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Abstract
A computational study of three-dimensional instability of steady flows in a
helical pipe of arbitrary curvature and torsion is carried out for the first time.
The problem is formulated in Germano coordinates in two equivalent but
different forms of the momentum equations so that results obtained using both
formulations cross verify each other. An additional formulation in the
cylindrical coordinates is applied for a limiting case of the toroidal pipe. The
calculations are performed by the finite volume and finite difference methods.
Grid independence of the results is established for both steady flows, the
eigenvalues associated with the linear stability problem, and the critical
parameters. The calculated steady flows agree well with experimental mea-
surements and previous numerical results. The computed critical Reynolds
numbers corresponding to the onset of oscillatory instability agree well with
the most recent experimental results, but disagree with the earlier ones. Novel
results related to the parametric stability study are reported.

Keywords: helical pipe, toroidal pipe, instability, finite difference methos,
finite volume method

1. Introduction

Helical flows play an important role in geophysics (Dethleff et al 2009), aerodynamics of
propellers, helicopter rotors and wind turbines (Okulov and Sørensen 2007, Sørensen 2011),
generation of MHD dynamos (Bassom and Gilbert 1997), flows in tokamak plasmas (Piron
et al 2017), heat exchangers (Bhutta et al 2012, De Amicis et al 2014), bioseparation and
pharmacology (Lightfoot and Moscariello 2004, Hoffman et al 2010), cardiology and arterial
blood flows (Gallo et al 2012, Liu et al 2014, Ishii et al 2015, Totorean et al 2016). One of
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the most obvious examples of this family of fluid motions is flow in a helical pipe, which is
widely used as an effective mixing tool, e.g. in heat exchangers and bioseparators (Vashisth
et al 2008). The Dean vortices necessarily appear in the helical pipe flow driven by an applied
pressure drop regardless the flow intensity (Dean 1927). These vortices effectively mix either
heat or mass without any need of additional mixing means. Contrarily to flows in straight
ducts, circular or rectangular, no analytic solutions, similar to the Poiseuille profile, can be
found for the helical pipe flow. Therefore, the numerical modeling is called for, even at low
and moderate values of the Reynolds number. In this manuscript we focus mainly on
examination of stability of calculated steady flows and computation of critical parameters at
which the primary transition takes place.

For a long time, the helical pipe flow was considered as three-dimensional until Germano
(1982) showed that a two-dimensional formulation is possible in a specially tailored system of
curvilinear orthogonal coordinates. Since then, computations of this flow became affordable
(see, e.g. Liu and Masliyah 1993, Yamamoto et al 1994, Hüttl and Friedrich 2000, Gelfgat
et al 2003, Nobari and Malvandi 2013, Totorean et al 2016; and references therein). How-
ever, to the best of the author’s knowledge, no comparison between independent numerical
results was ever reported. It seems also that no quantitative comparison between experi-
mentally observed and computed steady flows was ever published. Such comparisons are
mainly qualitative and compare experimentally visualized flow patterns with graphical
representations of calculated flows (see, e.g. Yamamoto et al 2002). A not very successful
comparison between measured and calculated turbulent flow was reported by Webster and
Humphrey (1997). Apparently, an accurate calculation of steady flow states is a necessary
precondition for further stability studies. In the following, we address also this issue.

Experimental studies of onset of instability in a helical pipe flow start from works of
White (1929) and Taylor (1929). Later measurements of the instability threshold were carried
out by Sreenivasan and Strykowski (1983) and Webster and Humphrey (1993). All these
papers considered pipes with a rather small torsion. The measured critical Reynolds numbers
reported in these works exhibited a considerable scatter for similar pipe curvatures, which can
be roughly estimated as ratio of the pipe and the coil diameters. In recent experiments of
Kühnen et al (2014, 2015), the dimensionless curvature was varied between 0.03 and 0.08,
and the torsion also was very small. The critical Reynolds numbers measured in this study are
significantly smaller than those reported in the previous works, and are partially supported by
the numerical results of Canton et al (2016) obtained for a toroidal pipe. The effect of a large
torsion on flow stability was studied by Yamamoto et al (1995), who reported destabilization
of flow with increase of the torsion from the zero value, followed by a slight stabilization at
larger torsions. Later Yamamoto et al (1998) studied the instability onset numerically for
parameters of the latter experiment, but considering only two-dimensional perturbations. Only
qualitative agreement between experimental and numerical critical Reynolds numbers was
established.

Most of the numerical studies of stability of steady flows in helical pipes addressed either
only two-dimensional disturbances (Yamamoto et al 1998), or only toroidal geometry
(Webster and Humphrey 1997, Di Piazza and Ciofalo 2011, Canton et al 2016). These
approaches are apparently incomplete. It should be noted that the toroidal pipe geometry is a
mathematical limit corresponding to the helical pipe with a zero torsion. For a long time it
was considered to be a purely mathematical model, but Kühnen et al (2014) showed that such
geometry can be realized in experiment.

Fully three-dimensional time-dependent computations in a helical pipe (see, e.g. Hüttl
and Friedrich 2000) are quite rare and are better fitted for modelling of strongly supercritical
flows with large oscillation amplitudes. These approaches may fail near stability limits. To
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calculate critical parameters, at which steady flow becomes unstable, mathematically rigorous
approaches based on the analysis of the spectrum of the linearized equations are more
pertinent. Thus, Canton et al (2016) studied linear stability of a flow in a toroidal pipe with
respect to all possible infinitesimal three-dimensional perturbations and reported critical
Reynolds numbers close to those reported in the experimental studies of Kühnen et al
(2014, 2015).

In this paper we focus on an accurate computation of steady flows in helical pipes and
computing of critical parameters corresponding to the onset of their primary instability. The
results are obtained using two different formulations of governing equations in Germano
coordinates. For calculation of steady states and the linear stability studies, we apply the
methodology of Gelfgat (2007). The results obtained for each formulation are convergent and
agree with each other. To validate computation of steady flows at moderate Reynolds
numbers against independent computational and experimental data, we start from comparison
with the numerical results of Yamamoto et al (1994). We report a successful comparison and
add some more fully converged data that can be used for benchmarking. To establish
agreement with the experimental measurements, we compare measured and calculated friction
factors, and show that at moderate Reynolds numbers, the present result agree well with the
experimental measurements of De Amicis et al (2014).

After the correctness of the calculated steady flows is established, we consider their linear
stability with respect to all possible three-dimensional infinitesimal perturbations. The main
difficulty in this task is calculation of leading eigenvalues of the linearized stability problem.
We use parameters of Yamamoto et al (1994) to study the convergence of the eigenvalues,
and then the convergence of the critical parameters of the problem. The successful conv-
ergence and comparison exercises allow to confidently report the first numerical results on
three-dimensional linear stability of steady flows in helical pipes with arbitrary curvature and
torsion.

