
Steady states and oscillatory instability of swirling flow in a cylinder
with rotating top and bottom

Alexander Yu. Gelfgat, Pinhas Z. Bar-Yoseph,a) and Alexander Solan
Computational Mechanics Laboratory, Faculty of Mechanical Engineering, Technion-Israel Institute of
Technology, Haifa 32000, Israel

~Received 15 February 1996; accepted 7 June 1996!

In this study we present a numerical investigation of steady states, onset of oscillatory instability,
and slightly supercritical oscillatory states of an axisymmetric swirling flow of a Newtonian
incompressible fluid in a cylinder, with independently rotating top and bottom. The first part of the
study is devoted to the influence of co- and counter-rotation of the bottom on the steady vortex
breakdown, which takes place in the well-known problem of flow in a cylinder with a rotating top.
It is shown that weak counter-rotation of the bottom may suppress the vortex breakdown. Stronger
counter-rotation may induce a stable steady vortex breakdown at relatively large Reynolds numbers
for which a vortex breakdown does not appear in the case of the stationary bottom. Weak corotation
may promote the vortex breakdown at lower Reynolds numbers than in the cylinder with the
stationary bottom. Stronger corotation leads to the detachment of the recirculation zone from the
axis and the formation of an additional vortex ring. The second part of the study is devoted to the
investigation of the onset of oscillatory instability of steady flows. It is shown that the oscillatory
instability sets in due to a Hopf bifurcation. The critical Reynolds number and the critical frequency
of oscillations were calculated as a function of the rotation ratio~j5Vbottom/Vtop! for a fixed value
of the aspect ratiog ~height/radius! of the cylinderg51.5. The stability analysis showed that there
are several most unstable linear modes of the perturbation that become successively dominant with
a continuous change ofj. It is shown that the oscillatory instability may lead to an appearance and
coexistence of more than one oscillating separation vortex bubble. ©1996 American Institute of
Physics.@S1070-6631~96!00110-9#

I. INTRODUCTION

Vortex breakdown in a cylinder with a rotating top was
discovered experimentally by Vogel1 and has been inten-
sively studied experimentally2–5 and numerically.6–12 The
vortex breakdown observed in this system is characterized
by the sudden appearance of a weak meridional recirculation
~also called ‘‘separation vortex bubble’’! near the axis of the
cylinder. It was shown by Gelfgatet al.11 that the appearance
of the vortex breakdown in this flow is not caused by insta-
bility, and that with the increase of the Reynolds number the
separation vortex bubble appears and disappears along a con-
tinuous branch of the steady solution.

The influence of weak co- and counter-rotation of the
bottom of the cylinder on the vortex breakdown was studied
experimentally by Roesner3 and Bar-Yosephet al.4 It was
shown that weak corotation of the bottom may promote a
separation vortex bubble in a flow without meridional recir-
culation. Conversely, weak counter-rotation of the bottom
may suppress an existing separation vortex bubble and
change the meridional flow to a single-vortex state. A similar
effect of the co- and counter-rotation on the vortex break-
down was observed by Bar-Yosephet al.,13 Bar-Yoseph,14,15

and Bar-Yoseph and Kryzhanovski16,17 in the polar region
between rotating spheres.

A numerical study by Valentine and Jahnke18 was de-
voted to a particular symmetric case when the top and the

bottom corotate with the same angular velocity. It was
shown18 that such corotation leads to the detachment of the
recirculation zone from the axis and the formation of up to
four vortex rings, two above and two below the plane of
symmetry. This result is in agreement with the experiments
of Spohnet al.,19 who investigated the flow in a cylinder
with rotating bottom and a stress–free surface at the top. To
compare both results one should associate the stress–free
boundary of the experimental setup19 with the horizontal
plane of symmetry of the mathematical model.18 Lopez20 in-
vestigated the transition from the steady to the oscillatory
state forg53 in the case when the top and the bottom coro-
tate with the same angular velocity~j51!. Parametric inves-
tigation of the oscillatory instability in this case for the in-
terval 1<g<3 was done recently by Gelfgatet al.21

The independent rotation of the bottom is characterized
by the ratio of angular velocitiesj5Vbottom/Vtop ~rotation
ratio!. If uVtopu>uVbottomu, j varies in the interval21<j<1.
Otherwise, the cylinder may be turned over such that top and
bottom replace each other, implying that Re andj are re-
placed byj Re and 1/j. The experiments of Roesner3,4 were
done for uju<0.1. The numerical analysis of Valentine and
Jahnke,18 Lopez,20 and Gelfgat et al.21 was carried out
mainly for j51. Flows corresponding to other values ofj
were not studied.

The stability of steady flows in the cylinder with rotating
top and stationary bottom~j50! was studied by Gelfgat
et al.11 for aspect ratio 1<g<3.5. It was shown that the ap-
pearance and disappearance of the vortex breakdown is not
connected with the stability of the flow. It was also shown
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that forg<3 the oscillatory instability sets in as a result of an
axisymmetric supercritical Hopf bifurcation, and that the os-
cillatory instability may promote the oscillatory vortex
breakdown in cases for which thesteadyvortex breakdown
is not found.

The present study is devoted to the analysis of the effect
of co- and counter-rotation on steady flows and on the onset
of oscillatory instability. The analysis is carried out for the
whole interval21<j<1.

An investigation of the suppression of the vortex break-
down by the counter-rotation of the bottom shows that the
higher the cylinder~the larger the aspect ratio! the weaker
the counter-rotation necessary to eliminate a recirculation
zone from the flow. It is also shown that the counter-rotation
may stabilize the steady flow and induce a stable steady vor-
tex breakdown at relatively large Reynolds numbers, for
which in the case of stationary bottom there exists an un-
stable steady state without a vortex breakdown.

