Cylindrical Coordinates

Consider flow in a cylinder with radius R and height H. The whole problem is defined
now in the cylindrical coordinates (r, θ, z), 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H .
Using 2π -periodicity in the azimuthal direction we represent the flow as a Fourier
series

v �
∑∞

k�−∞ vk(r, z)exp(ikθ), (3.4.1)

so that the basis functions in the θ -direction are complex exponents exp(ikθ). The
continuity equation for vk(r, z) � (uk(r, z), vk(r, z), wk(r, z)) is

1

r

∂(ruk)

∂r
+

ik

r
vk +

∂wk

∂z
� 0 (3.4.2)

Here we must distinguish between the axisymmetric case and axisymmetric Fourier
mode, for which k � 0, and all the others k �� 0 modes. The axisymmetric flow
(axisymmetric mode) is represented by a single set of the basis functions, which
is built similarly to the above 2D Cartesian case, but with taking into account the
continuity Eq. (3.4.2). Note that if an axisymmetric flow has also a non-zero azimuthal
component, the latter can be treated as a scalar function. Then the axisymmetric vector
basis should include only the radial and axial components. An example of such basis,
successfully used in several studies (see below) is

Uij(r, z) �
{

u0

w0

}
�

⎧⎪⎪⎨
⎪⎪⎩

1
2

r
R

∑4
m�0

σim
i+m Ti+m

(
r
R

)∑4
m�0 μjmUj+m−1

(
z

Az

)
−Az

2

∑4
m�0 σimŨi+m−1

(
r
R

)∑4
m�0

μjm

j+m Tj+m

(
z

Az

)
⎫⎪⎪⎬
⎪⎪⎭, (3.4.3)

where Ũn
(

r
R

) � Tn+1
(

r
R

)
+ r(n + 1)Un

(
r
R

)
. As above, the zero divergence of Uij(r, z)

follows from Eq. (A.2), and the coefficientsσim andμjm are obtained by substitution of
Uij(r, z) in the boundary conditions. Note also that r-component of velocity vanishes
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at the polar axis r � 0, so that for flow in a cylinder only 3 conditions in the radial
direction must be additionally satisfied. If the domain is a cylindrical layer (e.g.,
Taylor-Couette flow) then the polar axis is cut out and one remains with the four
boundary conditions, as in the Cartesian coordinates case.

Now consider Fourier modes of (3.4.1) corresponding to k �� 0. Using the same
idea as in Eq. (3.1.1) we observe that

vk �
⎛
⎝ uk

vk

wk

⎞
⎠ �

⎛
⎜⎝−

uk

1
ik

∂(ruk )

∂r

0

⎞
⎟⎠ +

⎛
⎜⎝− r

ik

0
∂wk
∂z

wk

⎞
⎟⎠. (3.4.4)

Obviously, the sum of two azimuthal components of this relation satisfies the bound-
ary conditions for vk . It is not clear, however, whether each of them satisfies the
boundary conditions separately. The author is not sure that this can be proved for a
general case, but it can be easily examined for the no-slip conditions at r � R and
z � 0, H . Since wk(r � R) � 0 the derivative ∂wk/∂z also vanishes at r � R. Since
the sum of two azimuthal components vanishes at r � R, the azimuthal component of
the first vector of the r.h.s also vanishes there, so that each component satisfies bound-
ary conditions in the radial direction. Similarly, we consider ∂(ruk)/∂r at z � 0, H
and conclude that it vanishes there because uk(r, 0) � uk(r, H ) � 0. Then also
the second azimuthal component vanishes at z � 0, H , and all the no-slip boundary
conditions for the azimuthal velocity, as well as the condition at the axis, are satisfied
by each r.h.s. vector of (3.4.4) separately. Thus, considering flows with the no-slip
cylindrical boundaries, we can decompose vk ��0 into two independent bases, so that
the whole flow will be represented as

(3.4.5)

v �
∑Mr

i�0

∑Mz

j�0
Aij (t) Uij (r, z)

+
∑k�+∞

k � −∞
k �� 0

{∑Nr

i�0

∑Nz

j�0

[
Bk

ij (t) Vij (r, z) + Ck
ij (t) Wij (r, z)

]}
exp (ikθ)

Here Uij(r, z) represent the axisymmetric part of the flow and are defined in (3.4.3).
Vij(r, z) and Wij(r, z) represent the two vectors in r.h.s. of (3.4.4) and are defined as

V ij(r, z) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ik
(

r
R

)q ∑4
m�0 σ̄imTi+m

(
r
R

)∑4
l�0 μ̄jlTj+l

(
z

Az

)
∑4

m�0 σ̄imŪi+m−1
(

r
R

)∑4
l�0 μ̄jlTj+l

(
z

Az

)
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (3.4.5)

W ij(r, z) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0(
r
R

)2 ∑4
m�0 σ imTi+m

(
r
R

)∑4
l�0 μjlUj+l−1

(
z

Az

)
− ikAz

2 r
∑4

m�0 σ imTi+m
(

r
R

)∑4
l�0

μjl

j+l Tj+l

(
z

Az

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (3.4.6)
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Here q � 0 for |k| � 1 and q � 1 for |k| > 1, Ūn(x) � (q + 1)rqTn(x) +
2nrq+1Un−1(x). Again, the zero divergence of the functions V ij(r, z)exp(ikθ) and
W ij(r, z)exp(ikθ) follow from Eqs. (3.4.2) and (A.2), and the coefficients σ̄im, μ̄jm,
cim, and μjm are defined after substitution of (3.4.5) and (3.4.6) in the boundary con-
ditions. The integer parameter q appears because of different boundary conditions
posed for |k| � 1 and |k| �� 1 at the polar axis [9, 23], which are

At r � 0: uk�0 � 0, vk�0 � 0, ∂wk�0
∂r � 0

uk�±1 �� 0, vk�±1 �� 0, wk�±1 � 0

u|k|>1 � 0, v|k|>1 � 0, w|k|>1 � 0 (3.4.7)

For the no-slip conditions at the top, bottom and sidewall of the cylinder the coeffi-
cients σim, μjm, σ̄im, μ̄jm, σ im, and μjm are defined as

σi1 � − i3 + 7i2 + 15i + 9

i3 + 6i2 + 12i + 8
, σi2 � − i2

(i + 2)2 , σi3 � i3 + 3i2 + 3i + 1

i3 + 6i2 + 12i + 8
, σi4 � 0 (3.4.8)

σ̄i1 � −4(i + 1)

2i + 3
, σ̄i2 � 2i + 1

2i + 3
, σ̄i3 � 2i + 1

4(i + 2)
, σ̄i4 � 0 (3.4.9)

σ i1 � −1, σ i2 � 0, σ i3 � 0, σ i4 � 0 (3.4.10)

μi1 � μi3 � μi1 � μi3 � 0, 4μ02 � μ02 � −8

3
, μ04 � μ04 � 4

3
; (3.4.11)

μi2 � μi2 � − i

i + 2
− (i + 1)(i + 4)2

i(i + 2)(i + 3)
, μi4 � μi4 � (i + 1)(i + 4)

i(i + 3)
, i > 0 (3.4.12)

μ̄i1 � μ̄i3 � μ̄i4 � 0, μ̄i2 � −1 (3.4.13)

This example of divergence-free basis functions built for cylindrical geometries also
shows how construction of divergence free basis satisfying all the boundary condi-
tions can be approached in other orthogonal coordinate systems. The process can be
noticeably simplified if two periodic spatial coordinates are involved in the formu-
lation of the problem. In these cases only one-dimensional basis based on the linear
superpositions will be needed. Alternatively, the divergence-free basis in cylindrical
and spherical coordinates with two periodic directions can be defined as in Messeguer
and Melibovsky [51] or Dumas and Leonard [11].

4 Inhomogeneous Boundary Conditions

If the problem has inhomogeneous boundary conditions, they can be included as
additional algebraic constraints. A better way would be a change of variables so
that all inhomogeneities are moved from the boundary conditions to the equations.
Then the boundary conditions will become homogeneous, and the corresponding
basis functions can be built as in the Sect. 3.4. We assume, of course, that all the
boundary conditions are linear. Such change of variables can use analytical, as well
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as numerically calculated functions. Several examples of that, successfully applied
to different problems, are briefly described below.