In the following, we successfully compare our stability results with the recent experi-
ments of Kühnen et al (2014, 2015), as well as with the recent numerical results for the
toroidal pipe of Canton et al (2016). However, our attempts to compare with the earlier
experimental stability studies of White (1929), Taylor (1929), Sreenivasan and Strykowski
(1983), and Webster and Humphrey (1993), led to noticeably smaller computed critical
Reynolds numbers than those reported in the experiments. All the above experiments and
computations were carried out for pipes with small torsion. The critical Reynolds numbers
calculated for the curvatures and torsions of these experimental setups appeared to be very
close to the results of Kühnen et al (2014, 2015), which, again, are noticeably smaller than
those reported in the earlier experiments. Discussing this disagreement, we point on the
temporal character of the computed instability versus its spatial character in all the experi-
ments. The disagreements may result also from the upstream direction of propagation of the
most unstable disturbances, from not sensitive enough measurements of flow integral char-
acteristics, or pointwise measurements at locations where the disturbances amplitude is too
low to be detected. Another possible and quite obvious source of disagreement, pointed out
by Yamamoto et al (1998), is a too short experimental pipe. We also compared our numerical
results with the experimental results of Yamamoto et al (1995) obtained for helical pipes with
large torsions. The critical Reynolds numbers computed for the curvatures and torsions
corresponding to these experiments are either close to the experimental ones, or are
below them.

Finally, we report two stability diagrams calculated for a helical pipe with fixed curvature
and varying torsion, and with a fixed torsion and varied curvature. We show that with the
increase of torsion, the instability sets in due to different most unstable eigenmodes that
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represent distribution of amplitudes of oscillations developing in a supercritical regime. A
complete parametric stability study for all relevant values of the curvature and the torsion
would require not only many computational runs, but also abundant graphical material. This
is beyond the scope of present study.

We conclude this paper by summarizing successful comparison exercises and some novel
results, and discuss possible sources of disagreement between the measured and calculated
critical parameters.

2. Coordinate system

To describe the system of orthogonal curvilinear coordinates introduced by Germano (1982),
we start from definitions related to the pipe centerline, which is a helical curve defined
parametrically as

= =R t x t y t z t c t c t bt, , cos , sin , , 10( ) { ( ) ( ) ( )} { · ( ) · ( ) } ( )

where c is the radius of the helix, and pb2 is distance between coils (see figure 1). The
curvature and the torsion of the helical curve are defined as

k t=
+

=
+

c

b c

b

b c
, , 2

2 2 2 2
( )

respectively. In the following we use also their ratio l t k= = b c./ /
The most natural way to define the position of the point inside a helical pipe with circular

cross-section was proposed by Wang (1981). The point position is defined by its location s
with respect to the pipe centerline and by polar coordinates qr,( ) inside a pipe cross-section
orthogonal to the centerline (figure 1). However, as shown by Wang (1981) and Germano
(1982), these coordinates are non-orthogonal. This inconvenience was removed by Germano
(1982), who proposed to rotate the position of q = 0 along with the pipe centerline as
(assuming t is a constant)

òx q t q t= - = - -s s sd . 3
s

s

0
0

( ) ( )

Figure 1. Sketch of a helical pipe (left) and illustration of helical coordinates introduced
by Germano (1982).
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The resulting coordinate system xr s, ,( ) is orthogonal. The Lamé coefficients of these
coordinates are x= = = +xH H r H kr1, , 1 sin .r s ( ) Note that for the constant torsion

x
x

t
x

kl
x

=
¶
¶

+
¶
¶

¶
¶

=
¶
¶

-
¶
¶

=
¶
¶

-
¶
¶s s s s s

d

d
. 4( )

In the coordinates xr s, ,( ) we can assume that the three fluid velocity components and
the pressure are independent on the position at the pipe centerline, i.e. independent on s, so
that ¶ ¶ =s 0./ Thus, we arrive to a two-dimensional formulation for the velocity and the
pressure dependent only on r and x.

3. Governing equations

3.1. General case in Germano coordinates

We consider a flow of incompressible fluid in a helical pipe of the inner radius a, radius of the
coil c, and a constant distance between the coils equal to pb2 . The pipe is sketched in figure 1.
The flow is created by a pressure gradient, which is constant along the pipe centreline

= =
P

s
G

d

d
const, 5( )

and is governed by the continuity and momentum equations. The flow is characterized by the
three dimensionless parameters, which are dimensionless curvature e k= a , torsion to
curvature ratio l, and the Reynolds number n= aURe 2 ,d ¯ / where =d a2 is the pipe diameter,
n is the kinematic viscosity, and Ū is the flow mean velocity. The Reynolds number
sometimes is replaced by the Dean number e=De Re .d d

The above definition of the Reynolds (Dean) number requires mean velocity value,
which is convenient for experimental studies. In a numerical study, the mean velocity can be
found only after calculation of the flow. Since it is not known a priory, its use in the problem
formulation causes certain inconvenience. Thus, to use this traditional formulation, a non-
linear problem making dimensionless Ū equal to unity was solved in Canton et al (2016). To
make an alternative and more convenient non-dimensionalization, we use the pressure gra-
dient based scales introduced in Gelfgat et al (2003). Assuming that the pressure gradient
G is known, we define the scales of length, time, velocity and pressure as

r ra a G Ga, , ,1 2 1 2( ) ( )/ // / and Ga. The resulting system of the dimensionless continuity and
momentum equations reads

 =v 0, 6· ( )

¶
¶

+  = - -  + D
v

v v e v
t

G

H
p

R

1
, 7

s
s

G
( · ) ( )

where the dimensionless parameter rn=R GaG
3 2 1 2( )/ / replaces the Reynolds number. The

equations (6), (7) are solved together with the no-slip condition

x= =v r a s, , 0. 8( ) ( )

After the flow is computed, its dimensionless mean velocity VḠ can be easily obtained.
Then the dimensional mean velocity is r=U V Ga ,G

1 2¯ ¯ ( )/ / and the resulting Reynolds number
is calculated as n r n= = =aU aV Ga V RRe 2 2 2 .d G G G

1 2¯ ¯ ( ) ¯/ / //
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The friction factor is defined as (L is the pipe length)

r r r
=

D
=

D
=f

p

U

a

L

p

L

a

V Ga V2

2
4

4
. 9

G G
2 2 2

⎜ ⎟⎛
⎝

⎞
⎠¯ ¯ ( ) ¯

( )
/ /

For a ‘two-dimensional’ flow independent on the coordinate s, the continuity equation in
the helical coordinates reads

x
el

x
 =

¶
¶

+
¶
¶

-
¶
¶

=xv
rH r

rH v H v r
v1

0. 10
s

s r s
s

⎧⎨⎩
⎫⎬⎭· [ ] [ ] ( )

It can be satisfied by introducing a function ŷ as

y
x

el
y

=
¶
¶

- = -
¶
¶

xrH v H v rv
H r

,
1

. 11s r s s
s

ˆ ˆ
( )

This is not a ‘real’ stream function since y¹v erot .s[ ˆ ] As is noted by several authors (e.g.
Germano 1982, Yamamoto et al 1994), the quasi-two-dimensional flows are defined by two
scalar functions xv r,s ( ) and y xr, .ˆ ( ) To make the function ŷ more meaningful physically, we
modify it as y y= H ,s