In the case of corotation it is shown that the separation
vortex bubble, characteristic forj50, and the vortex ring,
characteristic forj51, continuously transform one into the
other whenj is continuously varied between 0 and 1. It is
also shown that weak corotation induces the vortex break-
down at lower Reynolds numbers than forj50.

The stability of steady states was studied for a fixed
value of the aspect ratiog51.5. The steady flows considered
remain stable up to the onset of the oscillatory instability,
which takes place due to the Hopf bifurcation. The instability
may set in with the increase of the Reynolds number Re or
with the change of the rotation ratioj. The main results of
the stability analysis are presented in stability diagrams plot-
ted in the plane~j,Re!. The dependence of the critical fre-
quency of oscillations on the rotation ratio is also reported. It
is shown that the oscillatory instability may be caused by
different most unstable linear modes that become dominant
for different parameter values. Examples of patterns of the
most unstable linear modes are reported, together with the
patterns of the flow at critical values of parameters. Possible
reasons that may cause the onset of the instability are dis-
cussed.

Slightly supercritical states of the flow were calculated
using the finite volume method for the solution of the full
unsteady Navier–Stokes equations. A numerical solution of
the full unsteady problem was used to verify results of the
linear stability analysis and to investigate the oscillatory
states of the flow.

II. FORMULATION OF THE PROBLEM AND
NUMERICAL TECHNIQUE

The axisymmetric flow of an incompressible Newtonian
fluid with kinematic viscosityn* in a cylinder of radiusR*
and heightH* , with top and bottom rotating with angular
velocitiesV top* and Vbottom* is considered. The flow is de-
scribed by the momentum and continuity equations in a cy-
lindrical system of coordinates (r ,w,z). Using the scalesR* ,
R* 2/n* , V top* R* , andr* (V top* R* )2 for length, time, veloc-
ity, and pressure, respectively, the dimensionless equations
are
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At the axis of the cylinder~0<z<g, r50! the boundary
conditions of an axisymmetric flow are

v r5vw5
]vz
]r

50, ~3!

on the cylindrical wall~0<z,g, r51!,

v r5vw5vz50, ~4!

on the rotating top of the cylinder~0<r,1, z5g!,

v r5vz50, vw5r , ~5!

and on the rotating bottom of the cylinder~0<r,1, z50!,

v r5vz50, vw5jr . ~6!

Here Re5Vtop* R* 2/n* is the Reynolds number,j
5 Vbottom* /Vtop* is the rotation ratio, andg5H* /R* is the
aspect ratio of the cylinder.@Note that some authors define
g5H* /(2R* ).#

The problem~1!–~6! was solved numerically using the
Galerkin spectral method for the calculation of steady states
and linear stability analysis, and using the finite volume
method for the calculation of steady and oscillatory states.
The Galerkin method is formulated for globally defined basis
functions that satisfy all the boundary conditions and the
continuity equation. The basis functions are constructed as
linear superpositions of Chebyshev polynomials with the
help of symbolic computations. The finite volume method is
of the second order in space and time. It is based on the
SIMPLE algorithm22 and three-levels approximation of the
time derivative.23 The finite volume grids are stretched such
that the nodes are condensed near the axis, the top, the bot-
tom, and the sidewall of the cylinder. A detailed description
of the numerical algorithms and test calculations is reported
in Refs. 11 and 12.

The spectral Galerkin method allows a sufficient de-
crease of the number of degrees of freedom used by a nu-
merical method, which makes it possible to calculate steady
states and to analyze their stability within the framework of
the same numerical model. To analyze the linear stability of
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steady states the governing equations were linearized in the
vicinity of a steady solution and the spectrum of the linear-
ized problem was calculated and analyzed. The instability of
the flow was indicated by the change of sign of the real part
of the dominant eigenvalueL ~the eigenvalue with the larg-
est real part!. The change of the sign takes place with the
increase of the Reynolds number or with the change of the
rotation ratio. The critical values of the Reynolds number
Recr and of the rotation ratiojcr , for which Real~L!50, were
calculated. In all the cases considered it was found that at the
critical values of parameters Im~L!Þ0 and
~]/] Re!@Real~L!#Þ0, which indicates that the instability sets
in due to Hopf bifurcation~see Refs. 24 and 25 for details!.
This means that the circular frequency of the flow oscilla-
tions in the vicinity of Re5Recr may be estimated as
vcr5Im~L!. The eigenvector corresponding to the dominant
eigenvalueL5 ivcr describes the most dominant perturba-
tion, which causes the onset of instability. Since the eigen-
vector is a complex function and is defined within multipli-
cation by a complex constant, its modulus is used to describe
the dominant perturbations. Note that for slightly supercriti-
cal oscillatory flows the isolines of the amplitude of oscilla-
tions coincide with the isolines of the modulus of the pertur-
bation. The dominant perturbation of the considered flow is
described by the perturbations of the meridional streamfunc-
tion c @v r5(1/r )(]c/]z!, vz52(1/r )(]c/]r )# and of the
azimuthal momentMw5rvw . In the following text these
perturbations are called perturbation of the meridional com-
ponent of the flow and perturbation of the azimuthal compo-
nent of the flow, respectively.

