INTEGRATION
theVLSI journal

52 a

ELSEVIE INTEGRATION, the VLSI journal 29 (2000) 167-180

www.elsevier.com/locate/vlsi

A dual precision IEEE floating-point multiplier”

Guy Even®!, Silvia M. Mueller®*-2, Peter-Michael Seidel®?

*Department of Electrical Engineering-Systems, Tel-Aviv University, Tel-Aviv 69978, Israel
°IBM Development Germany, Lab Boeblingen — Dept. 3173, D-71032 Boeblingen, Germany
*Computer Science and Engineering Department, Southern Methodist University, Dallas, TX 75275, USA

Received 12 February 1999

Abstract

A new algorithm for computing IEEE-compliant rounding is presented, called injection-based rounding.
Injection-based rounding is simple and facilitates using the same rounding circuitry for different precisions.
We demonstrate the usefulness of injection-based rounding in a design of an IEEE floating-point multiplier
capable of performing either a double-precision multiplication or a single-precision multiplication. The
multiplier is designed to minimize hardware cost by using only a half-sized multiplication array and by
sharing the rounding circuitry for both precisions. The latency of the multiplier is in single-precision two
clock cycles and in double precision the latency is three clock cycles, where each pipeline stage contains
roughly 15 logic levels. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: 1EEE floating point arithmetic; Rounding; Floating point multiplier

1. Introduction

Fast, low precision floating-point operations have been acknowledged recently as very useful for
real-time 3D graphic applications [2,5,6,9]. The new 3D graphic applications reverse the previous
trend of focusing on higher and higher precisions and set a new performance goal. The new design

“A preliminary version of this paper titled “A Dual Mode IEEE Multiplier” appeared in the Proceedings of the 2nd
IEEE International Conference on Innovative Systems in Silicon (ISIS’97), pp. 282-289, 1997.

! Supported in part by the North Atlantic Treaty Organization under a grant awarded in 1996.

* Corresponding author. Fax: + 49-7031-16-2829.

2Supported by the German Science Foundation (DFG). Research done while affiliated with CS Department,
University of Saarland, Germany

E-mail addresses: guy@eng.tau.ac.il (G. Even), smm@de.ibm-com (S.M. Mueller), seidel@seas.smu.edu (P.-M. Seidel).

3 Supported by the DFG Graduiertenkolleg “Effizienz und Komplexitaet von Algorithmen und Rechenanlagen”,
Universitaet des Saarlandes.

0167-9260/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PI: S0167-9260(00)00006-7

168 G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180

goal is to design cheap IEEE floating-point units (FPUs) capable of both, double- and single-
precision operation with a higher throughput for single-precision operations.

IEEE FPUs support both, single- and double-precision operation. However, the throughput of
low-precision floating-point operations is often smaller than high-precision operations. This is
caused by the necessity to translate single-precision operands to double-precision format, and then
translate the double-precision result back to single-precision format. In the x86 architecture (e.g.
Pentium) and in the Motorola 68000 family, computations are performed in extended double
precision and translation to low precision requires storing the result to memory. Our goal is to
present designs of cheap and versatile IEEE FPUs that deliver good performance for both
precisions.

Our multiplier design supports all four IEEE rounding modes. In single precision the latency is
two clock cycles and in double precision the latency is three clock cycles, where each pipeline stage
contains roughly 15 logic levels. The multiplier uses a half-sized (i.e. 27 x 53) multiplication array,
and thus, the cost of the multiplier is reduced (see for example [1,3]). In double-precision
multiplication, the multiplication array is used during the first two cycles. Therefore, new multipli-
cations can be issued only after two clock cycles. In single-precision multiplication, a new
multiplication can be issued in the next clock cycle. The hardware overhead and delay caused by
supporting both precisions compared to a similar design that supports only double-precision
multiplications is surprisingly small.

We present a new rounding algorithm which simplifies supporting different precisions and
enables using the same rounding circuitry for both precisions. In addition, our rounding algorithm
advances some of the rounding computation to the addition tree without adding a significant delay
to the addition tree. Our rounding algorithm differs from previous suggestions [4,7,10,11] by
injecting a value that depends only on the rounding mode.

The paper is organized as follows: In Section 2, we briefly review previous rounding algorithms
and the computation of a sticky-bit from a carry-save representation. In Section 3, we define
injection-based rounding. In Section 4, we describe the structure and functionality of the dual
precision multiplier. In Section 5, we describe the non-standard blocks of the multiplier design. In
Section 6, we prove the correctness of the implementation of the rounding algorithm. A conclusion
is given in Section 7.

2. Previous work

Our rounding algorithm is designed to support multiple precisions and enables using the same
rounding circuitry while still obtaining a fast rounding algorithm.
We briefly describe previous rounding algorithms that we are aware of:

1. Santoro et al. [10] and Quach et al. [7,10] reduced the four IEEE rounding modes to three
modes called round-to-zero (RZ), round-to-infinity (R1), and round-to-nearest-ecven (RNE). These
modes correspond to a “floor” rounding, a “ceiling” rounding, and the well-known round-to-
nearest mode.