ˆ / which leads to

y
x

el y
=

¶
¶

- = -
¶
¶

xv
rH

H
v

r

H
v

H

r

1
, , 12r

s

s

s
s

s[ ] [ ] ( )

so that now

el
y+ - =x xe e ev v

r

H
v rot , 13r r

s
s s

⎡
⎣⎢

⎤
⎦⎥ [ ] ( )

and function y can be interpreted as the stream function of the field -x
elv v v, , 0 .r

r

H s
s

( ) In the

following, we call y pseudo-streamfunction.
The momentum equations are written in general orthogonal coordinates as in Kochin

et al (1954)
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H
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H
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H
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Here the indices 1, 2 and 3 stay for r, x, and s, respectively. Two other equations are obtained
by cyclic permutations of the indices. These equations contain mixed second derivatives,
which may cause certain inconvenience and loss of accuracy at the discretization stage. To
avoid this, the mixed derivatives are eliminated using the continuity equation (10). The
resulting set of momentum equations is detailed in the appendix. In the following, applying
equation (14) is called Formulation 1, while applying equations (A1)–(A6) from the appendix
is called Formulation 2. Mathematical equivalence of both formulations is verified by
symbolic computations on a computer.
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3.2. Flow in a torus: a particular case in cylindrical coordinates

To have a fully independent calculation for comparison purposes, we consider also a problem
of flow in a toroidal pipe driven by a constant azimuthal pressure gradient j= ¶ ¶jG p/ (see
also Gelfgat et al 2003, Canton et al 2016). The problem geometry is sketched in figure 2.
The torus center is placed in the origin of the cylindrical coordinates jr z, ,( ˆ ) so that its center
line lies in the plane =z 0. The center of the torus cross-section is located at the distance R
from the origin. Radius of the torus cross-section is a. The border of the torus is defined by the
line - + =x R z a .2 2 2( ) For dimensionless formulation similar to the helical pipe, scales of
the length, time, velocity and pressure are r rj ja a G G, , ,1 2 1 2( ) ( )/ // / and jG . Thus, for
the dimensionless formulations, the parameters of figure 2 must be replaced by

e= =a R1, 1 ,/ where e = a R/ is the dimensionless curvature of the torus axis. The
dimensionless momentum equation reads

¶
¶

+  = - -  + Dq
j

v
v v e v

t r
p

R

1 1
, 15( · ) ( )

where rn=j jR G a .2 2 1 2( )/ / Comparing with the formulation in the Germano coordinates we
notice that

q
=

¶
¶

=
¶
¶

= jG
p

s R

p

R
G

1 1
. 16( )

Thus,

r
m

r
m e

= = =j
j

R
G a GR a

a

Re
. 17G

2

2

3

2
( )

Obviously, the velocity and time scales are also related by e . As above, the average
velocity based Reynolds number is n r n= = =j jj jaU aV G V RRe 2 2 2 .d G G

1 2¯ ¯ ( ) ¯/ / // The
transformations of velocity compomemts from cylindrical to Germano coordinates and back
are defined by

e
e j= + jv

r
r v

1
1 sin , 18.1s ˆ

( ) ( )

Figure 2. Sketch of a cross-section of torus in the cylindrical coordinates jr z, , .( ˆ )
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j j= - - +qv
r

r R d
d

r
v zv

1
cos sin , 18.2r z⎜ ⎟
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ˆ
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r
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⎜ ⎟
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⎛
⎝

⎞
⎠

⎤
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ˆ
( )

x x x x
e x

e q
= - = + =

+
+

x q xv v v v v v v
R r

r
vcos sin , sin cos ,

cos

1 sin
, 19r r r z s

( ) ( )ˆ

where = + = +r z d rv zv d, .r z
2 2ˆ ( ˆ )ˆ /

4. Numerical technique

The general problem formulated in the Germano coordinates was solved on staggered grids
using central finite differences with linear interpolation between the nodes where necessary.
The Newton iteration was applied for calculation of steady flows. Application of the Newton
method is identical to Gelfgat (2007), and is based on the LU decomposition of the sparse
Jacobian matrix with further analytic solution for the Newton corrections.

Consideration of the linear stability of calculated steady flows requires taking into
account infinitesimally small disturbances that can be periodic along the pipe centerline
direction s. The perturbations were represented in the form x x s +v r p r t ks, , , exp i ,{ ˜ ( ) ˜( )} [ ]
where s is the complex time increment, k is the wavenumber along the centerline and
infinitesimally small perturbation amplitude is denoted by tilde. The linearization procedure is
standard, except of derivatives in the s-direction, for which equation (4) must be replaced, for
the dimensionless variables, by

el
x

= -
¶
¶

+
s

k
d

d
i . 20( )

The linear stability problem reduces to the generalized eigenvalue problem

s =v vp pB J, , . 21T T( ˜ ˜ ) ( ˜ ˜ ) ( )

Here J is the Jacobian matrix that defines rhs of the linearized problem and B is the diagonal
matrix such that its diagonal elements corresponding to the time derivatives of ṽ are equal to
one, while the elements corresponding to p̃ and the boundary conditions are zeros, so that

=Bdet 0. Thus, the generalized eigenproblem (21) cannot be transformed into a standard
one. To study stability of an s-independent steady flow state for a given set of the governing
parameters, it is necessary to compute the eigenvalue ŝ having the largest real part for all real
wavenumbers k. This ŝ is called leading eigenvalue. s s= >kmax Real 0

k
ˆ { [ ( )]} means

instability of the steady flow. The value of the wavenumber yielding the maximum of
s =kReal 0[ ( )] is called critical and is denoted as kcr. The imaginary part of the leading

eigenvalue, s kIm ,cr[ ˆ ( )] estimates the oscillation frequency of a slightly subcritical flow state.
It is called critical frequency and is denoted as w .cr The corresponding eigenvector of (21) is
called leading. It defines the most unstable perturbation of the base state. Its amplitude, to
within multiplication by a constant, represents the amplitude of an oscillatory flow resulting
from the instability onset.
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The eigenproblem (21) is solved by the Arnoldi iteration in the shift-and-invert mode

s J J
s s

- = =
-

- v vp pJ B B , , ,
1

, 22T T
0

1

0
( ) ( ˜ ˜ ) ( ˜ ˜ ) ( )

where s0 is a complex shift. The Arnoldi method realized in the ARPACK package of
Lechouq et al (1998) is used. Following Gelfgat (2007) we calculate LU decomposition of the
complex matrix s- -J B ,0

1( ) so that calculation of the next Krylov vector for the Arnoldi
method is reduced to one backward and one forward substitutions. It should be noted that
the Jacobian matrices for the Newton iteration and the stability analysis are different, since
the latter contains the terms depending on the wavenumber k that can also be complex. The
Jacobian matrices were calculated directly form the numerical schemes. The corresponding
parts of the code were verified by numerical differentiation of the equations’ right hand sides.