The simplest example for the change of variables is convection in a box, which
has constant temperatures at the opposite sides, while all the other boundaries are
perfectly thermally conducting or perfectly insulated. In the first case the temperature
varies linearly along these boundaries, while in the second case normal to the bound-
ary temperature derivative must vanish. These boundary conditions are satisfied by
the linear temperature profile, which corresponds to the temperature distribution in a
purely conducting case. For example, if for the dimensionless temperature θ(x, y, z),
the boundary conditions in the x-direction are θ(x � 0, y, z) � 1, θ(x � 1, y, z) � 0,
the change of variable is θ � (1 − x) + θ̃ (x, y, z). The function (1 − x) satisfies all
homogeneous and inhomogeneous boundary conditions, so that all the boundary
conditions for new unknown function θ̃ (x, y, z) are homogeneous. This change of
variables was applied in all cited works of Gelfgat that treated convection in rectan-
gular cavities starting from Gelfgat and Tanasawa [17].

The inhomogeneities can be excluded from the boundary conditions by extracting
a known analytical function from the solution only if the boundary conditions are
continuous, including continuity at the corners of the computational domain. Another
example of this is parabolic heating of a vertical cylinder that was considered in
Gelfgat et al. [25, 28]. The dimensionless temperature at the cylindrical sidewall was
prescribed as θ(r � 1, z) � f (z) � z(1 − z/A), 0 ≤ z ≤ A, and was zero at the top
and bottom, z � 0, A. Since the function f (z) vanishes at the top and the bottom, the
simplest change of variables in this case is θ � f (z) + θ̃ (r, z), which was applied in
the mentioned studies.

Clearly, when the boundary conditions are discontinuous, use of a simple analyt-
ical function for the change of variables becomes problematic. Such function can be
built, for example, as a solution of Laplace equation with the discontinuous boundary
conditions needed. The analytical solution of the latter will suffer from the Gibbs
phenomenon that may destroy the convergence of the whole process. On the other
hand, a low-order numerical solution can smooth the discontinuity up to acceptable
level, as it happens in many calculations of lid-driven cavity flow, however this will
take us too far from our Chebyshev polynomials based Galerkin approach. Thus, for
calculation of the lid-driven cavity flow in Gelfgat [35] we used analytically smoothed
boundary condition, then solved the Stokes problem with the smoothed boundary
conditions, and then used the Stokes problem solution for change of variables. The
Stokes problem was solved using the same Galerkin approach.

In the studies considering swirling flows in a cylinder with rotating lid, as well as
independently rotating top, bottom and sidewall of the cylinder [18, 19, 27, 49] we
solved the Stokes problem for the azimuthal velocity component. A similar Galerkin
method in scalar formulation was applied. The boundary conditions with disconti-
nuities in the corners were included as additional algebraic constraints by adding
collocation points along the boundaries.

A more complicated case was treated in Erenburg et al. [12]. There we consid-
ered convection in a rectangular cavity with partially heated and partially insulated
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Fig. 1 Sketch of the
temperature boundary
conditions of the problem of
Erenburg et al. [12]
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sidewall as is sketched in Fig. 1. All the boundaries are no-slip. The dimensionless
boundary conditions for the temperature are (here A � H/L, a1 � h1/L, a2 � h2/L)

θ(x; y � 0, A) � 0, (4.1)

θ(x � 0, 1; a1 ≤ y ≤ a2) � 1, (4.2)

∂θ

∂x
(x � 0, 1; y < a1 or y > a2) � 0. (4.3)

To arrive to a formulation with continuous and homogeneous boundary conditions
on all the boundaries for a single unknown function, we split the temperature into
two functions

θ(x, y, t) � �(x, y, t) + θ̃ (x, y, t) (4.4)

where θ̃ (x, y, t) is the new unknown function for which a continuous set of boundary
conditions is required, i.e.,

θ̃ (x; y � 0, A) � 0,
∂θ̃

∂x
(x � 0, 1; y) � 0 (4.5)
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The function �(x, y, t) is used to adjust the boundary conditions for θ(x, y, t) to
(4.1)–(4.3). Therefore, the boundary conditions for �(x, y, t) are

�(x; y � 0, A) � 0, (4.6)

�(x � 0, 1; a1 ≤ y ≤ a2) � 1 − θ̃ , (4.7)

∂�

∂x
(x � 0, 1; y < a1 or y > a2) � 0 (4.8)

To avoid the appearance of an additional source term in the energy equation we also
require that �(x, y, t) be a solution of the Laplace equation,

�� � 0. (4.9)

The solution of problem (4.6)–(4.9) can be represented as

�(x, y, t) � �0(x, y, t) + �1(x, y, t) (4.10)

where �0(x, y, t) is the part of the solution of (4.6)–(4.9) corresponding to θ̃ � 0
and �1(x, y, t) is the part dependent on θ̃ . Both functions �0 and �1 are calculated
numerically by the Galerkin method inside the cavity and collocation points at the
sidewalls. Obviously, the part �0(x, y, t) is defined by the geometry of the problem
only, and is time-independent, so that it must be calculated only once. The problem
formulation for �1(x, y, t) is straight-forward, and its solution can be presented as
�1 � L−1θ̃ , where L is the operator defining the problem, and approximated by
its Galerkin/collocation projection. The representation of the temperature (4.4) now
becomes

θ(x, y, t) � �(x, y, t) + θ̃ (x, y, t) � �0 +
(
L−1 + I

)
θ̃ , (4.11)

where I is the identity operator. The energy equation becomes

(
L−1 + I

)∂θ̃

∂t
+ (v · ∇)

(
L−1 + I

)
θ̃ � 1

Pr
�
(
L−1 + I

)
θ̃ − (v · ∇)�0. (4.12)

Thus, after the function �0 and the operator
(
L−1 + I

)
are calculated, the remaining

problem for θ̃ is defined with the homogeneous boundary conditions (4.5) only. Other
details can be found in Erenburg et al. [12].
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Fig. 2 Sketch of the
two-fluid Dean flow problem

5 Basis Functions for Two-Fluid Flow and Boundary
Conditions at Liquid-Liquid Interface

Here we give an example of basis functions that were used to calculate a two-phase
flow with a capillary interface separating two liquids. A two-fluid Dean flow sketched
in Fig. 2 was considered in Gelfgat et al. [30]. The two fluids occupy adjacent thin
cylindrical layers, a ≤ r ≤ a + b and a + b ≤ r ≤ a + d , respectively, with the
assumption ā � a/d � 1. The two fluids are separated by the border r � a + b. The
base flow in both fluids is driven by an azimuthal pressure gradient. This formulation
is an extension of the classical Dean [10] problem to two-fluid system and is a
simplified model of flow in a curved channel. Here we leave all the details on the
evaluation of base flow and formulation of the stability problem to Gelfgat et al. [30],
and focus only on the boundary conditions and incorporation of them into the basis
functions. The three-dimensional velocity perturbation in the cylindrical coordinates
is defined as v � (u(x), v(x), w(x))exp(λt + inθ + ikz). For convenience, we define
a new dimensionless coordinate x � (r − a)/d , and define b̄ � (b − a)/d . The
dimensionless amplitude of the interface perturbation is δ̄. Indices 1 and 2 denote
the variables in each sublayer, ρ12 � ρ1/ρ2 and μ12 � μ1/μ2 are the ratio of
densities and viscosities, respectively. After the axial velocity w and the pressure p
are excluded from the equations system, the boundary conditions for the radial and
azimuthal components at the borders and the interface read

x � 0 : u1 � v1 � du1

dx
� 0 (5.1)

x � 1 : u2 � v2 � du2

dx
� 0 (5.2)
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x � b̄ : u1 � u2, v1 � v2 (5.3)

du1

dx
� du2

dx
(5.4)

dv1

dx
� μ12

dv2

dx
(5.5)

d2u1

dx2
+ k2u1 � μ12

[
d2u2

dx2
+ k2u2

]
(5.6)

λδ̄ � u1 − in

b̄
V δ̄ (5.7)

λ

[
ρ12

du2

dx
− du1

dx

]
� δ̄

ā
k2(ρ12 − 1)V 2 +

1

Re

[
d2

dx2
− 2

d

dx
− k2

]
(μ12u2 − u1)

− ρ12
in

ā
V

d

dx
(ρ12u2 − u1) − k2

W e

[
1 − n2

b̄2
− k2

]
δ̄ (5.8)

To build basis functions, we start from a particular case of non-deformable interface.
In this case we add u1 � u2 � 0 to the boundary condition (5.3) and omit (5.7) and
(5.8). Then the unknowns u(x) and v(x) are approximated by truncated series

u(x) �
∑N

m�1
cm(t)ψm(x), v(x) �

∑N

l�1
dm(t)ϕm(x), (5.9)

where

ϕm(x) �
⎧⎨
⎩
∑2

l�0 α
(1)

ml Tm+l, 0 ≤ x ≤ b̄∑2
l�0 α

(2)

ml Tm+l, b̄ ≤ x ≤ 1
, (5.10)

ψm(x) �

⎧⎪⎪⎨
⎪⎪⎩
∑4

l�0 β
(1)

ml Tm+l

(
x
b̄

)
, 0 ≤ x ≤ b̄

∑4
l�0 β

(2)

ml Tm+l

(
x−b̄
1−b̄

)
, b̄ ≤ x ≤ 1

. (5.11)

Here the superscripts (1) and (2) denote the sublayers. The coefficients
α

(1)

ml , α
(2)

ml , β
(1)

ml , and β
(2)

ml are obtained after substitution of the basis functions (5.11)
in the boundary conditions (5.1)–(5.6). The inner product is defined as

〈f , g〉 �
∫ 1

0
f (x)g(x)dx �

∫ b̄

0
f (x)g(x)dx +

∫ 1

b̄
f (x)g(x)dx. (5.12)

and after application of the Galerkin method, the time-dependent coefficients cm(t)
and dm(t) are the same for the whole domain.