The numerical technique was completely verified in
Refs. 11 and 12 for the casej50, for which a large amount
of experimental and numerical data is available for
comparison.2–10 In the casejÞ0 only the experimental re-
sults of Roesner3 and the numerical results of Valentine and
Jahnke18 and Lopez20 may be used for qualitative compari-
son with the results obtained here. The results obtained for
jÞ0 were validated in three ways:~1! it was ensured that
further increase of the number of the Galerkin modes does
not lead to significant quantitative changes in steady flows or
critical parameters;~2! the steady solutions obtained with the
Galerkin method were compared with those obtained by the
finite volume method using stretched grids up to 1003100
nodes; and~3! the numerical solution of the full unsteady
problem allowed us to localize the critical Reynolds numbers
and to estimate critical frequencies, and then the critical pa-
rameters obtained by the two independent numerical ap-
proaches were compared. The steady states discussed in Sec.
III A were calculated using 30330 basis functions for the
Galerkin method and a 75375 stretched grid for the finite
volume method. The stretching was the same as in Gelfgat
et al.11 The stability analysis was done with the number of
basis functions varying from 30330 to 40340. The number
of nodes for the unsteady calculations varied from 75375 to
2003200. The details of the test calculations and of the de-
pendence of the critical parameters on the discretization are
discussed in the Appendix.

III. MAIN RESULTS

A. Steady states

1. Counter-rotating bottom

The change of the meridional flow with the continuous
increase of the counter-rotation~decrease ofj from j50 to
j521! is shown in Fig. 1 for the caseg51.5, Re51500.
One can see that weak counter-rotation eliminates the sepa-
ration vortex bubble that exists atj50. The separation
bubble disappears when the angular velocity of the counter-
rotating bottom exceeds 3% of the angular velocity of the top
~j520.03,20.05!. This is in qualitative agreement with the
experimental results of Roesner.3,4 A further increase of the
counter-rotation~decrease ofj! up to j520.2 leads to the
appearance of a meridional vortex in the lower corner of the
cylinder ~j520.2!. Another recirculation region attached to
the bottom appears with an additional decrease ofj ~j
520.4!. When the rotation ratio reaches the valuej520.5
the two regions attached to the bottom join and form one
counterclockwise recirculation region~j520.5!. This region
grows with the increase of the counter-rotation, while the
upper clockwise recirculation region becomes smaller~j
varying from 20.7 to 21!. Both clockwise and counter-
clockwise recirculation regions become antisymmetric when
j reaches the valuej521.

Figures 2 and 3 illustrate the suppression of the vortex
breakdown by counter-rotation in cylinders with aspect ratio
g52 and 2.5 and for the same value of the Reynolds number
Re52000. In the case of rotating top and stationary bottom
~j50!, both meridional flows contain two separation vortex
bubbles~Figs. 2 and 3,j50!. Weak counter-rotation of the

FIG. 1. Counter-rotating bottom. Streamlines. Here Re51500, g51.5,
0>j>21.

FIG. 2. Counter-rotating bottom. Streamlines. Here Re52000, g52.0,
0>j>20.04.
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bottom eliminates both bubbles. In the case ofg52 ~Fig. 2!
the upper separation bubble disappears whenj reaches the
value 20.02, and the lower one is suppressed whenj
520.04. When the aspect ratio is larger, even weaker
counter-rotation is sufficient to eliminate the separation vor-
tex bubbles. Thus, in the caseg52.5 the upper and the lower
separation bubbles disappear atj520.005 and20.01, re-
spectively~Fig. 3!. The patterns of meridional flows for a
further increase of the counter-rotation are similar to those
illustrated in Fig. 1 forg51.5.

When the Reynolds number is higher~Re53800,g51.5;
Fig. 4! the influence of the counter-rotation on steady flows
is different. In the case of rotating top and stationary bottom
~j50! the steady state does not contain the separation vortex
bubble and it becomes unstable at much lower Reynolds
number Recr'2700. The counter-rotation of the bottom leads
to the appearance of a separation vortex bubble atj'20.1 in
an unstable steady flow~Fig. 4, j520.13!. The size of the
separation bubble increases with the increase of the counter-
rotation up toj'20.3 ~j520.13,20.17, and20.3!. With a
further decrease ofj the size of the separation bubble in-
creases~j520.3 and20.4!, and it merges with the counter-
clockwise recirculation region. Referring to the stability dia-
gram in Fig. 10~a! below, one can see that at Re53800 the
steady states20.134<j<20.127 and20.350<j<20.225
are stable, while other states are unstable. Thus in Fig. 4 the
steady states atj520.13 and20.3 are stable, the other
states are unstable. This shows that at this Reynolds number,
at which without counter-rotation~j50! there is no vortex

breakdown and the flow is unstable, a moderate counter-
rotation ~j520.13! induces a vortex breakdown and stabi-
lizes the flow.

2. Corotating bottom

The effect of increasing corotation of the bottom is illus-
trated in Figs. 5–7 forg51.5 and different values of Re.
Figure 5 ~Re5800! shows that with a rotating top and sta-
tionary bottom~j50! there is no vortex breakdown. Corota-
tion of the bottom leads to the appearance of a separation
vortex bubble in the flow whenj reaches the valuej50.2.
This is also in qualitative agreement with the experimental
results of Roesner.3,4 The size of the separation bubble in-
creases with the increase of the corotation~j50.2–0.5!. The
increasing corotation of the bottom induces a counterclock-
wise recirculation region that appears in the lower corner of
the cylinder~j50.1! and grows with the increase ofj ~from
0.1 to 0.5!. Whenj becomes close to 1, the meridional flow
tends to become antisymmetric with respect to the midplane
of the cylinder. This leads to the appearance of the second
separation vortex bubble~j50.8, 0.9!. The meridional flow
becomes antisymmetric atj51 and contains two antisym-
metric separation bubbles that are attached to the axis.

Strong corotation may promote the vortex breakdown,
even at significantly lower Reynolds numbers. This is illus-
trated in Fig. 6 forg51.5 and Re5400. The separation vor-
tex bubble appears whenj reaches the value ofj50.9. At
j51 the meridional flow contains the antisymmetric vortex
breakdown similar to that shown in Fig. 5 forj51.