To calculate the leading eigenvalue ŝ it is necessary to choose the shift s0 close to ŝ and
to calculate 10–20 eigenvalues with the largest absolute value. In the following calculations,
we fix Real(s0)=0 and vary Im(s0) until the leading eigenvalue ŝ is computed. Then we
calculate the instability point with s s= 0, Imˆ ( ( ˆ )) and vary Im(s0) further to ensure that there
is no other eigenvalue with a larger real part. After that we vary the wavenumber k to find at
which =k kcr the instability takes places at the lowest =R R .G G cr, At this stage we apply the
golden ratio algorithm. For a given pair of the geometrical governing parameters e and l, the
result of the stability study is defined by the critical values R ,G cr, k ,cr wcr and the leading
eigenvector. The critical Reynolds number then can be calculated as = V RRe 2 ,d cr G G cr, ,¯ and
the dimensionless critical frequency scaled by a U2( ) ¯/ is w w= R4 Re .d cr cr G cr d cr, , ,/

To gain an additional validation of the results, we consider a limiting case of zero torsion,
which brings us to flow in a toroidal pipe considered by Canton et al (2016). This case is
considered in general Germano coordinates, as well as in the cylindrical coordinates, as
described above. This allows us to compare our results obtained by the two independent
approaches and compare them with the independent calculations of Canton et al (2016).
Unfortunately, it can be done only for the zero torsion. For calculation in the cylindrical
coordinates, the momentum and continuity equations are discretized by the finite volume
method. The toroidal boundary is treated by the immersed boundary method using the
approach of Kim et al (2001). Then the steady states and their stability are treated as in
Gelfgat (2007). In this case, the perturbation is assumed to be a circumferential Fourier mode

qmexp i .( ) Since m is integer, values of the wavenumber k are discrete and are defined by
e=k m ./ The critical m and k are found by screening several discrete values until a global

minimum of R mG cr, ( ) is obtained.

5. Results

5.1. Steady flows: comparison with experiment

To gain an initial validation of the formulation, the numerical approach and the code, we
compare with the experimental results of De Amicis et al (2014). The computed and mea-
sured friction factors as functions of the Reynolds numbers are sown in figure 3 for four
different helical pipes used in the experiments. It is seen that at Reynolds numbers lower than
≈3000, the calculations and the measurements coincide. At larger Reynolds numbers the
results differ, which happen due to the laminar—turbulent transition, similarly to the straight
pipes. At the same time, at Re 3000d the nonlinear terms already become significantly
large, which allows us to assume that our code reproduces laminar flows correctly.
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5.2. Steady flows: convergence and comparison with an independent solution

For the convergence study and comparison with independent results we chose the work of
Yamamoto et al (1994), where ratios of mass fluxes in helical and straight pipes were reported
for various curvatures and torsions. It can be easily seen that the mean velocity of the
Poiseuille flow in a straight pipe is =w R 8,GPoisuille¯ / so that the flux ratio is equal to
U w .Poiseuille¯ ¯/ The velocity in Yamamoto et al (1994) was rendered dimensionless using the
viscous scale n a,/ which resulted in the Dean number e=Dn R 2 .G

2 The two geometric
parameters used in Yamamoto et al (1994) and other papers of this research group were d e=
and b t e= 2 ./ The solution was computed on ´ = ´xN N 35 60r collocation points. In
part of the results reported below we report the results at the three parameters dDn, , and b of
Yamamoto et al (1994), to establish a direct connection with the previously published
independent results.

Comparison with the results of Yamamoto et al (1994) is shown in table 1. We report
results obtained using both formulations and uniform grids having ´50 100 and ´100
200 nodes. The Richardson extrapolations based on these grids and made for both for-
mulations coincide to within the third decimal place at least. The agreement with the results of
Yamamoto et al (1994) is good for d < 1, but starting from d = 1 the results deviate. The
present computations on the ´300 600 grid for d = 1.4 and =Dn 1000 yielded

=Q Q 0.7579Poiseuille/ and 0.7577 for the Formulations 1 and 2, respectively, which agrees
well with the reported results of the Richardson extrapolation. This makes us confident in the
correctness of the present results.

To allow for a more detailed comparison, the maximal and minimal values of the pseudo-
streamfunction and the friction factor, not reported in Yamamoto et al (1994), are presented in
table 2, where we also observe an agreement between the two present formulations, which is
to within the third decimal place for almost all reported values. It is also worth to mention that
reducing of the friction factor with the growing torsion (table 2) is connected to a

Figure 3. Comparison of measured and calculated friction factors. Lines—calculations,
symbols—results of De Amicis et al (2014).
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Table 1. Values of Q/QPoiseuille for the parameters Dn=1000, β=0.4 of Yamamoto et al (1994). Convergence using the two formulations and
comparison with the results of Yamamoto et al (1994). Uniform grid.

Formulation 1 Formulation 2

δ Yamamoto et al (1994) 50×100 100×200 Richardson extrapolation 50×100 100×200 Richardson extrapolation

0 0.5995 0.5993 0.5994 0.5995 0.5993 0.5994 0.5994
0.2 0.5917 0.5915 0.5916 0.5916 0.5915 0.5916 0.5916
0.4 0.5705 0.5704 0.5704 0.5705 0.5704 0.5705 0.5705
0.6 0.5424 0.5425 0.5425 0.5426 0.5425 0.5425 0.5425
0.8 0.5208 0.5226 0.5227 0.5227 0.5226 0.5226 0.5227
1.0 0.5600 0.5719 0.5722 0.5725 0.5719 0.5721 0.5724
1.2 0.6555 0.6742 0.6745 0.6748 0.673 98 0.6743 0.6746
1.4 0.7312 0.7576 0.7578 0.7581 0.7572 0.7575 0.7579
1.6 0.8211 0.8213 0.8215 0.820 65 0.820 98 0.8213
1.8 0.8682 0.8683 0.8684 0.8677 0.868 01 0.8683
2.0 0.9027 0.9028 0.9029 0.9023 0.9026 0.9028
2.5 0.9543 0.9543 0.9543 0.9538 0.9540 0.9542
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simultaneous growth of the Reynolds number. A similar decrease of the friction factor with
the growing torsion was reported by Datta et al (2017). For the fixed value of the Dean
number =Dn 1000 and the dimensionless curvature b e= = 0.4 and, therefore, the fixed
parameter e= =R Dn 2 33.437,G

1 2( )/ / the Reynolds number grows from =Re 168 at
d = 0 to =Re 267 at d = 2.5. Thus, the friction factor of the Poiseuille flow in a straight pipe,
equal to Re64 ,/ would change from 0.38 to 0.24 . In a helical pipe the friction factors are
larger due to the Dean vortices, and vary in a wider interval. At a very large torsion like
d = 2.5, the helical pipe approaches a straight shape, so that its friction factor 0.25 becomes
close to that of the Poiseuille flow, 0.24. We recall also that the present calculation of the
friction factor is validated versus experimental results (figure 3).

Additionally, we calculate the flow at d = 0 in a torus of the same curvature
e b= = 0.4. The results are reported in table 3. These results verify those reported in tables 1
and 2, but only for the zero torsion. The calculations in the cylindrical coordinates coincide
with the previous ones to within the third decimal place starting from the 2002 uniform grid.
At the same time, a convergence within four first decimal places requires very fine grids of

Table 2. Minimal and maximal values of the stream function, and the friction factor,
obtained as Richardson extrapolations using the uniform grids 50×100 and
100×200. The parameters Dn=1000, β=0.4 of Yamamoto et al (1994).