For the linear stability problem with deformable interface the solution is repre-
sented as
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u(x) � c0(t)φ(x) +
N∑

m�1

cm(t)ψm(x), v(x) �
N∑

l�1

dm(t)ϕm(x). (5.13)

The bases ϕm(x) and ψm(x) remain unchanged. An additional function φ(x) is intro-
duced to satisfy the boundary conditions for deformable interface (5.7) and (5.8). It
is defined as

φ(x) �

⎧⎪⎪⎨
⎪⎪⎩
∑4

l�0 γ
(1)

ql Tq+l

(
x
b̄

)
, 0 ≤ x ≤ b̄

∑4
l�0 γ

(2)

ql Tq+l

(
x−b̄
1−b̄

)
, b̄ ≤ x ≤ 1

. (5.14)

The coefficients γ
(1)

ql and γ
(2)

ql are defined to satisfy the boundary conditions (5.1),

(5.2), (5.4) and (5.6) subject to the normalization condition φ
(
b̄
) � 1. Choice of the

index q is arbitrary, e.g., q � 0.
With the normalization condition φ

(
b̄
) � 1 applied, the coefficient c0 can be

interpreted as the amplitude of the radial velocity at the deformed interface. This
coefficient, and the interface amplitude δ̄, are defined by the two remaining boundary
conditions (5.7) and (5.8). Thus, the Galerkin projections of the governing equations
together with the boundary conditions (5.7) and (5.8) form a closed algebraic system
for calculation of the coefficients cm and dm together with two additional unknown
scalars dm and δ̄. The stability problem reduces to a generalized eigenvalue problem.
In Gelfgat et al. [30] coefficients of the basis functions α

(1)

ml , α
(2)

ml , β
(1)

ml , β(2)

ml , γ (1)

ql , and

γ
(2)

ql were obtained by means of computer algebra.

6 The Dynamic ODEs System for Time-Dependent
Coefficients

6.1 General Expressions to Be Used Coding the Calculations

In the following we assume that all the inner products are defined with the unity
weight. We also assume that all the necessary changes of variables are made, so
that the boundary conditions of all the unknown vector and scalar fields are linear
and homogeneous. Then, after the basis functions are constructed, and the Galerkin
projections are made, and the pressure is excluded by Eq. (2.20), we arrive to an
ODEs system (2.21) for calculation of the time-dependent coefficients. We store
all the unknown time-dependent coefficients of the problem in the vector X(t) �
{XI (t)}N

I�1, where N is the total number of scalar unknowns (degrees of freedom),
the time-dependent coefficients are renumbered as in (3.2). Note that the vector
X(t) contains coefficients of velocity series, as well as coefficients of all the other
possible unknowns, e.g., temperature and/or concentration, excluding pressure. Then
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the resulting dynamic ODEs system has the following form (the Einstein summation
rule is assumed)

GIJ ẊJ � LIJ XJ + NIJK XJ XK + FI . (6.1.1)

Here GIJ is the Gram matrix, LIJ , NIJK , and FI are projections of the linear, nonlinear
and free terms of the momentum Eq. (2.7), respectively. This dynamic systems has
several nice properties that follow from the fact that the basis functions satisfy all
boundary conditions, and are divergence-free. We can easily see that from the Green
theorems for a scalar function and for a divergence-free velocity

〈�θ, θ〉 � −〈∇θ,∇θ〉, 〈�v, v〉 � −〈∇ × v,∇ × v〉 (6.1.2)

follows that the matrices LIJ corresponding to the dissipative terms are symmetric
and negative defined independently on the truncation number. Furthermore, from the
conservative properties

〈(v · ∇)v, v〉 � 0, 〈(v · ∇)θ, θ〉 � 0 (6.1.3)

It follows that

NIJK XI XJ XK � 0 (6.1.4)

for any truncation number. This means that for any truncations number the non-linear
term preserves conservation of momentum. Additionally, these properties yield a very
convenient tool for the code debugging.

Computation of steady state flows reduces to an algebraic system of quadratic
equations

LIJ XJ + NIJK XJ XK + FI � 0, (6.1.5)

for which we do not need to consider the Gram matrix. The application of Newton
iteration is straight-forward and requires computation and inverse of the Jacobian
matrix

�IJ � LIJ + (NIJK + NIKJ )XK . (6.1.6)

Analysis of linear stability of the calculated steady states reduces to computation
of the eigenvalues of another Jacobian matrix, which includes the inversed Gram
matrix

�̂Y � λY, �̂IJ � G−1
IM [LMJ + (NMJK + NMKJ )XK ] � N̂IJ +

(
N̂IJK + N̂IKJ

)
XK . (6.1.7)

The inverse of Gram matrix is also needed for the straight forward time integration,
for which the dynamic system (6.1.1) has the form
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ẊI � G−1
IM [LMJ XJ + NMJK XJ XK + FM ] � L̂IJ XJ + N̂IJK XJ XK + F̂I , (6.1.8)

where matrices multiplied by G−1 are denoted by ∧.
Explicit representation of the dynamic system (6.1.8) allows one to perform addi-

tional analytical evaluations to enable weakly non-linear analysis of bifurcations.
The latter was implemented for the Hopf bifurcation in Gelfgat et al. [18] and Gelf-
gat [32]. Assume that with the increase of the Reynolds number, at Re � Recr , a
complex conjugated pair � � ±iω0 of leading eigenvalues of the problem (6.1.7)
crosses the imaginary axis. Then the instability sets in as the Hopf bifurcation if all
the conditions of the Hopf theorem hold, which is the most common case. We are
interested in an asymptotic approximation of the oscillations period and amplitude
at small super-criticalities. Assume that X0 is the steady state at the critical point,
and U and V are the left and right eigenvectors corresponding to the eigenvalue
� � iω0. We also denote the r.h.s. of the dynamic system (6.1.8) as F(X; Re) � Ẋ.
Then, according to Hassard et al. [43], the oscillating state, i.e., the limit cycle, is
approximated as

Re � Recr + μ1ε
2 + O

(
ε4
)

(6.1.9)

τ(Re) � 2π

ω0

[
1 + τ1ε

2 + O
(
ε4
)]

(6.1.10)

X(t, Re) � X 0(Recr) + εReal

[
Vexp

(
2π i

τ

)]
+ O

(
ε2
)

(6.1.11)

Here ε is a formal positive parameter, Re − Recr is the super-criticality, τ is the
period of oscillations, and X(t, Re) is the asymptotic oscillatory solution of the ODE
system (6.1.8) for the Reynolds number defined in (6.1.9). This asymptotic expansion
is defined by two parameters μ1 and τ1, which are calculated using the following
process [43]

μ1 � −Real(σ )

αr
, τ1 � − 1

ω0
[Im(σ ) + μ1αi], α � αr + iαi �

(
d�

dRe

)
Re�Recr

(6.1.12)

The parameter σ is obtained as

σ � 1

2
H21 +

1

2ω0

[
g11 − 2|g11|2 − 1

3
|g02|2

]
(6.1.13)

g20 � 2UT f 20, g02 � 2UT f̄ 20, g11 � 2UT f 11. (6.1.14)

The vectors f 11 and f 20 are the second derivatives of the r.h.s., and H21 is the third
derivative in the complex plane C, ξ ∈ C:

f 20 �
{

∂2

∂ξ2 F
[
X 0 + Real(Vξ); Recr

]}
ξ�0

, f 11 �
{

∂2

∂ξ∂ξ̄
F
[
X 0 + Real(Vξ); Recr

]}
ξ�0

(6.1.15)
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H21 �
{

∂3

∂ξ2∂ξ̄

(
2UT F

[
X 0 + Real

(
Vξ + �20ξ

2 + �11ξ ξ̄
)