Furthermore, they described how to reduce RNE to a rounding mode called round-to-
nearest-up (RNU). The difference between RNE and RNU is that in a case of a tie, the number is

G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180 169

rounded up in RNU, whereas in RNE it is rounded to the even significand. Given a RNU
rounding unit, one can easily obtain the correct RNE result by pulling down the LSB in case of
a tie that should have been rounded down rather than rounded up.

Given a precision p (where p = 24 in single precision and p = 53 in double precision), the
rounding algorithms of Santoro et al. [10] and Quach et al. [7] are based on the above
reduction and on truncating the sum and carry vectors in the bit-position — (p — 1) and adding
a prediction of size 2~?~ 1 based on the rounding mode and the values of the sum and carry
vectors in bit-position [— p]. These rounding algorithms require a 3-way compound adder that
computes the sum, the incremented sum, and the sum plus 2.

2. Yu and Zyner [11,12] presented a fast rounding algorithm in which the product given as
a carry-save number is divided into 3 parts: the lower part produces a carry-bit and a sticky-bit,
the upper part is compressed to obtain the sum and the incremented sum, and the middle part is
used to compute the least-significant bit (LSB), the guard-bit, and the round-bit. Two parallel
paths are used for the rounding decision: one for the case that the product is in the range [1,2)
and one for the case that the product is in the range [2,4). The final selection is based on the most
significant bit (MSB) of the product and the carry generated by the rounding.

3. Gamez et al. [4] presented a rounding algorithm that avoids having to shift the operands and
the product while partially sharing the same rounding circuitry for all precisions. Their
algorithm is input a non-redundant representation of the number to be rounded. The algorithm
is based on having two paths: In one path, the number is padded with zeros starting from the
rounding position. In the second path, the number is padded by ones starting at the rounding
position, and then it is incremented (increment occurs at a fixed position at the far right end of
the number to allow sharing of the rounding circuitry in different precisions). The rounding
decision based on the true LSB, round-bit, and sticky-bit selects one of these numbers as the
rounded result. Note that this rounding algorithm requires normalizing the product before
rounding so that it is in the range [1,2).

4. Saishi et al. [8] presented a rounding algorithm for fixed-point two’s complement
multiplication that supports two rounding modes (round-to-zero and RNU). Their rounding
algorithm is based on injecting a value determined by the sign of the product and the rounding
mode so that rounding is reduced to truncation. Our rounding algorithm is an extension
of this idea to accommodate for different precisions in the context of floating-point
multiplication.

2.1. Sticky- and carry-bit computation

The sticky- and carry-bit computation is performed on a carry-save encoded digit string having
52 digits in double precision and 23 digits in single precision. In the case of double precision, the
computation is spread over two clock cycles; in each cycle 26 digits are processed.

The naive way of computing the sticky-bit of a carry-save encoded string is to compress the
string to a non-redundant binary encoded string and then or the bits. A faster method was
suggested by Yu et al. [11] in which the carry-save encoded string is processed by a constant depth
circuit before being input to a tree of or-gates. The carry- and the sticky-bit computation can share
some of the circuitry to reduce the cost.

170 G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180
3. Injection-based rounding

In this section we present a new method for implementing IEEE rounding called injection-based
rounding.

The IEEE Standard defines four rounding modes: round toward 0, round toward + oo, round
toward — oo, and round to nearest. We deal with numbers that are represented in a sign-
magnitude representation. The rounding modes round toward + oo and round toward — oo can
be reduced, based on the sign of the number, either to round toward zero (i.e. truncate) or round to
infinity (i.e. round up) [7]. We assume henceforth that the number to be rounded is non-negative.
We focus on three rounding modes: RZ - round toward zero, RI - round toward infinity, and RNE
- round to nearest (even).

Following Quach et al., we implement RNE by RNU (round to nearest up) followed by an
adjustment of the LSB. RNU mode differs from RNE mode only when the exact result is in the
midpoint between two successive representable values; in this case RNE rounds to the representa-
ble value with the zero LSB and RNU rounds to the larger representable value. A discrepancy
between RNE and RNU can occur only if the LSB in RNU is 1, in which case pulling down the
LSB to zero results with the RNE result.

The role of the injection in injection-based rounding is to reduce the three rounding modes RZ,
RNU, RI to RZ. Namely,

roundyae(a- b) = roundgz(a- b + injection).

If a- be[1,2), then the value of the injection depends only on the rounding mode. Let p denote the
length of the significand, that is: p = 24 in single-precision format, and p = 53 in double-precision
format. The value of the injection is defined as follows:

0 in RZ mode,
INJECTION = {27 P in RNU mode,
2= _2=2=1 jp RI mode.

The injection reduces all three rounding modes (RZ, RNU, and RI) to truncation provided that the
product is in the range [1,2). Fig. 1 depicts this reduction.