The influence of corotation on a flow that has a vortex
breakdown atj50 is slightly different ~Fig. 7!. With the
increase ofj the separation vortex bubble grows and moves

FIG. 3. Counter-rotating bottom. Streamlines. Here Re52000, g52.5,
0>j>20.01.

FIG. 4. Counter-rotating bottom. Streamlines. Here Re53800, g51.5,
0>j>20.6.

FIG. 5. Corotating bottom. Streamlines. Here Re5800,g51.5, 0<j<1.

FIG. 6. Corotating bottom. Streamlines. Here Re5400,g51.5, 0<j<1.
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downward, such that atj50.4 the boundary of the recircula-
tion zone is attached to the bottom. Two separation bubbles
in the antisymmetric flow atj51 are detached from the axis
and form two antisymmetric vortex rings. The continuous
change of shape of the recirculation zone in Fig. 7 shows that
the ‘‘usual’’ vortex breakdown atj50 and the vortex break-
down that is detached from the axis atj51 are the results of
the same vortex breakdown phenomenon and continuously
transform one into another with the continuous change ofj.

The appearance and evolution of the antisymmetric vor-
tex breakdown for different Re in the case when the top and
the bottom rotate with the same angular velocities~j51! is
shown in Fig. 8 forg51.5. Two antisymmetric separation
vortex bubbles appear when the Reynolds number reaches a
certain value~Re5400!. With the increase of Re the size of
the separation bubbles grows~Re5600!. With a further in-
crease of Re, the upper and the lower stagnation points on
the axis of the cylinder move toward the middle stagnation
point at r50, z5g/2 ~Re5600, 700, and 800!. When the
Reynolds number becomes larger, the three stagnation points
coincide and the recirculation zones detach from the axis
~Re51000!.

Figure 9 shows the effect of corotation on the steady
flow that contains two separation vortex bubbles atj50.
With a weak increase of the corotation both separation
bubbles grow~j50.02! until the two recirculation zones

merge~j50.03! and form a relatively large single separation
vortex bubble~j50.1!. The recirculation region initiated in
the corner grows with the increase of the corotation~j vary-
ing from 0.1 to 0.4! until it merges with the vortex break-
down bubble, resulting in the existence of two recirculation
fields ~j50.5!. With a further increase ofj the flow is finally
deformed, atj51, into four fields, two of which are symmet-
ric detached bubbles.

The flows calculated forj51 ~Figs. 5–9! are in qualita-
tive agreement with the experimental results of Spohn
et al.19 and with the numerical results of Valentine and
Jahnke.18

B. Onset of oscillatory instability

The oscillatory instability was investigated forg51.5
and21<j<1. It was found that the instability sets in as a
result of a Hopf bifurcation24 for all values ofj. The direc-
tion of bifurcation25 was checked forj521, 0, and 1 and
was found to be supercritical.

1. Counter-rotating bottom

The influence of counter-rotation on the transition from
steady to oscillatory flow was studied forg51.5. The depen-
dence of the critical Reynolds number Recr on the rotation
ratio j is shown in Fig. 10~a!. Steady flows are stable below
the solid curve and unstable above it. The corresponding
dependence of the circular frequency of oscillationsvcr on j
is shown in Fig. 10~b!. The curves Recr~j! andvcr~j! consist
of four continuous branches corresponding to different domi-
nant perturbations~different most unstable eigenmodes of
the linearized problem!. These eigenmodes become domi-
nant at different values of the control parameters and
abruptly replace each other at the points where the neutral
curve Recr~j! has discontinuities in the slope. The almost
vertical branch of the neutral curve Recr~j! located in the
neighborhood ofj'20.63 corresponds to the onset of insta-
bility with a change ofj rather than with the change of Re.

Figure 10~a! shows that the critical Reynolds number
may be noticeably increased by a moderate counter-rotation.
Thus, the critical Reynolds number increases from
Recr52724 at j50 to Recr53957 at j520.27. Stronger
counter-rotation leads to nonmonotonic decrease of the criti-
cal Reynolds number, which reaches the value Recr51646 at
j521.

FIG. 7. Corotating bottom. Streamlines. Here Re51500,g51.5, 0<j<1.

FIG. 8. Same corotation of the top and the bottom. Herej51, g51.5,
300<Re<1000.

FIG. 9. Streamlines of meridional flow for Re52000,g52.5, 0<j<1.
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Figure 10 also shows that the dependence Recr~j! and
vcr~j! may be nonmonotonic and very sensitive to a small
change of a control parameter, even along a continuous
branch of the neutral curve. This behavior of the critical
parameters was verified by straightforward solution of the
full unsteady problem using the finite volume method with
75375, 1503150, and 2003200 stretched grids@Figs. 10~a!
and 10~b!#. It is seen that the nonmonotonic behavior of the
curves Recr~j! andvcr~j! can be reproduced also by the finite
volume method. Results of both numerical methods are close
whenj.20.7. In the interval21<j<20.7 the frequency of
oscillations calculated by the finite volume method con-
verges slowly, but with the refinement of the mesh becomes
closer to the result of the spectral method.

The four branches of the curves Recr~j! andvcr~j! ~la-
beled I–IV in Fig. 10! correspond to four different modes of
the perturbation. Examples of steady flows at the critical val-
ues of parameters and corresponding perturbations are shown
in Fig. 11. Each plot in Fig. 11 is arranged in the following
way: solid curves show isolines of the streamfunctionc and
the azimuthal momentMw ; dashed lines show isolines of
the modulus of the most unstable linear modes of perturba-
tions of the functionsc andMw . The left part of each plot
corresponds to the azimuthal momentMw and its perturba-
tion ~perturbation of the azimuthal component of the flow!.
The right part of each plot corresponds to the streamfunction
c and its perturbation~perturbation of the meridional com-

ponent of the flow!. The axis of the cylinder is shown by a
vertical line in the middle of each plot.