; Recr

])}
ξ�0

, (6.1.16)

and the vectors �20 and �11 are solutions of the following systems of linear algebraic
equations (I is the identity matrix and ⊗ denotes the Kronecker product)

�̂�11 � −h11,
[
�̂ − 2iω0I

]
�11 � −h20, hij � [

I − Real
(
V ⊗ U T

)]
f ij

(6.1.17)

The eigenvalue derivative (6.1.12) can be easily evaluated numerically. However,
the most difficult part of this calculation is evaluation of the second and the third
derivatives of the right hand side of the ODE system (6.1.15) and (6.1.16). These
derivatives must be evaluated in the complex plane. The number of degrees of freedom
is large, so that differentiation by finite differences and consequent summation can
lead to unacceptably large errors. However, the explicit form of (6.1.8) allows for
analytical calculation of the derivatives. The result is

f20,k � 1

2

[
NKIJ

(
V (r)

I V (r)
J − V (i)V (i)

J

)
+ iNKIJ

(
V (r)

I V (i)
J − V (i)

I V (r)
J

)]
, (6.1.18)

f11,k � 1

2
Nkij

(
V (r)

I V (r)
J + V (i)V (i)

J

)
, (6.1.19)

G21 � 1

2
Ui
(
Nijm + Nimj

)(
2�11,jVm + 2�20,j V̄m

)
, (6.1.20)

where superscripts (r) and (i) denote real and imaginary parts, respectively.
These analytical expressions allow one to compute the asymptotic expansions
(6.1.9)–(6.1.11) without significant loss of accuracy. The CPU-time requirements
for such calculations are comparable with the calculation of two steady state solu-
tions and their spectra. Note, that the sign of μ1 defines whether the bifurcation is
sub- or super-critical.

6.2 Main Computational Difficulties

All the possible computations, described in the previous section, are restricted by
two main difficulties. To describe the difficulties, we note that in all the studies where
this method was successfully applied, the number of basis functions in one direction
was not less than 20 and was not larger than 70. Therefore, to make some estimates,
we’ll address three types of truncation in one direction with 30, 60 and 100 basis
functions for both two- and three-dimensional problems.

The first difficulty is connected with the Gram matrix G. In two-dimensional and
quasi two-dimensional cases, e.g., 3D instability of an axisymmetric base flow, there
is no specific problems neither in the storing of the Gram matrix in memory, nor
in the computation of its inverse. Really, even with the truncation number 100, the
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Gram matrix consists of blocks of the order 1002 = 104, which leads to an order of
108 non-zero entries, which fits in several Gb memory. The inverse of this matrix that
is symmetric and positive defined, can be done by Choleski decomposition, which
is much faster than the Gauss elimination. Since this inverse must be done only once
for each specific problem, and can be stored on a disk, it does not cause too difficult
problems. However, for all the calculations, except the Newton iterations, the r.h.s.
of dynamic system must be multiplied by G−1. If the truncation number is relatively
small, the matrices L̂ � G−1L and N̂ � G−1N in the dynamical system (6.1.7) can
be computed and stored before other heavy computations begin. At larger truncation
number the storage of matrix N̂ becomes impossible (see below), which makes the
time-dependent calculations too slow. At the same time, the stability analysis, as well
as the weakly non-linear analysis, require only few, usually less than 10, evaluations
of the Jacobian matrix �̂, thus making all the computational process affordable.

Treatment of the Gram matrix in a three-dimensional formulation is much more
difficult. Here the largest block to be inversed has the order of

(
(2M )3

)2
elements,

where M is the truncation number. Storage of so large matrices becomes problematic
already at relatively small truncation numbers M ≥ 30, and is unaffordable at M �
100. Thus, among all the described possibilities, one can make only steady state
calculations. A solution for that can be orthonormalization of the whole set of the
basis functions, which is discussed below.

The second difficulty is the numerical evaluation of non-linear term in (6.1.5) and
(6.1.7), which requires the order of (number of degrees of freedom)3 multiplications,
assuming that the matrix N̂ is stored and evaluations of its terms does not require
additions operations. Again, it can be affordable for the steady state, stability, and
weakly non-linear calculations when 2D and quasi-2D problems are solved, because
all these require very few evaluations of the r.h.s. In the fully 3D cases it seems
to be not feasible, unless some additional evaluations of the non-linear terms are
performed.

6.3 Treatment of Non-linear Terms

As a simplest example of handling the non-linear terms and avoiding the N 3 multi-
plications, we consider the Burgers equation in the interval 0 ≤ x ≤ 1

∂u

∂t
+ u

∂u

∂x
� ν

∂2u

∂x2
, u(0, t) � u(1, t) � 0. (6.3.1)

The initial condition used in Gelfgat [36] was u(x, 0) � sin(2πx) + sin(πx)/2, but
this is not relevant to the purpose of this section. We look for the solution as a
truncated series

u(x, t) �
∑M −1

i�0
ci(t)ϕi(x), ϕi(x) � Ti(x) − Ti+2(x), (6.3.2)
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where the basis functions ϕi(x) are built as linear superpositions of the Chebyshev
polynomials to satisfy the boundary conditions (see Eq. (A.3)). After the Galerkin
projections are applied we arrive to the ODEs system (6.1.1), where coefficients ci(t)
are stored in the vector X. For this problem the matrices in (6.1.1) are defined as

Gij � 〈
ϕj, ϕi

〉
, Lij �

〈
ϕ′′

j , ϕi

〉
, Fi � 0, Nijk � 〈

ϕjϕ
′
k , ϕi

〉
, (6.3.3)

and evaluation of the non-linear term requires M 3 operations.
To reduce the number of multiplications, we notice that ϕjϕ

′
k is a polynomial of

the order j + k + 1 that satisfies the boundary conditions of the problem, so that we
can express it as a series of ϕi(x):

ϕj(x)ϕ
′
k(x) �

∑j+k−1

l�0
blϕl(x) (6.3.4)

The coefficients bljk can be evaluated analytically using Eqs. (A.7) and (A.12) in the
following way

ϕj(x)ϕ
′
k (x) � [

Tj(x) − Tj+2(x)
][

T ′
k (x) − T ′

k+2(x)
]

� [
Tj(x) − Tj+2(x)

]⎡⎣4k
[(k−1)/2]∑

p�0

ak−1−2pTk−1−2p(x) − 4(k + 2)

[(k+1)/2]∑
p�0

ak−1−2pTk−1−2p(x)

⎤
⎦

� 2k
[(k−1)/2]∑

p�0

ak−1−2p

{[
Tk−1−2p−j(x) + Tk−1−2p+j(x)

]
−
[
Tk−1−2p−j−2(x) + Tk−1−2p+j+2(x)

]}

(6.3.5)

− 2(k + 2)

[(k+1)/2]∑
p�0

ak−1−2p

{[
Tk−1−2p−j(x) + Tk−1−2p+j(x)

]
−
[
Tk−1−2p−j−2(x) + Tk−1−2p+j+2(x)

]}

� 2k
[(k−1)/2]∑

p�0

ak−1−2p

{
Tk−1−2p−j(x) − Tk−1−2p−j−2(x) + Tk−1−2p+j(x) − Tk−1−2p+j+2(x)

}
.

− 2(k + 2)

[(k+1)/2]∑
p�0

ak−1−2p

{
Tk−1−2p−j(x) − Tk−1−2p−j−2(x) + Tk−1−2p+j(x) − Tk−1−2p+j+2(x)

}

� 2k
[(k−1)/2]∑

p�0

ak−1−2p

{
−ϕk−1−2p−j−2(x) + ϕk−1−2p+j(x)

}

− 2(k + 2)

[(k+1)/2]∑
p�0

ak−1−2p

{
−ϕk−1−2p−j−2(x) + ϕk−1−2p+j(x)

}

� −4
[(k−1)/2]∑

p�0

ak−1−2p

{
−ϕk−1−2p−j−2(x) + ϕk−1−2p+j(x)

}

− 2(k + 2)

[(k+1)/2]∑
p�[(k−1)/2]+1

ak−1−2p

{
−ϕk−1−2p−j−2(x) + ϕk−1−2p+j(x)

}

gelfgat@tau.ac.il



380 A. Gelfgat

Defining additionally ϕk<0 � 0, noticing that [(k − 1)/2] + 1 � [(k + 1)/2], and
comparing the above result with (6.3.4) we observe that the coefficients bljk can be
assembled by the following procedure. Starting from b0 � 0,

bk−1−2[(k+1)/2]−j−2 � bk−1−2[(k+1)/2]−j−2 + 2(k + 2)ak−1−2[(k+1)/2],

if k − 1 − 2[(k + 1)/2] − j − 2 ≥ 0

bk−1−2[(k+1)/2]+j � bk−1−2[(k+1)/2]+j − 2(k + 2)ak−1−2[(k+1)/2],

if k − 1 − 2[(k + 1)/2] + j ≥ 0

(6.3.6)