Formulation 1 Formulation 2

δ ψmin ψmax f ψmin ψmax f

0 −0.2435 0.2435 0.6372 −0.2435 0.2435 0.6372
0.2 −0.2600 0.2325 0.6542 −0.2599 0.2325 0.6542
0.4 −0.2848 0.2256 0.7036 −0.2848 0.2257 0.7036
0.6 −0.3261 0.2209 0.7778 −0.3260 0.2210 0.7779
0.8 −0.4137 0.213 75 0.8380 −0.4135 0.2138 0.8382
1.0 −0.7261 0.1327 0.6986 −0.7251 0.1327 0.6988
1.2 −1.3149 0.031 81 0.5029 −1.3132 0.031 80 0.5032
1.4 −1.9316 0.006 8715 0.3985 −1.9299 0.006 865 0.3986
1.6 −2.5123 0.000 4940 0.3393 −2.5107 0.000 4936 0.3394
1.8 −3.0518 0 0.3036 −3.0505 0 0.3037
2.0 −3.5557 0 0.2808 −3.5546 0 0.2809
2.5 −4.703 95 0 0.251 44 −4.7034 0 0.251 46

Table 3. Results for the parameters Dn=1000, β=0.4 of Yamamoto et al (1994)
computed for flow in a torus. To be compared with the results in tables 1, 2 and 4
for δ=0.

Grid Q/QPoiseuille |ψ|max f λ(m=0) λ(m=2)

1002 0.5590 0.2428 0.6381 (−0.4887, 1.4657) (−0.4508, −3.5894)
2002 0.5994 0.2433 0.6374 (−0.4884, 1.4667) (−0.4505, −3.5916)
3002 0.5995 0.2433 0.6368 (−0.4885, 1.4669) (−0.4508, −3.5923)
4002 0.5995 0.2434 0.6371 (−0.4886, 1.4668) (−0.4512, −3.5925)
5002 0.5995 0.2434 0.6371 (−0.4887, 1.4668) (−0.4513, −3.5924)
6002 0.5995 0.2434 0.6371 (−0.4887, 1.4668) (−0.4513, −3.5925)
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4002 and more nodes. Most probably, this slow convergence results from the immersed
boundary approach which reduces the order of the whole numerical scheme to the first order.

The calculated steady flows are shown in figures 4 and 5. In the limit of zero torsion, the
helical pipe turns into a torus, and the Dean vortices are symmetric. The s-component of
velocity, is advected by these vortices so that its maximum is shifted toward the outer side of
the pipe. The Dean vortices symmetry is broken when the torsion is non-zero. With further
growth of the torsion the two Dean vortices merge into a single one, as was already reported
in experimental visualizations of Liou (1992) and computational modeling of Yamamoto et al
(1998, 2002). Note that the meridional flow never vanishes since the non-zero pipe curvature
always leads to a non-potential centrifugal force. An interesting observation is that with the
increase of torsion, the meridional vortex monotonically intensifies. This can be due to
additional centrifugal- and Coriolis-like forces that are proportional to the torsion, as it
follows from equations (A1), (A2).

Figure 4. Isolines of the -s velocity and pseudo-streamfunction y for parameters of
Yamamoto et al (1994), d= =Dn 1000, 0.4, and d 0 0.6. The inner side of the
pipe is on the left.
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5.3. Stability of steady flows: convergence studies

Study of stability of steady flows is usually more computationally demanding than compu-
tation of steady flow states. This is also the case for flows in helical pipes, which is illustrated
in the computations described below. We start from table 4 that reports a convergence study
carried out for the leading eigenvalues computed for the parameters of Yamamoto et al
(1994), and for the wavenumbers =k 0 and 0.8. The calculations were carried out for the
uniform grids of 50×100, 100×200, 200×400, and 300×600 nodes in the r and x
directions, respectively. In the lower part of the table we report results obtained for the
toroidal pipe (d l= = 0) in the cylindrical coordinates for the azimuthal wavenumbers

=m 0 and 2, which correspond to the above values of k.
At =Dn 1000, the Reynolds number Red is relatively small and, as mentioned above,

varies from 168 at d = 0 to 266.7 at d = 2.5. At such low Reynolds numbers the flow is
expected to be stable. Actually, all the eigenvalues reported in table 4 have negative real parts,
meaning stability of the flows. At the same time, in the case d = 1.5 and =k 0.8, the real part
of the leading eigenvalue already approaches zero. This indicates on a possible flow

Figure 5. Isolines of the -s velocity and pseudo-streamfunction y for parameters of
Yamamoto et al (1994), d= =Dn 1000, 0.4, and d 1 2.5 . The inner side of the
pipe is on the left.
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Table 4. Leading eigenvalues calculated on the uniform grids 50×100, 100×200, 200×400 and 300×600. The parameters Dn=1000,
β=0.4 of [6].

δ
Formulation 1, σ(k=0) Formulation 2, σ(k=0)

50×100 100×200 200×400 300×600 50×100 100×200 200×400 300×600

0 (−0.4891,
1.4652)

(−0.4889,
1.4658)

(−0.4888,
1.4659)

(−0.4888,
1.4659)

(−0.4890,
1.4655)

(−0.4888,
1.4657)

(−0.4887,
1.4658)

(−0.4887,
1.4658)

0.5 (−0.5447, 0) (−0.5439, 0) (−0.5443, 0) (−0.5443,0) (−0.5449, 0) (−0.5448, 0) (−0.5442, 0) (−0.5442, 0)
1.0 (−0.1272,

2.7386)
(−0.1240,
2.7430)

(−0.1231,
2.7442)

(−0.1229,
2.7445)

(−0.1214,
2.7371)

(−0.1198,
2.7417)

(−0.1194,
2.7429)

(−0.1194,
2.7431)

1.5 (−0.2279, 0) (−0.2278, 0) (−0.2278, 0) (−0.2277, 0) (−0.2280, 0) (−0.2279, 0) (−0.2279, 0) (−0.2279, 0)
2.0 (−0.1955, 0) (−0.1954, 0) (−0.1954, 0) (−0.1954, 0) (−0.1956, 0) (−0.1955, 0) (−0.1955, 0) (−0.1954, 0)
2.5 (−0.1837, 0) (−0.1837, 0) (−0.1837, 0) (−0.1837, 0) (−0.1838, 0) (−0.1837, 0) (−0.1837, 0) (−0.1837, 0)

δ Formulation 1, σ(k=0.8) Formulation 2, σ(k=0.8)

50×100 100×200 200×400 300×600 50×100 100×200 200×400 300×600
0 (−0.4544,

−3.5888)
(−0.4531,
−3.5906)

(−0.4527,
−3.5911)

(−0.4526,
−3.5912)

(−0.4546,
−3.5891)

(−0.4532,
−3.5905)

(−0.4528,
−3.5909)

(−0.4527,
−3.5910)

0.5 (−0.5884,
−0.8267)

(−0.5888,
−0.8267)

(−0.5889,
−0.8267)

(−0.5889,
−0.8267)

(−0.5884,
−0.8258)

(−0.5889,
−0.8263)

(−0.5886,
−0.8268)

(−0.5891,
−0.8264)

1.0 (−0.2901,
−6.7701)

(−0.2890,
−6.7768)

(−0.2886,
−6.7791)

(−0.2885,
−6.7791)

(−0.2846,
−6.7685)

(−0.2849,
−6.7755)

(−0.2851,
−6.7773)

(−0.2851,
−6.7777)

1.5 (−0.005 956,
2.1794)

(−0.006 812,
2.1867)

(−0.006 990,
2.1885)

(−0.007 000,
2.1889)

(−0.012 63,
2.1784)

(−0.010 91,
2.1864)

(−0.010 36,
2.1885)

(−0.010 19,
2.1889)

2.0 (−1.0028,
5.4529)