Figure 11~a! corresponds to the branch of the neutral
curve that starts atj521 and ends atj'20.63 ~branch I!.
The perturbations ofc andMw have a global maximum on

FIG. 10. Stability diagrams corresponding to the onset of oscillatory instability in a cylinder with rotating top and counter-rotating bottom. Hereg51.5. Solid
lines—results of the linear stability analysis~Galerkin method!. Steady and unsteady states obtained by the solution of the full unsteady problem using the
finite volume method are shown byn, m, for a 75375 grid;s, d, for a 1503150 grid;h, j, for a 2003200 grid.~a! Recr vs j; ~b! vcr vs j; ~c! Recr vs j,
blowup of ~a! for 20.6<j<20.7; ~d! vcr vs j, blowup of ~b! for 20.6<j<20.7.

FIG. 11. Isolines of the rotational momentMw ~the left part of each plot!
and the streamfunctionc ~the right part of each plot! at the critical point
~solid lines! and isolines of the corresponding perturbations~dashed lines!.
Counter-rotation,g51.5. ~a! j521, Recr51646;~b! j520.64, Recr52905;
~c! j520.49, Recr53158; ~d! j520.05, Recr52585.
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the isolines corresponding toc50 andMw50. In the case
j521, shown in Fig. 11~a!, the isolinesMw50 andc50
coincide with the midplane of the cylinder; for other values
of j they do not. Similar patterns of the perturbation are
obtained at the next, almost vertical, branch of the neutral
curve ~branch II!. The example is shown in Fig. 11~b!. The
perturbations of both functions have a global maximum on
the isolinesMw50 andc50. Generally, one can say that
these branches of the neutral curve correspond to an instabil-
ity that sets in at the boundary separating two distinct re-
gions: the region of positive rotation of the fluid with its
clockwise recirculation region and the region of negative ro-
tation of the fluid with its counterclockwise recirculation re-
gion.

Examples of the perturbations characteristic for the next
two branches of the neutral curve@Fig. 10~a!#, which corre-
spond to the intervals20.64<j<20.13 ~branch III! and
20.13<j<0 ~branch IV! are shown in Figs. 11~c! and 11~d!.
In the casej520.49 @Fig. 11~c!# the perturbation ofMw

still has a global maximum on the isolineMw50, but the
largest value of the perturbation ofc is located inside the
largest recirculation region. The pattern of the perturbation
of Mw becomes completely different on the next branch of
the neutral curve@Fig. 11~d!#. The onset of instability along
these two branches is characterized by a rapid growth of the
perturbation ofMw along the sidewall and the bottom of the
cylinder. Similar patterns of perturbations were reported by
Gelfgatet al.11 in the case ofj50 and varyingg.

Oscillations of the meridional flow in a slightly super-
critical state are illustrated in Fig. 12 forj520.6. The pul-
sations of the meridional flow in this case@branch III in Fig.
10~a!# lead to the appearance of a weak separation vortex
bubble that exists during approximately one-half of a period.
During the other half of a period the separation bubble
merges with the region of counterclockwise meridional cir-
culation. A similar plot~not shown here! of instantaneous
streamlines for a case on a different branch of the neutral

curve @j520.7, branch I in Fig. 10~a!# shows only a weak
pulsation of both recirculation regions, without an instanta-
neous separation bubble.

2. Corotating bottom

The influence of corotation on the onset of the oscilla-
tory instability was studied for the same aspect ratiog51.5.
The corresponding relations Recr~j! andvcr~j! are shown in
Figs. 13~a! and 13~b!. In some aspects the influence of coro-
tation is similar to that of counter-rotation.

~i! There is a part of the neutral curve, located at
j'0.55, which corresponds to the onset of instability with
increasing ofj rather than with increasing of Re~branches
VI and VIII !. This part of the neutral curve and the corre-
sponding part of the relationvcr~j! are expanded in Figs.
13~c! and 13~d!.

~ii ! A certain corotation may significantly increase the
critical Reynolds number. On the whole, all the values of the
critical Reynolds number forj.0 are larger than the value of
Recr at j50. The neutral curve Recr~j! has two sharp
maxima. The first maximum corresponds to the rapid in-
crease of Recr from Recr52724 at j50 to Recr53847 at
j50.09. The second maximum Recr54575 is located at
j50.56. This is the largest value of Recr in the whole interval
21<j<1.

The nonmonotonous behavior of the curves Recr~j! and
vcr~j! was reproduced by the solution of the full unsteady
problem using the finite volume method. The number of
nodes of the stretched grid varied from 75375 to 2003200
@Figs. 13~a! and 13~b!#. Details of these calculations are de-
scribed in the Appendix.

There exist several branches of the curves Recr~j! and
vcr~j! corresponding to different most unstable linear modes
of the steady flow~Fig. 13!. Examples of the patterns of the
most dominant perturbations and flows at the critical values
of parameters are shown in Fig. 14. The flows and the per-
turbations are shown in Fig. 14 in the same way as for the
counter-rotation in Fig. 11.

The patterns of the perturbations corresponding to the
two branches located in the intervals 0<j<0.05 ~branch IV!
and 0.05<j<0.09 ~branch V! are similar to those obtained
for j50 and described by Gelfgatet al.11 Figures 14~a! and
14~b! correspond to the next branch of the neutral curve
~branch VI!, which starts atj'0.1 and continues until
j'0.56, with a short break in the interval 0.3<j<0.31
~branch VII! @Fig. 13~a!#. The maximum of the perturbations
of c is located in the lower part of the main clockwise recir-
culation region while the maxima of the perturbation ofMw

are located in the area where rotation is relatively weak.
Comparison of Figs. 14~a! and 14~b! shows that with the
growth of j the maxima of the perturbation ofMw are
shifted upward, together with the region where the axial dis-
tributions ofMw for a fixed radius reach their minimum.