For p � 0 to p � [(k − 1)/2] :

bk−1−2p−j−2 � bk−1−2p−j−2 + 4ak−1−2p, if k − 1 − 2p − j − 2 ≥ 0

bk−1−2p+j � bk−1−2p+j − 4ak−1−2p, if k − 1 − 2p + j ≥ 0

Now, using (6.3.4), we form a new set of time-dependent coefficients:

∑M −1

j,k�0
cj(t)ck(t)ϕj(x)ϕ

′
k(x) �

∑2(M −1)

m�0
Cm(t)ϕm(x), (6.3.7)

Cm(t) � cj(t)ck(t)
∑j+k−1

l�0

(
bljk + blkj

)
, m � j + k (6.3.8)

And finally,

∑M −1

j,k�0
Nijkcj(t)ck(t) �

∑M −1

j,k�0
ϕjϕ

′
k , ϕicj(t)ck(t) �

∑2(M −1)

m�0
Cm(t)ϕm, ϕi

(6.3.9)

Now, we can make an estimate of the number of multiplications required. The coef-
ficients bl , and the sums in (6.3.8) depend only on the basis functions and, therefore,
can be computed only once in the beginning of the whole computational process.
Computation of the coefficients Cm(t) requires 2M 2 multiplications and is the most
CPU-time consuming part. Then, evaluation of (6.3.9) needs 2(M − 1) multiplica-
tions providing that all the inner products are pre-computed. Since the operations in
(6.3.8) and (6.3.9) are easily scalable, a vectorization and/or parallel computing can
speed up the calculations additionally.

Returning to the non-linear terms of momentum equation, we observe that in
the case of no-slip conditions the non-linear terms u∂u/∂x, v∂u/∂y, w∂u/∂z, etc.,
satisfy the no-slip boundary conditions for u, v, and w, respectively. Thus, these
terms also can be decomposed into series of appropriate basis functions, which will
lead to similar decrease in the number of needed multiplications. In the cases when
boundary conditions are more complicated, e.g., a stress-free boundary, one can
add additional functions in which only boundary conditions satisfied by the non-
linear terms are implemented. Alternatively, regardless any boundary conditions, the
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non-linear terms can be presented as Chebyshev polynomial series, which will also
decrease the number of multiplications.

6.4 Orthogonalization and Other Polynomial Bases

In this section we address two questions: do (i) orthogonalization of the basis or (ii)
another polynomials-based basis change the final result? The answer is “no”, but it
requires some additional explanations.

After choosing the truncation number we are looking for the solution in the form

of (3.3.8). The solution belongs to the linear space L � span
{
ϕ

(x,y)
ijk ,ϕ

(x,z)
ijk ,ϕ

(y,z)
ijk

}
.

The indices i, j, k in each set of functions vary as in (3.3.8). This space consists of
divergence-free vectors that satisfy all the LHBC of the problem, and their com-
ponents are polynomials of the order not larger than max

[
L(x,y), L(x,y), L(y,z)

]
+ 4 in

the x-direction, with the similar expressions in two other directions. We denote the
order of space L as NL and store all the basis functions of (3.3.8) in a set of vectors
Q � {

qi

}NL
i�1. Clearly, this set forms a basis in L, L � span(Q). Assume now another

basis in L, denoted as Q̂ � {
q̂i

}NL
i�1. The connection between the two bases is given

by a matrix B. the order NL as

Q̂ � BQ, Q � B−1Q̂ (6.4.1)

Elements of the matrix B are solution of the following system of linear algebraic
equations (summation over repeating indices is assumed)

〈
q̂i, q̂j

〉 � Bik
〈
qk , q̂j

〉
(6.4.2)

The transformation (6.4.1) can be interpreted as transformation to another polyno-
mial basis, a particular case of which is an orthonormal polynomial basis. In the
latter case the matrix B is then the operator of the Gram-Schmidt or Householder
orthogonalization procedure. Assume now that projection of the solution v on each
of the bases is described by coefficients Xi and X̂i. Clearly, the same inner product
is applied in both cases. Since these coefficients describe the orthogonal projection
of the vector v on the same space, the result of projection on either basis must be
identical, i.e.,

v ≈ Xiqi � X̂iq̂i � X̂iBikqk , (6.4.3)

from which it follows that

Xi � X̂iBik , X � BT X̂, X̂ � (BT
)−1

X � (B−1
)T

X (6.4.4)
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The Galerkin procedure applied with either of the two bases, will result in two
different ODEs systems similar to (6.1.1):

GijẊj � LijXj + NijkXjXk + Fi , Ĝij
˙̂Xj � L̂ijX̂j + N̂ijk X̂jX̂k + F̂i, (6.4.5)

where

Gij � 〈
qj, qi

〉
, Lij � 1

Re

〈
�qj, qi

〉
, Nijk � 〈(

qj · ∇)
qk , qi

〉
, Fi � 〈

f , qi

〉
(6.4.6)

Ĝij � 〈
q̂j, q̂i

〉
, L̂ij � 1

Re

〈
�q̂j, q̂i

〉
, N̂ijk � 〈(

q̂j · ∇)
q̂k , q̂i

〉
, F̂i � 〈

f , q̂i

〉
(6.4.7)

Note that the two ODEs systems in (6.4.5), (6.4.6) describe the orthogonal pro-
jection of the residual on the same linear space L, so that the result again must be
identical. However, it is not clear yet whether the coefficients Xi and X̂i yielded by
solution of the two systems will be connected via Eq. (6.4.4). Let us evaluate how
the matrices in (6.4.6) and (6.4.7) are connected.

F̂i � 〈
f , q̂i

〉 � 〈
f ,Bipqp

〉 � BipFp, (6.4.8)

Ĝij � 〈
q̂j, q̂i

〉 � 〈Bjkqk ,Bipqp

〉 � BjkBipGkp, (6.4.9)

L̂ij � 1

Re

〈
�q̂j, q̂i

〉 � 1

Re

〈Bjk�qk ,Bipqp

〉 � BjkBipLkp, (6.4.10)

N̂ijk � 〈(
q̂j · ∇)

q̂k , q̂i

〉 � 〈(Bjmqm · ∇)Bklql,Bipqp

〉 � BjmBklBipNpml . (6.4.11)

Consider now how all the terms of the second system of (6.4.5) are expressed via
matrices and unknowns of the first system

Ĝij
˙̂Xj � BjkBipGkpB−1

jq Ẋq � BipGkpẊk , (6.4.12)

L̂ijX̂j � BjkBipLkpB−1
jq Xq � BipLkpXk , (6.4.13)

N̂ijk X̂jX̂k � BjmBklBipNpmlB−1
jq XqB−1

kr Xr � BipNpjkXjXk . (6.4.14)

Substituting (6.4.8), (6.4.12)–(6.4.14) into the second system of (6.4.5) we obtain

BipGkpẊk � BipLkpXk + BipNpjkXjXk + BipFp, (6.4.15)

And multiplying (6.4.15) by B−1 we return to the first system of (6.4.5). This
proves that both systems of (6.4.5) yield identical solutions if their initial conditions
are connected via eq. (6.4.4).

To conclude, we notice that looking for another polynomials-based basis functions
is meaningless, since we’ll arrive to exactly the same approximate solution. On the
other hand, the orthonormalization procedure can be meaningful, since it does not
change the solution, but allows one to avoid inverse of the Gram matrix.
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7 Inner Products with Arbitrary Weight

If a scalar problem is being solved, e.g. Orr-Sommerfeld or Burgers equations, the
choice of the weight function in the inner product (2.18) is arbitrary. In the case of
unity or Chebyshev weight, the inner products can be evaluated analytically using
properties of the Chebyshev polynomials listed in Appendix A. In other cases the
Gauss quadrature formulae can be efficiently applied. An appropriate choice of the
weight function can drastically improve the convergence, as it was demonstrated in
Gelfgat [36] for the Burgers equation.

As explained, in the case of incompressible Navier–Stokes equation, use of the
unity weight function allows one to exclude the pressure by the Galerkin projection.
The unity weight also yields important conservative properties of the resulting ODEs
system (6.1.3) and (6.1.4). At the same time, if the weight function can be optimized
such that the convergence is noticeably improved, then the total number of degrees of
freedom in the resulting dynamic system can be noticeably decreased. In such a case
it can be reasonable to give up on the nice properties of the unity weight and proceed
with the optimized one. Then it will be necessary to solve the pressure Eq. (2.11), so
that the ODEs system with the algebraic constraints (2.16), (2.17) will be considered.
In the following we follow Gelfgat [36] to show how the algebraic constraints can
be removed in the framework of the discussed Galerkin approach.