(−1.0017,
5.4634)

(−1.0016,
5.4663)

(−1.0017,
5.4668)

(−0.9891,
5.4502)

(−0.9927,
5.4651)

(−0.9939,
5.4690)

(−0.9943,
5.4697)

2.5 (−1.0880,
−5.3687)

(−1.0870,
−5.3700)

(−1.0868,
−5.3704)

(−1.0868,
−5.3705)

(−1.0874,
−5.3642)

(−1.0864,
−5.3668)

(−1.0861,
−5.3676)

(−1.0868,
−5.3678)

δ Torus, σ(m=0) Torus, σ(m=2)

100×100 200×200 400×300 100×400 200×100 200×200 300×300 400×400
0 (−0.4902,

−1.4658)
(−0.4889,
−1.4668)

(−0.4882,
−1.4665)

(−0.4885,
−1.4666)

(−0.452 25,
−3.5893)

(−0.4508,
−3.5918)

(−0.4501,
−3.5922)

(−0.4506,
−3.5923)
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destabilization at large torsions, which is discussed below. Examination of the results reported
in table 4 shows that there are values of d and k at which we observe a good convergence and
almost full coincidence between results obtained using both formulations. It happens, for
example, at d = 0, at which the results of both formulations are almost identical and agree
well with the results for the toroidal pipe. At the same time, there are cases, e.g. at d = 1,
=k 0 and >1, =k 0.8, for which the convergence is noticeably slower. Nevertheless, we

observe two decimal places converged. The reason for a slower convergence and a larger
disagreement at above mentioned parameters is not clear. The corresponding eigenvector
patterns are similar to the cases where convergence is faster, and do not contain any additional
boundary layers or small scale structures that could require a better grid resolution and slow
down the convergence.

Convergence of all critical parameters, the critical number R ,G the critical Reynolds
number Re ,d the critical oscillations frequency, and the critical wavenumber, is illustrated in
table 5. Again, we use the values of the curvature and torsion as in Yamamoto et al (1994).
The lower part of the table shows convergence for the toroidal pipe, b l= = 0, calculated in
the cylindrical coordinates. At the zero torsion, the convergence of both formulations 1 and 2
is very good and the results coincide to within the fourth decimal place. Convergence of the
results obtained in the cylindrical coordinates is noticeably slower, which possibly happens
because of the immersed boundary description of the helical pipe wall. With the increase of
torsion, the critical Reynolds numbers steeply decrease, so that at b = 2.5 it becomes
approximately 50 times smaller than that at b = 0. Nevertheless, with the increase of b, the
convergence slows down, so that for b  1 only two decimal places are converged. This
shows that at large torsions computational modelling becomes more demanding: the conv-
ergence should be monitored and finer grids are needed to reach a necessary accuracy.

5.4. Stability of steady flows: comparison with experiment and independent computations

Figure 6 shows comparison of the present stability results obtained for parameters of the
recent experiments in the toroidal (Kühnen et al 2014) and helical (Kühnen et al 2015) pipes,
and a recent stability study for toroidal pipes (Canton et al 2016). Calculations for the toroidal
pipe were performed using both Formulations 1 and 2, and an additional formulation for torus
in the cylindrical coordinates. Calculations were carried out on the uniform grid of 400×400
finite volumes in the cylindrical coordinates, and on the 400×800 uniform finite grid in the
Germano coordinates. Following representation of Kühnen et al (2014, 2015), the critical
parameters are plotted versus the radii ratio of the pipe and its centerline in figure 6. For the
toroidal pipe the radii ratio coincide with the dimensionless curvature e. Values of the
dimensionless curvature and torsion corresponding to the experimental points of Kühnen et al
(2015) are shown in figure 6(a) as a table.

For e  0.02, the critical Reynolds numbers for toroidal pipes obtained using all the
three formulations coincide between themselves to within the second decimal place and agree
well with the results of Canton et al (2016). Since no grid convergence study was presented in
the latter work, we cannot estimate the grid independence of the results reported there. At
very small curvatures (radii ratio), e < 0.01, the results of Canton et al (2016) show a steep
decrease of Recr with the decrease of the curvature from approximately 0.017 to 0.01, and
then a steep increase of Recr with further decrease of the radii ratio (figure 6). As noted by
Canton et al (2016), this growth corresponds to the infinite Recr in the straight pipe, which is
the limiting case corresponding to e  0. In this work we did not repeat the calculation of the
whole critical curve of the toroidal pipe, and only verified several critical points starting from
the neutral curve minimum at e = 0.01.
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Table 5. Critical parameters obtained as Richardson extrapolations using the uniform grids 300×600 and 400×800. ε=0.4.

Formulation 1, 300×600 and 400×800 Formulation 2, 300×600 and 400×800

β RG,cr ωcr kcr Red,cr RG,cr ωcr kcr Red,cr

0 266.9632 −8.9273 2 3279.37 266.982 −8.9273 2 3279.72
0.5 214.0194 −10.1205 1.050 452 2223.81 213.889 −10.106 97 1.048 9985 2221.94
1.0 55.1693 −3.7646 0 353.167 54.7389 −3.757 5982 0 348.7052
1.5 32.4613 1.5235 0.9309 209.919 32.3842 1.520 85 0.930 53 208.962
2.0 59.4186 −0.5673 5.3444 748.989 59.0670 −0.582 83 5.3444 739.862
2.5 52.082 998 0.6937 2.1431 631.042 52.0163 0.707 96 2.140 764 629.372

Flow in torus by immersed boundary in cylindrical coordinates, m=5

100×100 200×200 300×300 400×400 500×500 600×600 700×700 800×800
RG,cr 254.706 264.123 264.755 265.563 265.689 265.949 266.219 266.441
ωcr −9.0653 −9.1187 −9.0628 −9.0265 −9.0027 −8.9926 −8.9890 −8.9733
kcr 2 2 2 2 2 2 2 2
Red,cr 2994.12 3210.88 3232.73 3249.10 3251.64 3256.17 3258.70 3262.57
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For the above mentioned curvature e = 0.01, the critical Reynolds numbers calculated
by the formulations 1 and 2 were 4197 and 4184, respectively. Calculation in the cylindrical
coordinates yielded 4238. The result of Canton et al (2016) was 4257. The critical azimuthal
wavenumber was = =m k74 0.74( ) in calculations of Canton et al (2016) and in the
present calculations in the cylindrical coordinates, and = =m k73 0.73( ) for calculation in
the Germano coordinates. It should be noted that the critical Reynolds numbers for =m 73
and 74 differ only in the fourth decimal place, and since no convergence to within the fourth
decimal place is observed, these numbers are considered as numerically indistinguishable.
The critical frequencies calculated by the formulations 1 and 2 were −1.720, by formulation
in the cylindrical coordinates −1.743 for =m 74 and −1.720 for =m 73 , and the value of
Canton et al (2016) is −1.736 for =m 74.

The agreement between the critical frequencies calculated for the toroidal pipe is as good
as for the critical Reynolds numbers (figure 6(b)). Note that all the calculated frequencies are
negative. In this study the most unstable perturbations in critical points are assumed to behave
as w +t ksexp i .[ ( )] Thus, the negative w means that the instability sets in as a travelling wave
propagating upstream. Canton et al (2016) assumed that the perturbations behave as

j w-k texp i[ ( )] and reported positive critical frequencies, thus arriving to the same
conclusion.