Figures 14~c!–14~e! illustrate flows and perturbations
that are characteristic for strong corotation, which corre-
sponds to the branch of the neutral curve located in the in-
terval 0.585<j<1 @branch X in Fig. 13~a!#. At the beginning
of this branch@Fig. 14~c!, j50.6# the perturbations ofc and
Mw are strongest in the region where rotation is weak@the

FIG. 12. Instantaneous streamlines of the meridional flow plotted for equal
time intervals 0.1 T covering the complete periodT519.21. g51.5,
j520.6, and Re53200. Calculation with the finite volume method using a
75375 stretched grid.
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left part of Fig. 14~c!# and where the isolinec50, separating
clockwise and counterclockwise meridional circulations, is
located. This is analogous~but not identical! to the case of
strong counter-rotation shown in Figs. 11~a! and 11~b!. With
the increase ofj up to j51, the perturbation ofc is charac-
terized by two maxima located in the clockwise and the
counterclockwise recirculation regions. The pattern of the
perturbation ofMw is very different from the previous cases
and has a global maximum in the same place where the sepa-
ration vortex bubbles are located. The whole structure of the
flow and the perturbation become reflection symmetric with
respect to the planez5g/2 atj51. This leads to the conclu-
sion that the oscillatory instability atj51 sets in without a
break of the reflection symmetry, which is in agreement with
the result of Lopez20 obtained for j51 and g53
~gLopez5g/251.5!. The solution of the unsteady problem by
the finite volume method~see Fig. 18! also shows that the
reflection symmetry is preserved in a slightly supercritical
state.

The symmetric structure of the flow and the perturbation
at j51 allowed us to verify the result by taking into consid-
eration one-half of the cylinder and imposing the boundary
conditions of symmetry at the lower horizontal boundary.
Close values of Recr andvcr were obtained for both nonsym-
metric and symmetric models~for details see the Appendix
and Table I!. The patterns of the flow and perturbations ob-
tained for the symmetric model are shown in Fig. 14~e!. It is

seen that the patterns of the flow and the perturbations in
Figs. 14~d! and 14~e! are similar. However, it is clear that the
spatial resolution of the numerical method is much better in
the symmetric case, where only one-half of the flow region is
taken into consideration.

The abrupt changes of the perturbations when one domi-
nant mode is replaced by another one are illustrated in Figs.
15 and 16. Figure 15 corresponds to the changes of the domi-
nant mode in the neighborhood ofj50.3, which is seen in
Fig. 13~b! as the sudden jump of the critical frequency from
vcr50.239 to vcr50.362 at j50.3 and then back to
vcr50.243 atj50.32. Figure 15 shows that patterns of the
perturbations atj50.29 andj50.32 are similar, but are no-
ticeably different atj50.3. The instability in most of the
interval 0.1<j<0.56 is caused by the same mode of the per-
turbation @also see Figs. 14~a! and 14~b!#, except the short
interval 0.3<j<0.32 where the characteristics of the insta-
bility ~amplitude and frequency of oscillations! are different.

Note that atj50.54 there exist three distinct critical
points with different critical frequenciesvcr , as indicated by
A, B, and C in Figs. 13~c! and 13~d!. The isolines of pertur-
bations corresponding to these three points are shown in Fig.
16. With the increase of Re@see Fig. 13~c!# the steady flow
loses its stability at Re53463, then becomes stable at Re
54326 and finally loses the stability at Re54632. Compari-
son of the perturbations plotted in Fig. 16 shows that two
critical points illustrated in Figs. 16~a! and 16~b! belong to

FIG. 13. Stability diagrams corresponding to the onset of oscillatory instability in a cylinder with a rotating top and a corotating bottom. Hereg51.5. Solid
lines—results of the linear stability analysis~Galerkin method!. Steady and unsteady states obtained by the solution of the full unsteady problem using the
finite volume method are shown byn, m, for a 75375 grid;., ., for a 1003100 grid;s, d, for a 1503150 grid;h, j, for a 2003200 grid.~a! Recr vs
j; ~b! vcr vs j, ~c! Recr vs j, blowup of ~a! for 0.5<j<0.6; ~d! vcr vs j, blowup of ~b! for 0.5<j<0.6.
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the same branch of the neutral curve@branch I in Figs. 13~c!
and 13~d!#, while the third point belongs to another branch
@branch II in Figs. 13~c! and 13~d!#. Similar examples of the
abrupt changes in the patterns of perturbations can be made

for all other points, where the neutral curve Recr~j! has dis-
continuities in the slope, and where the relationvcr~j! has
abrupt jumps.

Since the critical values on the branch of the neutral
curve 0.57<j<1 showed the slowest convergence~see the
Appendix and Table I!, the results were verified by the solu-
tion of the full unsteady problem using the finite volume

FIG. 14. The same as Fig. 11. Corotation,g51.5.~a! j50.2, Recr53249;~b!
j50.4, Recr52905; ~c! j50.6, Recr54493; ~d! j51, Recr53843; ~e! j51,
Recr53845, symmetric case.

FIG. 15. Changes in the patterns of the perturbations ofMw ~the left part of
each plot! and of c ~the right part of each plot! in the neighborhood of
j50.3. ~a! j50.29, Recr53278; ~b! j50.3, Recr53265; ~c! j50.32,
Recr53228.