First of all, the pressure Eq. (2.11) needs boundary conditions. It was shown in
Gelfgat [36] that the boundary conditions proposed by Gresho and Sani [42], which
are limits of the momentum equation at the boundaries, yield a correct pressure field.
The boundary conditions on the boundary Γ are[

∂p

∂n

]
Γ

� n ·
[

1

Re
�v − (v · ∇)v + f

]
Γ

, (7.1)

where n is the normal to Γ , and the boundary conditions for velocity are assumed to
be steady. Note that Rempfer [59] argued that the numerical solution of the pressure
problem (2.11), (7.1), together with the momentum Eq. (2.7), do not yield a diver-
gence free solution for velocity. The global Galerkin method with divergence-free
velocity basis functions described here does not have this problem, because the con-
tinuity equation is satisfied analytically by the basis functions, before the numerical
process starts. Thus, any approximation of a solution is analytically divergence free.

For the following we represent the pressure as a truncated Chebyshev series

p(x, y, z, t) �
∑

i,j,k
ϑijk(t)Ti(x)Tj(y)Tk(z). (7.2)

Here we cannot introduce any boundary conditions into the basis functions,
because we cannot propose any general enough change of variables that will replace
the non-homogeneity of the boundary conditions (7.1) into the pressure Eq. (2.11).
To obtain a problem for the unknown coefficients ϑijk(t) we perform Galerkin pro-
jections of the residuals of (2.11) and (7.1) on the Chebyshev basis (7.2), and require
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that the projections vanish. In other words, we apply the Galerkin method separately
in the flow region and on the boundaries. Clearly the total number of unknown ϑijk(t)
must be equal to the total number of equations used. Recalling that the velocity coeffi-
cients are stored in the vector X, we store additional coefficients of pressure ϑijk(t) in
the vector Y . After the Galerkin process is completed, the system of linear algebraic
equation for Y has the following form

Q(p)

IJ YJ � B(p)

IJ ẊJ + L(p)

IJ XJ + N (p)

IJK XJ XK + F (p)

I (7.3)

As mentioned, these equations are formed from the projections of Eqs. (2.11)
and (7.1). The superscript (p) is used to underline that all the matrices belong to the
pressure problem. The matrix Q(p)

ij is singular, because the Neumann problem for
the pressure has to be solved, so that the pressure is defined to within an additive
constant. This singularity can be easily removed by, e.g., an additional requirement
ϑ000 � 0, after which the matrix Q(p) is regular and its inverse is denoted as Q−1.
The Galerkin coefficients of velocity must be calculated using the Eq. (2.16), which
attains the following form

GIJ ẊJ � PIJ YJ + LIJ XJ + NIJK XJ XK + FI . (7.4)

Here the first term of r.h.s. is the projection of the pressure gradient on the velocity
basis. Substituting Yj from Eq. (7.3) into Eq. (7.4) we obtain

G̃IJ ẊJ � L̃IJ XJ + ÑIJK XJ XK + F̃I (7.5)

where

G̃ � G − PQ−1B(p), L̃ � L + PQ−1L(p), Ñ � N + PQ−1N (p), F̃ � F + PQ−1F (p)

(7.6)

Thus, after some analytical and numerical evaluations we arrive to the ODE system
(7.5), whose structure is equivalent to that of (6.1.1). Generally, matrices of (7.5)
do not obey the properties (6.1.3) and (6.1.4), however all the rest written about the
system (6.1.1) is applicable also to (7.5).

Some numerical experiments comparing convergence of the Galerkin method
with Chebyshev and unity weights are reported in Gelfgat [36]. There the lid-driven
cavity flow and convection in a laterally cavity were taken as test problems. It was
found that the Chebyshev weight allows for a better resolution of boundary lay-
ers in the convection flow, however slows down the convergence in the case of lid
driven flow. The latter was attributed to the problems of approximation of the corner
discontinuities.

The problem of optimization of the weight function was never considered for a
realistic fluid dynamics problem. The only optimization example is given in Gelf-
gat [36] for the Burgers equation. Considering the weight functions in the form of(
x − x2

)−α
, α ≥ 0, it was found that the convergence is fastest at α � 1.3.
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8 Solved Problems and Other Applications of the Method

The effectivity of the described Galerkin approach follows from a possibility to
decrease number of degrees of freedom of a numerical model. The decrease is usu-
ally of an order of magnitude or larger. One of the earliest examples of that is shown
in Fig. 3. There we consider flow in a cylinder with rotating lid. Steady states of this
flow exhibit the vortex breakdown phenomenon, which was experimentally studied
by Escudier [13]. At certain Reynolds number a weak reverse circulation attached to
the cylinder axis appears. In tall cylinders up to three distinct recirculation zones were
observed. The intensity of the reverse vortices is 3–5 orders of magnitude lesser that
that of the main meridional circulation, which makes its numerical modeling quite
challenging. As is seen from the figure, the experimental result, i.e., the reverse circu-
lations size and position, is well reproduced with 34×34 basis functions (Fig. 3a), as
well as with 200×200 finite volume grid (Fig. 3c). At the same time the upper recir-
culation zone is resolved inaccurately with the 100×100 grid (for a more detailed
comparison see Gelfgat et al. [18]). The total number of degrees of freedom of the
Galerkin method is defined by total amount of unknown Galerkin coefficients of the
meridional velocity vector and rotating velocity component, which separates as a
scalar in the axisymmetric formulation. In the finite volume approach it is the num-
ber of unknown functions multiplied by the number of grid nodes. Clearly the total
number of degrees of freedom consumed by the Galerkin method, 2 · 342 � 2312,
is smaller than that of the finite volume method, 3 · 2002 � 120, 000, in about 1.5
orders of magnitude.

The next example presented in Fig. 4 is a thermocapillary convective flow in a
laterally heated cavity with the aspect ratio length/height = 4. The velocity boundary
condition at the upper surface is

v � 0,
∂u

∂y
� −Mn

∂θ

∂x
, (8.1)

where θ is the dimensionless temperature, Mn � Ma/Pr, and Ma and Pr are the
Marangoni and Prandtl numbers, respectively (other details are in [37]. The problem
was treated with the truncation of 50×20 basis functions with 100 collocation points
at the upper surface to satisfy the boundary condition (8.1). A calculation of criti-
cal Marangoni number, corresponding to transition from steady to oscillatory flow
regime, resulted in Mncr � 4781 and the dimensionless critical frequency (imaginary
part of the leading eigenvalue) ωcr � 6674. This result was never published because
the value of ωcr seemed to be too large compared with the values already known for
the buoyancy convection [21]. Owing to the computer restrictions of that time, the
convergence could not be rigorously checked. Later, the same problem was solved
using the 800×200 stretched finite volume grid [37] and the result was Mncr � 4779
with the same value of the critical frequency. The convergence of the critical values
obtained by the finite volume method was found to be very slow. The reason for
that is seen in Fig. 4. The flow streamlines and the isotherms are smooth, so that the
velocity and temperature fields can be calculated relatively easy. At the same time,
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Fig. 3 Comparison of numerical results with the experimental phograph of Escudier [13]. From
Gelfgat et al. [18]. The flow at H/R = 3.25, Re = 2752. a Calculation with the Galerkin method
using 34×34 basis functions. b, c Calculation with the finite volume method using 100×100 and
200×200 grids, respectively

Fig. 4 Patterns of flow and amplitude of the most unstable perturbation at the critical Marangoni
number for thermocapillary convection of low-Prandtl-number fluid (Pr = 0.015) in a cavity of
aspect ratio length/height = 4. From Gelfgat [37]
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Fig. 5 Bifurcation diagram for convection in a vertical cavity with partially heated sidewall. Red
lines correspond to stable steady states, blue lines to unstable ones. Pr = 10. From Erenburg et al.
[12]

the perturbation patterns exhibit very steep maxima, which must be numerically
resolved to arrive to correct critical values. We observe here again that the Galerkin
method yielded the correct result with much smaller number of degrees of freedom.