Comparing with the experimental results of Kühnen et al (2014, 2015), we observe that
experimental critical Reynolds numbers are slightly larger than the computed ones. This can
be expected since oscillations can be detected in an experiment only at some finite amplitude,
while the numerical critical Reynolds number corresponds to the limit of zero amplitude.
Note, that experiments in the helical pipe were carried out at different torsions, so that these
experimental points do not belong to the same neutral curve. Nevertheless, at small torsions
the critical Reynolds numbers of the helical pipe are quite close to those of the toroidal one,
which is also the case for numerical results (figure 6(a)). This is not observed, however, on the
graph of critical frequencies (figure 6(b)). For the helical and toroidal pipes they have
comparable values, but exhibit qualitatively different dependencies on the radii ratio, which is
common for the experimental and numerical results. At the same time the disagreement
between the experimental and numerical values is noticeably larger than for the critical
Reynolds numbers.

Figure 6. Comparison of present linear stability results with the experimental results of
Kühnen et al (2014, 2015) and numerical results of Canton et al (2016).
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Comparison with earlier experiments that addressed onset of instability in helical pipes is
not as good as with the above recent studies of Kühnen et al (2014, 2015). One of the earliest
experiments on instability was conducted by White (1929) and Taylor (1929). Much later this
instability was studied experimentally by Sreenivasan and Strykowski (1983), Webster and
Humphrey (1993) and Yamamoto et al (1995), and numerically by Yamamoto et al (1998)
and Di Piazza and Ciofalo (2011).

White (1929), Taylor (1929), Sreenivasan and Strykowski (1983) and Webster and
Humphrey (1993) studied helical pipes with very small torsions with the torsion to curvature
ratio l < 0.06. Our computations for parameters of these experiments were very close to the
l = 0 results obtained for the toroidal pipe (figure 6(a)). For the pipes with a very small
curvature, e = 0.00049 in the experiments of White (1929), and e < 0.0072 in Sreenivasan
and Strykowski (1983), the calculated critical Reynolds numbers are above 5000 and are
noticeably larger than the observed ones, 2270 and 3200, respectively. These observations
correspond to the bypass transition similar to one occurring in the straight circular pipe.
However, in the experiments with larger curvatures, e = 0.02 and 0.066 in White (1929),
e = 0.031 and 0.06 in Taylor (1929), e< <0.02 0.12 in Sreenivasan and Strykowski
(1983), e = 0.055 in Webster and Humphrey (1993), the observed critical Reynolds numbers
are above 5000 and are noticeably larger than those calculated in the present study and in
Canton et al (2016) for the toroidal pipe. We note that critical Reynolds numbers in these
experiments were defined as location of the first break at the dependence of the friction factor
on the Reynolds number (White 1929), or just by visual observation of the flow (Taylor 1929,
Sreenivasan and Strykowski 1983). This can be much less precise than the direct pointwise
LDV measurements carried out by Kühnen et al (2014, 2015). Webster and Humphrey (1993)
also applied LDV measurements and for the curvature e » 0.05 reported appearance of
oscillations at =Re 5060 with the dimensionless frequency of ≈0.24. For a similar curvature
and working liquid, Kühnen et al (2015) reported oscillations starting form a noticeably
smaller =Re 3870 with an order of magnitude larger value of the dimensionless frequency of
≈2.8, which reduces to a smaller value of ≈2.4 at =Re 5040, so that at close Reynolds
numbers, the frequencies measured in the two experiments differ in 10 times. Present cal-
culations using the geometric parameters of the above experiments yielded the critical
Reynolds numbers close to those obtained for the toroidal pipe, as well as those reported in
the experiments of Kühnen et al (2014, 2015). Apparently, small torsions do not affect
noticeably the values of Re .cr

Di Piazza and Ciofalo (2011) carried out fully nonlinear three-dimensional time-
dependent calculations for a toroidal pipe and found for the radii ratio =a c 0.1/ and 0.3,
respectively, =Re 5175cr and 4575. The results of Canton et al (2016) for these curvatures
are, respectively, 3330 and 3024, while the present results are, respectively, 3376 and 3045.
The most possible reason for such overestimation of the critical Reynolds numbers is under
resolution of the most unstable perturbation in the three-dimensional computation.

Instabilities in helical pipes with a large torsion were studied experimentally in Yama-
moto et al (1995) and numerically in Yamamoto et al (1998). The measurements were carried
out by a hot wire. The numerical study considered only s-independent perturbations, and
reported intervals of the Reynolds number inside which the instability onset is expected. In
spite of incomplete mathematical model that considered only two-dimensional disturbances,
the authors succeeded to establish a qualitative agreement between their calculations and
measurements. To compare with these experiments, we picked up several points from figure 9
of Yamamoto et al (1995), denoted there as black triangles that indicated cases ‘where the
signal showed a wavy but not irregular structure’. The results are reported in table 6. The
column corresponding to the above mentioned triangles is denoted as Y1995. The neighbor
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column corresponding to the experimental intervals between observed steady and unsteady
flow states, taken form figure 7 of Yamamoto et al (1998), is denoted as Y1998. We observe
that the present critical Reynolds numbers are either inside the reported intervals, or below
them. An interesting observation is that when the calculated Recr fall inside the experimen-
tally predicted interval, their values are very close to those indicated by the black triangles in
Yamamoto et al (1995). These two cases are shown in bold (table 6). In all the other cases, the
calculated critical Reynolds numbers are below the experimental intervals. It should be noted
that smaller calculated critical Reynolds numbers were reported also in Yamamoto et al
(1998), where it was argued that the larger measured critical values were due to insufficient
length of the experimental pipe, so that the disturbances had no sufficient time/length to
develop to a measurable amplitude. Due to the present complete formulation, the present Recr

are even smaller than those reported in Yamamoto et al (1998).

5.5. Example of critical curves

To illustrate an outcome of a parametric stability study we present two examples in figures 7 and 8.
In figure 7 we consider a helical pipe with a fixed curvature e = 0.05 and vary the torsion to

Figure 7. Neutral curve lRecr( ) for e = 0.05 (a), and corresponding dependencies of
w lcr ( ) (black) and lkcr ( ) (red). The inserts in frame (a) show isolines of the pseudo-
streamfunction y. Inserts in frame (b) show amplitude of the most unstable
perturbations of v .s

Table 6. Comparison with the experimental results of Yamamoto et al (1995).