TABLE I. Convergence study for the critical parameters. Hereg51.5.

g51.5

30330
basis

functions

32332
basis

functions

34334
basis

functions

36336
basis

functions

38338
basis

functions

40340
basis

functions

j521 Recr 1700 1669 1656 1649 1646 1644
vcr 0.2887 0.2859 0.2848 0.2842 0.2839 0.2837

j520.6 Recr 3096 3107 3105 3105 3105 3105
vcr 0.3300 0.3295 0.3293 0.3291 0.3290 0.328 95

j520.27 Recr 3957 3957 3957 3957 3957 3957
vcr 0.323 86 0.323 85 0.323 85 0.323 86 0.323 86 0.323 86

j50 Recr 2724 2724 2724 2724 2724 2724
vcr 0.236 748 0.236 749 0.236 752 0.236 754 0.236 753 0.236 754 5

j50.29 Recr 3279 3278 3278 3278 3278 3278
vcr 0.239 09 0.239 09 0.239 09 0.239 10 0.239 10 0.239 10

j50.6 Recr 4532 4544 4557 4549 4522 4493
vcr 0.4822 0.4805 0.4798 0.3878 0.3824 0.3806

j50.8 Recr 4247 4176 4265 4398 4452 4191
vcr 0.5645 0.3776 0.3845 0.5550 0.5511 0.4148

j51
non-symmetric

Recr 3218 3369 3528 3731 3837 3845
vcr 0.6018 0.5936 0.5877 0.5814 0.4527 0.4603

j51 Recr 3846 3843 3843 3842 3843 3845
symmetric vcr 0.4845 0.4842 0.4840 0.4840 0.4840 0.4840
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method with a 1503150 stretched grid. Figs. 13~a! and 13~b!
show that the obtained results are in agreement both for criti-
cal values of the Reynolds number and the critical frequency.
Examples of the calculated slightly supercritical flows are
shown in Figs. 17 and 18.

In the casej50.8 ~Fig. 17! the oscillations of the two
main meridional recirculation regions are followed by a
rapid change of the vortical structure near the axis of the
cylinder. During one period of oscillations one can see the
appearance and disappearance of different separation vortex
bubbles. Some of these are attached to the axis and others are
detached. The structure becomes more regular in the sym-
metric casej51 ~Fig. 18, symmetry was not imposeda pri-
ori in the computations!. In this case two pulsating pairs of
attached and detached separation vortex bubbles are clearly

seen. It should be noticed that the simultaneous coexistence
of the detached and attached vortex breakdowns was not ob-
served in steady states. This leads to the conclusion that such
a coexistence is a feature of the oscillatory states only.

IV. CONCLUSIONS

A weak counter-rotation of the bottom may suppress the
vortex breakdown that exists in a cylinder with a rotating top
and a stationary bottom. The larger the aspect ratio of the
cylinder the weaker the counter-rotation necessary to sup-
press the vortex breakdown. On the other hand, a certain
counter-rotation may induce the vortex breakdown and sta-
bilize steady flows at relatively large values of the Reynolds
number for which, in the case of the stationary bottom, no
vortex breakdown exists in unstable steady states.

Weak corotation of the bottom of the cylinder leads to
the appearance of vortex breakdown at lower values of the
Reynolds number than in the case of a stationary bottom.
Stronger corotation may lead to the detachment of the sepa-
ration vortex bubble from the axis of the cylinder and for-
mation of two vortex rings. It was shown that the meridional
flow with a single separation bubble, characteristic for the
case of a stationary bottom, and the meridional flow with
antisymmetric separation vortex rings, characteristic for
corotation of the top and the bottom with the same angular
velocity, continuously transform one into the other with a
continuous change of the rotation ratio.

The stability of steady flows, onset of the oscillatory
instability, and slightly supercritical oscillatory states were
studied for a fixed aspect ratio of the cylinderg51.5. It was
found that the oscillatory instability sets in due to a Hopf
bifurcation in all the possible cases of co- and counter-
rotation. It was shown that the oscillatory instability may set
in, either with an increase of the Reynolds number or with a
change of the rotation ratio. The corresponding stability dia-
grams in the plane of the control parameters~Re,j! were
obtained yielding also the dependence of the critical fre-

FIG. 16. Changes in the patterns of the perturbations ofMw ~the left part of
each plot! and ofc ~the right part of each plot! at j50.54 corresponding to
three values of Recr . ~a! Recr53463; ~b! Recr54326; ~c! Recr54632.

FIG. 17. Instantaneous streamlines of the meridional flow plotted for equal
time intervals 0.1T covering the complete periodT515.25.g51.5, j50.8,
and Re54200. Calculation with the finite volume method using a 1503150
stretched grid.

FIG. 18. Instantaneous streamlines of the meridional flow plotted for equal
time intervals 0.1T covering the complete periodT513.01.g51.5, j51,
and Re53845. Calculation with the finite volume method using a 1503150
stretched grid.
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quencyvcr on the rotation ratio. It was shown that the neutral
curve Recr~j! and the curvevcr~j! consist of several continu-
ous branches corresponding to several different dominant
perturbations of the flow, which are defined by distinct
eigenmodes of the linearized problem. Characteristic patterns
of the most dominant perturbations were reported and dis-
cussed. It was found that both co- and counter-rotation of the
bottom may stabilize the steady flow and significantly in-
crease the critical Reynolds number. The strongest stabiliza-
tion takes place when the rotation ratio reaches the values
j50.56 andj520.27 for co- and counter-rotation, respec-
tively.

Investigation of the slightly supercritical states showed
good agreement between the results of the linear stability
analysis~using the spectral Galerkin method! and the results
of the numerical solution of the full unsteady problem~using
the finite volume method!. It was found that in the case of
strong corotation the vortex breakdowns attached to and de-
tached from the axis may exist simultaneously in slightly
supercritical oscillatory states.
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APPENDIX: DEPENDENCE OF RESULTS ON THE
NUMERICAL DISCRETIZATION

The calculations of steady states do not cause any nu-
merical difficulties. The steady states shown in Figs. 1–9
were calculated, both with the Galerkin spectral method and
with the finite volume method. The number of basis func-
tions in the Galerkin method varied from 24324 to 30330.
The number of nodes in the stretched finite volume grid var-
ied from 50350 to 1003100. Comparison of results ob-
tained with the finest discretizations showed that the calcu-
lated values of the streamfunction and the azimuthal velocity
differ by less than 1%. Correct patterns of the flow were
obtained also with coarser discretizations.