As mentioned, the smaller amount of degrees of freedom, as well as analytical
representation of the Jacobian matrix (6.1.6), allows one to effectively apply the
Newton iteration for calculation of the steady states. To follow different solution
branches one can apply also the arc-length or similar continuation technique. The
latter is illustrated in Fig. 5 for the convection in a cavity with partially heated
sidewall [12], the boundary conditions for which were discussed in Sect. 4. Since the
boundary conditions are symmetric, the flow at low Grashof number Gr is symmetric.
The symmetry breaks at Gr � 180. The diagram in Fig. 5 shows difference between
the Nusselt numbers calculated at the left and right vertical boundaries, so that in
the symmetric state the difference is zero. After the symmetry breaks, we observe
several interconnected solution branches with qualitatively different flow patterns.
Those depicted by red color are stable, and those depicted by the blue color are
oscillatory unstable. In spite that most of the steady state branches are unstable, we
speculate that there can exist multiple oscillatory states with similar flow patterns.

The most known results obtained with the discussed method are stability diagrams
of swirling rotating disk—cylinder flow and buoyancy convection flows in laterally
heated rectangular cavities. First results on the three-dimensional instability of rotat-
ing disk—cylinder flow were obtained in Gelfgat et al. [27] using the described
Galerkin method with 30×30 basis functions. Since then several research groups
validated these results experimentally and verified numerically. These comparisons
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Fig. 6 Stability diagram for flow in a cylinder covered by rotating disk. The lines correspond to
results obtained by the Galerkin method (Gelfgat et al. [27]) for different azimuthal wavenumbers
k in (3.4.1). Symbols show results of independent numerical studies [2, 41, 45, 47, 48, 53]

are very convincing and are shown in Figs. 6 and 7. According to our results, the
instability is axisymmetric for the aspect ratio of the cylinder (height/radius) varying
between 1.6 and 2.7, and is three-dimensional outside of this interval. The three-
dimensionality sets in with the azimuthal number k � 2 at small aspect ratios, and
with k � 3 or 4 in taller cylinders. Several later studies tried to reproduce these
results either by a straight-forward integration in time, or by means of stability anal-
ysis, and fully confirmed our conclusions. The quantitative comparison was done for
the critical Reynolds numbers and critical frequencies, as well as for the azimuthal
mode number. It was possible also to confirm values of the aspect ratio at which the
modes replace each other.

A similar comparison, but experimental one, was made by Sørensen et al [61,
62]. Their result is shown in Fig. 7. The flow oscillations were measured by LDA,
while the flow azimuthal periodicity by PIV. The symbols in Fig. 7 show experi-
mentally measured points, and their color corresponds to the indication of azimuthal
wavenumber as is shown in the figure. The pioneer results of Escudier [13] are also
shown. Taking into account all possible experimental uncertainties, the agreement
between experiment of Sørensen et al [61] and numerical predictions made by the
Galerkin method is quite impressive.

Other stability results obtained by the described Galerkin method for similar
swirling flows can be found in Gelfgat et al. [19] for flow in a cylinder with indepen-
dently rotating to and bottom, and in Marques et al. [49] for independently rotating
top and sidewall.
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Fig. 7 Stability diagram for flow in a cylinder covered by rotating disk. The lines correspond to
results obtained by the Galerkin method (Gelfgat et al. [27]) for different azimuthal wavenumbers
k in (3.4.1). Symbols show experimental results

The neutral curves shown in Fig. 6 are plotted through several tens of calculated
critical points. The next example, relating to the oscillatory instability of buoyancy
convection flows in laterally heated cavities and shown in Fig. 8, needed several
hundreds of critical points to complete the study. The calculations were performed
with up to 60×20 basis functions. With the increase of the cavity aspect ratio A =
length/height, and at large enough Grashof number, the single convective cell flow
splits into several cells. The number of cells grows with the aspect ratio. At the same
time several steady states with different number of rolls can be stable at the same set
of the governing parameters, as is shown in Fig. 9. The transition from one number
of cells to another one is continuous and takes place at points where a neutral curve
of a certain color continues with a different color. At these points the flows with, e.g.,
two and three rolls are indistinguishable. Other results on stability of convection in
rectangular cavities can be found in Gelfgat et al. [20–22], Erenburg et al. [12], and
Gelfgat [32]. One particularly interesting result reported in Gelfgat [32] showed that
weakly non-linear approximation of limit cycle (6.1.9)–(6.1.11) yields results that
are very close to those obtained by independent straight-forward time integration.

Several studies were devoted to three-dimensional instabilities of axisymmetric
buoyancy convection in vertical cylindrical containers. These studies were started
in Gelfgat et al. [23], where we were able to reproduce a nice experimental result
showing an axisymmetry breaking leading to a spoke pattern flow with the azimuthal
wavenumber k � 9. Later we studied cylinders with non-uniformly heated sidewall
that mimicked conditions of the Bridgman crystal growth [25, 28, 60]. Later works
were devoted to axisymmetric flows driven by rotating or traveling magnetic field [34,
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Fig. 8 Stability diagram for convective flow in laterally heated cavities. The curves color corre-
sponds to the number of convective rolls in the flow pattern. The flows are stable below and inside
the curves. Dashed regions correspond to the stability regions of similar flows with broken rotational
symmetry. Pr = 0. From Gelfgat et al. [21]

Fig. 9 Three distinct stable
steady states found at Pr = 0,
A = 7, Gr = 88,000. From
Gelfgat & Bar-Yoseph [33]

branch 1

branch 2

branch 3

35]. Most of these results were reviewed in more detail in Gelfgat and Bar-Yoseph
[33].

There are some additional opportunities that analytical representation of numerical
solution via the Galerkin series allows one to do. Clearly, one can differentiate or
integrate the series without any noticeable loss of accuracy, which is quite contrary to
low-order methods. A rather obvious example is calculation of the flow trajectories
using the previously calculated steady or time-dependent flow. Since the velocity
field is defined analytically in the whole domain, wherever the liquid particle arrives,
its velocity is known without any need of interpolation between grid nodes. This fact
was used in Gelfgat [31], where trajectories were calculated over very long time to
obtain a Poincare map in the midplane.

gelfgat@tau.ac.il



Global Galerkin Method for Stability Studies … 391

Another application of the divergence-free bases (3.3.2), (3.3.3), and (3.3.6) is
visualization of three-dimensional incompressible flows, as is described in Gelfgat
[39]. Without going into much detail, we only mention that projection of flow on each
divergence-free set can be interpreted as a divergence-free projection on coordinate
planes x � const, y � const, z � const, which results in two-component divergence-
free fields. These can be described by an analog of the stream function. Assembling
all the planes, e.g., x � const, we obtain a scalar 3D function whose isosurfaces are
tangent to the projected vectors. Three such projections of three sets of coordinate
planes complete the visualization of a three-dimensional flow field. All the details
and illustrations can be found in Gelfgat [39].

9 Similar Approaches in Studies of Other Authors

As mentioned, the idea to use linear superpositions of Chebyshev polynomials for
definition of basis functions satisfying linear and homogeneous boundary conditions
was introduced by Orszag [54, 55] for the homogeneous two-point Dirichlet prob-
lem. Since then, similar linear-superpositions-based basis functions were used for
solution of one-dimensional problems for, e.g., Orr-Sommerfeld and boundary layer
equations, by Zebib [71], Holte [44], Pasquarelli [56], Yueh and Weng [70], Yang
[69], Borget et al. [4], Yahata [68], Bistrian et al. [3], and Buffat and Le Penven
[8]. In all these works the basis functions were based on the Chebyshev polynomi-
als. Recently, Wan and Yu [66] applied the same idea to the Legendre polynomials.
Grants and Gerbeth [41], Uhlmann and Nagata [65], and Batina et al. [1] used the
same approach for a two-dimensional flow field, but their basis functions were not
divergence-free. Picardo et al. [58] used the linear superpositions for two-fluid prob-
lem, like it was done in Gelfgat et al. [30].

Moser et al. [52] proposed to multiply linear superpositions of the Chebyshev
polynomials by powers of the Chebyshev weight function for a better use of the
polynomials orthogonal properties. For problems with two periodic directions, these
authors constructed a divergence free basis, in which the non-periodic direction was
treated by linear superpositions of the Chebyshev polynomials multiplied by addi-
tional weight-dependent functions. Such functions were used for either coordinate or
projection systems in the weighted residuals method by Ganske et al. [15], Godeferd
and Lollini [40], Kerr [46]. It should be noted that multiplication by either function
makes evaluation of derivatives and computations of their Galerkin projections more
complicated.

Yahata [67] solved a problem of buoyancy convection in laterally heated cavities
similar to those treated by Gelfgat and Tanasawa [17] and later by Gelfgat et al.
[20–22]. He used linear superpositions of the Chebyshev polynomials to build basis
functions for the temperature and the stream functions with consequent orthogo-
nalization of the basis. The inner product was formulated with an arbitrary weight
function, however it is not clear which weight was used. It is worth to note that by
evaluating derivatives of the stream function basis of Yahata [67] one would arrive
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to the two-dimensional basis (3.2.3), so that both formulations are equivalent in the
2D case. An extension of Yahata’s approach to 3D formulation will require replace-
ment of the stream function by vector potential, which will only complicate the
formulation.