ε δ λ

Recr from
Y1995

Recr from
Y1998

Recr
present ωcr kcr

0.01 0.77 10.89 1680 1220–2050 1687 −10.31 0.9778
0.01 1.72 24.32 2280 1940–2440 1471 0.3717 0.6932
0.05 0.5 3.04 2560 2240–2860 1113 −3.825 1.2884
0.05 0.92 5.82 1100 830–1380 626 −1.866 0.8111
0.05 1.6 10.12 1100 900–1300 541 1.326 0.2656
0.1 0.45 2.01 2540 2280–2840 1573 −2.9649 1.6048
0.1 0.74 3.31 1160 900–1670 371 −8.326 2.1344
0.1 1.11 4.96 560 460–640 596 0.2517 0.4292
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curvature ratio l from zero to 5. At the neutral curve lRe ,cr( ) shown in figure 7(a), we observe
decrease of the critical Reynolds number with the increasing torsion, reported also in Yamamoto
et al (1995, 1998) and above, for a larger curvature. The inserts in figure 7(a) illustrate how the
shape of the Dean vortices changes along the curve. The neutral curve, in fact, is the lower
envelope of three different marginal curves belonging to three different eigenvectors of the linear
stability problem. The latter is clearly seen in figure 7(b) where the critical circular frequency is
shown together with the critical wavenumber as functions of l. Each dependence w lcr ( ) and

lkcr ( ) is represented by three separate curves belonging to the three different most unstable
eigenmodes. The intervals in which these curves are plotted correspond to the intervals ofl where
these modes are dominant (most unstable). Within the linear stability model, these modes replace
each other abruptly, but they may grow together and interact in the fully nonlinear regime.

Inserts in figure 7(b) show patterns of the absolute value of perturbation of the velocity v .s
As explained above, these patterns represent distribution of the oscillations amplitude in a
slightly supercritical regime. At l = 0, the Dean vortices of the base flow are antisymmetric,
while the amplitude of the most unstable perturbation exhibits a symmetric pattern. The real and
imaginary parts of the perturbation (not shown here) of vs and vr are symmetric, while those of

xv are antisymmetric. Altogether, it means that the vortices oscillate in a counter phase, but with
the same amplitudes, while the s-velocity oscillates in the same phase in the ‘upper’ and ‘lower’
parts of the cross-section. With the growth of l, the upper counter clockwise rotating vortex
becomes stronger, and at l » 0.5 another eigenmode, producing significantly stronger oscil-
lations of the upper vortex, becomes most unstable. The characteristic oscillations amplitude is
shown by an insert for l = 1 (figure 7(b)). At l > 1 the third eigenmode, which excites
oscillations in the lower vortex, becomes most unstable. To show that the eigenmode exhibits
similar amplitude patterns at different torsions, it is plotted for both l = 3 and 4.

In figure 8 we consider a fixed torsion t = 0.15 and vary the curvature. Results of the
linear stability analysis are represented as in figure 7. In this case of the varying curvature we
observe eight eigenmodes that become most unstable one after another with the increase of e.
Because of the larger number of eigenmodes, it was necessary to perform noticeably more
program runs to obtain enough points on the graph fort completing the stability diagram of
figure 8. Note that increase of the curvature leads to formation of boundary layers in the

Figure 8. Neutral curve eRecr( ) for t = 0.15 (a), and corresponding dependencies of
w ecr ( ) (black) and ekcr ( ) (red). The inserts in frame (a) show isolines of the pseudo-
streamfunction y. Inserts in frame (b) show amplitude of the most unstable
perturbations of v .s
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patterns of the Dean vortices (figure 8(a)), and to qualitatively different, compared to those
shown in figure 7, patterns of the most unstable eigenmodes (figure 8(b)). At small curvature
we observe a steep decrease and increase of the critical Reynolds number, similar to obser-
vation of Canton et al (2016) for instability in a torus.

A complete stability study must include parametric studies over all relevant values of e
and l with a more detail examination of physical reasons leading to instability. This would
require a significantly larger amount of computational runs, as well as much additional
graphics. This is beyond the scope of the present paper and will be addressed in future studies.

6. Concluding remarks

The primary goal of this study was to establish an accurate and robust computational model to
study stability of steady flows in helical pipes. The computations were carried out using two
different formulations with an additional third formulation applied for a toroidal pipe. As
noted, the toroidal pipe is a limiting case of the helical one with vanishing torsion.

In the first part of this study we successfully compared steady states calculated by all
three approaches with the experimental measurements of De Amicis et al (2014) and with the
numerical results of Yamamoto et al (1994). We also presented convergence studies and
some additional data for possible further comparisons.

The second part of the results relates to the linear instability of steady flows. Since there
is much less independent data for a quantitative comparison, we paid much attention to the
convergence of eigenvalues and critical parameters. Then we carried out computations for
parameters of recent experimental studies of Kühnen et al (2014, 2015) and compared them
with the published stability results for the toroidal pipe (Canton et al 2016). The comparisons
with the independent calculations were good, while comparisons with the experiment showed
a good agreement in the values of the critical Reynolds numbers, but only qualitative
agreement in the values of the critical frequencies.

Attempts to compare with earlier experimental stability studies (White 1929, Tay-
lor 1929, Sreenivasan and Strykowski 1983, Webster and Humphrey 1993) showed that their
results are noticeably larger than those obtained here or measured in Kühnen et al
(2014, 2015) for similar pipe curvatures. In all these experiments, the pipe torsions were too
small to significantly affect the critical Reynolds numbers. Thus, the critical Reynolds
numbers calculated for parameters of the above experiments appeared to be close to those
reported in Kühnen et al (2014, 2015).

The study of Yamamoto et al (1995) allowed us to compare also with the experimental
results obtained for helical pipes with large torsion. Only in two out of eight cases, taken for
the comparison, the computed critical Reynolds numbers laid inside the experimentally
predicted intervals and agreed well with the experimental values corresponding to the
appearance of regular oscillations. In the six other cases, the calculated critical values were
below the experimentally predicted intervals.

To illustrate complicacy of a complete parametric stability study, yet to be done, we
reported an example of the stability results for two different cases: a single fixed value of the
pipe curvature, e = 0.05, and torsion to curvature ratio varied from zero to 5; and a single fixed
value of the pipe torsion, t = 0.15, and the curvature varied from 0.01 to 0.95. These results
show that depending on both geometric parameters, curvature and torsion, the instability is
caused by different most unstable perturbations, which leads also to qualitatively different
oscillatory flow regimes. Therefore, a thorough parametric study that considers all relevant
ranges of the curvature and the torsion is needed, but is beyond the scope of the present study.
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However, already on the basis of current results we can confirm that the critical Reynolds
number steeply decreases with the increase of torsion, which we observed for small (e = 0.05)
and large (e = 0.4) curvatures. We have found also that in most of the cases considered, the
travelling wave developing due to the primary instability propagates upstream.

Returning to the experimentally measured critical Reynolds numbers that appear to be
significantly larger than the calculated ones (see, e.g. table 6), we point on two possible
reasons, besides the insufficient pipe length, as is argued in Yamamoto et al (1998). First, the
instabilities studied here numerically are temporal. Instabilities in experimental setups, which
necessarily have an entrance and an exit, develop spatially. The temporal instabilities obtained
numerically set in as a wave traveling along the helical centerline. In most of the cases
considered, and always at small torsions, the waves travel upstream. To make the experiment
‘close’ to the temporal formulation, the pipe must be sufficiently long and the waves should
not be suppressed at the entrance and the exit. This may not be the case in all the experiments.
The second reason can be assumed from the distribution of oscillation amplitudes shown in
the inserts of figure 7(b). If pointwise measurements, e.g. LDV or hot wire are carried out in
the region where the amplitude is small or even vanishing, no instability will be detected.
Numerical results, like those presented here, can help in planning of such experiments as it
was done for another problem in Haslavsky et al (2011).
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Appendix

For the ‘two-dimensional’ flow depending only on the coordinates r and x, the momentum
equation in an alternative form with the eliminated mixed second derivatives reads
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