The critical parameters Recr andvcr calculated with dif-
ferent numbers of basis functions in the truncated Galerkin
series are shown in Fig. 19 for the whole interval21<j<1.
The largest number of the basis functions was 40340 in the
Galerkin series used for the approximations of the meridi-
onal and the azimuthal components of the flow~see Gelfgat
et al.11 for details!. Thus, the largest total number of degrees
of freedom for the Galerkin method was 3200.

The convergence of the critical parameters for different
values of the rotation ratioj is shown in Table I. It was
shown by Gelfgatet al.11 that the use of 24324 basis func-
tions in the Galerkin series gives three correct digits of the
critical Reynolds number and five correct digits of the criti-
cal frequency for the casej50, g51.5 ~the values of Recr
andvcr are reported in Table I!. However, the convergence
for large uju is slower, especially forj>0.6. The most de-
tailed comparison reported in Fig. 19 is done for calculations

with 30330 and 34334 basis functions. The results for these
two discretizations coincide in the interval20.8<j<0.5. For
21<j<20.8 and 0.5<j<0.6 the 40340 discretization
gives only two correct digits of the critical parameters.

The critical values in the interval 0.6<j<1 are most
sensitive to discretization. It was found that there are two
distinct eigenvalues in this interval, which change their signs
at very close values of the Reynolds number. Two distinct
curves ofvcr~j! for 0.6<j<1 are shown in Fig. 19~b!. Be-
sides this, the convergence of the critical Reynolds number is
much slower than it was for smaller values ofj, such that for
j>0.7 the use of 40340 basis functions is not enough to
ensure the convergence. However, with an increasing num-
ber of basis functions the intervals between sequentially ob-
tained Recr decrease.

More exact conclusions about the onset of instability in
the interval 0.6<j<1 were drawn from the solution of the
full unsteady problem using the finite volume method with a
1503150 stretched grid. The slightly supercritical oscillatory
state atj51 showed that the instability sets in without a
break of the reflection symmetry with respect to the plane
z5g/2. This allowed us to repeat the calculations with the
Galerkin method for only one-half of the cylinder and to
obtain the converged values of Recr and vcr at j51 ~see
Table I!. Further calculations with the finite volume method
for j50.9, 0.8, 0.7, and 0.6 showed that the critical Reynolds
number is localized correctly@see Fig. 13~a!#, and that the
perturbation with lowervcr @see Fig. 19~b! for 0.6<j<1# is

FIG. 19. Critical parameters obtained with a different number of basis func-
tions. ~a! Recr vs j, ~b! vcr vs j. 3, 30330 Galerkin functions;s, 34334
Galerkin functions;h, 36336 Galerkin functions;L, 38338 Galerkin
functions; andn, 40340 Galerkin functions.
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dominant. Because of this the branch with lowervcr is
shown by a solid line in Figs. 13~b! and 19~b!, and the
branch with largervcr is shown by a dashed line in Fig. 19~b!
only.

A series of time-dependent calculations with the finite
volume method was carried out to verify the rapid increase
of the critical Reynolds number atj'20.63 andj'0.55
@Figs. 10~a! and 13~a!#. At j'20.63 the almost vertical
branch of the neutral curve, calculated by the spectral
method, is well reproduced with the use of a 75375 grid@the
corresponding Recr is located between the symbolsn andm,
Fig. 10~a!#. Much worse convergence was observed in the
vicinity of j'0.55. Thus, calculations with 1003100, 150
3150, and 2003200 grids atj50.56 and 0.57@Fig. 13~a!#
showed that the critical Reynolds number grows with the
increase of the number of grid nodes. Using 1503150 and
2003200 grids we succeeded to localize the almost vertical
branch of the neutral curve~the corresponding Recr is located
between the symbolsh, s andj, d, Fig. 13~a!#. Compared
to the almost vertical branch calculated by the spectral
method, the same branch calculated by the finite volume
method is shifted toward lower values of the rotation ratio~it
is located betweenj50.52 andj50.54!. However, as it was
noticed above, in this case one cannot be sure of the conver-
gence of the finite volume method.

Slow convergence of the finite volume method was also
observed near points where the neutral curves Recr~j! have
breaks in the slope and an abrupt change of the critical fre-
quency takes place@Figs. 10~a!, 10~b! and Figs. 13~a!,
13~b!#. Thus, calculations in the interval 0<j<0.5 with the
75375 finite volume grid showed that the corresponding
critical parameters are close to those calculated by the spec-
tral method almost everywhere, except near break points at
j50.08 and 0.32. For example, atj50.08 the frequency of
oscillations obtained on a 75375 finite volume grid does not
agree with the result of the spectral method@Fig. 13~b!#. To
obtain the correct result, which agrees with the converged
calculations of the spectral method, it was necessary to use
1503150 nodes@Fig. 13~b!#. At the same time the results of
the calculations using 75375 nodes atj50.05 andj50.1 are
in good agreement with the results of the spectral method.

A slow convergence of the frequency of oscillations cal-
culated by the finite volume method was observed also in the
interval 21<j<20.7 @Fig. 10~b!#. However, a comparison
of results obtained using the 1003100, 1503150, and 200
3200 nodes shows that with the refinement of the mesh the
values of the critical frequency become closer to those cal-
culated by the spectral method.
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