Suslov and Paolucci [63] also solved similar convection problem in cavity with
coordinate functions (3.2.3). For the projection system they used the same func-
tions multiplied by the Chebyshev weight, which made the Gram matrix sparser and
allowed to use the fast Fourier transform (FFT) to evaluate non-linear terms of the
dynamical system. The whole approach was used for straight-forward integration in
time, but did not exhibit much advantage compared to other methods and, to the best
of the author’s knowledge, had no further continuation.

10 What Else Can Be Done?

To discuss further possible implementations of the described Galerkin approach it is
necessary to underline that with the nowadays growth of computer power and state-
of-the-art methods of numerical linear algebra, solution of two-dimensional and
quasi-two-dimensional problems became feasible, and sometimes more efficient,
with lower order methods. A very popular methodology of turning a time-stepping
code into a steady state /stability solver can be found in Boronska and Tuckerman [5,
6] and Tuckerman et al. [64]. Another possible methodology together with several
examples are given in Gelfgat [37, 38]. For these problems the Galerkin approach
can still be more suitable for weakly non-linear bifurcations analysis. It is not clear,
however, whether the results applicable only for small supercriticalities will justify
the whole effort.

One of possible ways of further applications of the method is consideration of fully
three-dimensional flows, steady and unsteady, in axisymmetric domains. In these
problems the bases (3.4.5) and (3.4.6) can be combined with the Fourier decompo-
sition in the circumferential direction, so that the Gram matrices will separate for
each Fourier mode and will not be too large, so that they will be easily inversed.
Finally, one will arrive to an ODEs system, where equations corresponding to differ-
ent Fourier modes will be coupled via the non-linear terms. Such system allows for
computation of steady states, path-following, stability analysis and time-dependent
calculations (see, e.g., Boronska and Tuckerman [5, 6]).

Possibly, the most challenging would be to develop a fully three-dimensional
solver for flow in a three-dimensional rectangular box. This would require orthog-
onalization of the whole set of bases (3.3.2), (3.3.3), and (3.3.6) with consequent
effective treatment of the non-linear terms. In the case of success, such an approach
can allow one to have steady state, stability, and time-dependent solvers within a
single computational model, with which very complicated flows can be studied. It
should be mentioned here, that the Krylov subspace based solvers are thought to be
applicable only to sparse matrices, assuming that the matrix-vector product can be
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efficiently evaluated. The latter can be also the case for the described method, even
if all the related matrices are densely filled.

As mentioned in the very beginning of this paper, the described Galerkin approach
is limited to simple domains, which must be curvilinear rectangles, in other words,
regions bounded by coordinate surfaces. This is a very hard restriction since it does not
allow one to consider a very big set of important problems, in which the boundaries
have more complicated shape. Another restriction for implementation of this method
is flows with deformable interfaces. One of the ways to solve such problems on
fixed grids is the immersed boundary method and/or the diffuse interface approach
(not described here). Implementation of these approaches for the described spectral
method will need a good approximation of delta function, which can be difficult to
do using smooth polynomials. Nevertheless, such an attempt was never made and
can be another challenging task.

Finally, it is needed to stress a proposition for flows visualization made in Gelfgat
[39]. This relates to flows calculated by either of numerical methods, and can be very
helpful for understanding of topology of complicated three-dimensional flows.

11 Concluding Remarks

To conclude, it should be underlined that described version of the Galerkin method
should not be regarded as a replacement for other numerical approaches, but rather
as a complementing tool that allows one to perform fully independent computations.

It is unclear whether fully three-dimensional version of this numerical approach,
if ever be realized, will outperform other numerical methods for any of problems.
Nevertheless, the author believes that such potential exists and the effort will be
worth of trying. For example, reaching necessary spatial resolution without increase
of number of degrees of freedom, possibly even with reduce of it, can be essential
for DNS of developed turbulent flows.

An additional possibility, which is only mentioned here, is use of three-
dimensional bases for visualization of flows calculated by other numerical methods.

Appendix A: Shifted Chebyshev Polynomials and Some of
Their Useful Properties

Shifted Chebyshev polynomials of the first and the second type shifted onto the
interval 0 ≤ x ≤ 1 are defined as

Tn(x) � cos[n arccos(2x − 1)], Un(x) � sin[(n + 1)arccos(2x − 1)]

sin[arccos(2x − 1)]
, 0 ≤ x ≤ 1

(A.1)
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The two systems {Tn(x)}∞n�1 and {Un(x)}∞n�1 form bases in L2[0, 1] and are connected
via the relation

T ′
n(x) � 2(n + 1)Un−1(x), (A.2)

which resembles connection between sine and cosine. Values of the polynomials
and their derivatives in the points x � 0 and x � 1 that are needed to define basis
functions for different boundary conditions are

Tn(0) � (−1)n, Tn(1) � 1 (A.3)

Un(0) � (−1)n(n + 1), Un(1) � n + 1 (A.4)

T ′
n(0) � (−1)n2n2, T ′

n(1) � 2n2 (A.5)

U ′
n(0) � (−1)nn(n + 1)(n + 2)/3, U ′

n(1) � n(n + 1)(n + 2)/3 (A.6)

For the following we assume that for k > 0, T−k(x) � Tk(x) and U−k(x) �
U−k−1(x) � Uk(x). To evaluate inner products we need to decompose the polynomial
derivatives and the polynomials products into polynomial sums. For the multiplica-
tion of a polynomial by a polynomial we have

Tn(x)Tm(x) � 1

2
(Tn+m(x) + Tn−m(x)) (A.7)

Tn(x)Um(x) � 1

2
(Un+m(x) + Un−m(x)) (A.8)

Un(x)Um(x) �
n∑

k�0

Um−n+2k(x) (A.9)

The derivatives can be represented as Chebyshev series as

T l+1
n+l (x) � 2l+2l! (n + l)

∑[(n−1)/2]

j�0
an−1−2j

(
j + l

l

)(
n − j + l − 1

l

)
Tn−1−2j(x)

(A.10)

U l+1
n+l (x) � 2l+3(l + 1)!

∑[(n−1)/2]

j�0
an−1−2j

(
j + l + 1

l + 1

)(
n − j + l

l + 1

)
Tn−1−2j(x)

(A.11)

a0 � 1

2
, am>0 � 1

For example,

T ′
n(x) � 4n

∑[(n−1)/2]

j�0
an−1−2jTn−1−2j(x) (A.12)
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Here

(
m
n

)
is the binomial coefficient. After the basis functions are built, the

Galerkin projections can be computed with the unity weight

〈f , g〉1 � 1∫
0

f (x)g(x)dx, (A.13)

or with the Chebyshev weight

〈f , g〉Ch � 1∫
0

(
x − x2

)−1/2
f (x)g(x)dx, (A.14)

or with an arbitrary weight. For example, in Gelfgat [35] we used

〈f , g〉a � 1∫
0

(
x − x2

)−α
f (x)g(x)dx, 0 < α < 1 (A.15)

All the inner products needed to complete the Galerkin procedure can be evalu-
ated analytically if either the unity or Chebyshev weight is implied. The following
relations (base products) are needed for that

〈Tn(x), Tm(x)〉1 � 1

8

[
1 + (−1)n+m−1

][ 1

n + m + 1
− 1

n + m − 1
+

1

n − m + 1
− 1

n − m − 1

]
(A.16)

〈Tn(x), Tm(x)〉Ch � anπδnm (A.17)

and δnm is the Kronecker symbol. The relation (A.2), (A.7)–(A.16) allow one to
reduce all the inner products to the above ones. In the case of arbitrary inner product
the base products 〈Tn(x), Tm(x)〉 must be evaluated numerically, which is usually
done using the Gauss quadrature. Then all the other products can be expressed as
sums using relations (A.2) and (A.7)–(A.11). Additionally, for evaluation of inner
products in orthogonal curvilinear coordinates, one may need the following relation

xm � 2−2m+1
∑m

i�0
am−i

(
2m
i

)
Tm−i(x) (A.18)

Finally, to calculate the shifted Chebyshev polynomials in a point, the following
recurrent formulae can be used

Tn(x) � (4x − 2)Tn−1(x) − Tn−2(x) (A.19)

Un(x) � (4x − 2)Un−1(x) − Un−2(x) (A.20)

Further details can be found in the books of Paszkowski [57] and Mason and Hand-
scomb [50].
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