When the product is in the range [2,4), the injection should be 2-277 in RNU mode, and
27(w=2) 2720~ D jp RI mode. Since the injection is added early based on the assumption that the
product is in the range [1,2), we need to correct the injection when the product is in the range [2,4).

The correction of the injection depends on the rounding mode. The injection correction is
defined as follows:

0 in RZ mode,
COR_INy = {27F in RNU mode,
2@~ ip RI mode.

The correction of the injection is implemented by the correct injection box in Fig. 5.

G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180

real line
RZ rounding intervals
rounding

RNU rounding intervals

representable numbers

P N

\ \
1 1
/ /

\l \l

RNU rounding values

RNU rounding intervals +2
after injection

rounding

T

N |

\
1
/

(A) reduction of RNU to RZ

real line
RZ rounding intervals

rounding

representable numbers

P TN

RI rounding intervals K

RI rounding values

1

RIrounding intervals +2
after injection

rounding

\|

\ \
1 1
/ /
f f
V\ —
) \
/ /

(B) reduction of RI to RZ

Fig. 1. Reduction of the rounding modes by injection: (A) reduction of RNU to RZ, (B) reduction of RI to RZ.

4. Description of the multiplier

171

In this section we describe the multiplier. A block diagram of the significand’s path in the
multiplier is depicted in Fig. 5. We describe the operation of the multiplier in each precision

separately.

4.1. Double precision

We assume that the two significands, 4 and B, are normalized (namely, in the range [1,2)), and
held in registers. Fig. 2 depicts the timing diagram describing the operation of the multiplier. In the

172 G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180

Adeder tree Adder tree Adder tree Adder tree
low part high part low part high part
Double carry & sticky carry & sticky carry & sticky carry & sticky
EOR low part high part low part high part
cisic L
compress & round
Adder tree ‘ \ Adder tree ‘
Single carry & sticky ‘ carry & sticky ‘
pricision L
compress & round ||| compress & round

1 2 3 4 5 time[cycles]

Fig. 2. Timing diagram of dual-precision multiplier. The shaded boxes depict a successive multiplication operation.

first clock cycle, A4 is multiplied by the 26 least-significant bits of B, namely B[— 27: — 52]. The
injection is added to the product in the first clock cycle. The product, encoded as a carry-save digit
string, is latched in two registers, sum and carry, and has digits in positions [— 26: — 104]. In the
second clock cycle, two stages of the pipeline are active: In the first stage of the pipeline, A4 is
multiplied by the 27 most-significant bits of B, namely B[0: — 26]. The 53 most significant
carry-save digits (corresponding to positions [— 26: — 78]) of the product computed in the first
cycle are fed back to the addition tree and added with the product computed in the second cycle.
The higher part of the product, corresponding to positions [1: — 78], is latched at the end of the
second clock cycle by the registers sum and carry. In the second stage of the pipeline, the 26 least
significant carry-save digits (corresponding to positions [— 79: — 104]) of the product computed
in the first clock cycle are fed to the carry & sticky computation box. Note that the product
computed in the first clock cycle has only 79 digits, whereas in the second cycle the computed
product has 80 digits. The stk-mux before the carry & sticky computation box selects during the
second cycle the 26 digits corresponding to positions [— 79: — 104], and during the third cycle,
the 26 digits corresponding to positions [— 53:— 78] are selected. The carry & sticky computation
box outputs the carry-bit C[— 78] and the sticky-bit sticky_low which are latched for the third
clock cycle.

The multiplier array and the addition tree need to support adding the injection during the first
cycle and adding the feedback during the second cycle. The main task of the multiplier array is to
multiply 53 bits by 27 bits. This means that the array has 27 rows if Booth recoding is not used, and
14 rows if radix 4 Booth recoding is used. In either case, one can add two additional rows to the
addition tree without incurring a significant delay to the addition tree. These extra two rows can be
used to feed the injection during the first cycle and the feedback during the second cycle.

In the third clock cycle, the 26 least-significant bits of sum and carry (bit positions [— 53: — 78])
are input to the carry computation box. The sticky computation box is fed by the digits in positions
[— 54: — 78]. The carry & sticky computation box gets also the inputs of the carry-bit C[— 78] and
the sticky-bit sticky_low computed during the second clock cycle (for positions [— 79: — 105]).
The results of this computation are the carry-bit C[— 52] (to be input to position [— 52]), the
round-bit R (that corresponds to position [— 53]), and the sticky-bit corresponding to positions
[—54: —105].

G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180 173

During the third cycle, the 54 most-significant bits of S and C (bit positions [1:— 52]) are added
by a 3-way adder that computes the sum, the incremented sum, and the sum plus 2. (To be precise,
the values computed are: the sum, the sum plus 2732, and the sum plus 27 1) After the 3-way
addition, three selections take place to determine the rounded product:

1. The carry-bit C[— 52] controls the selection of the pair sum,sum + 1 or the pair
sum + 1,sum + 2. We denote the selected pair by x,x + 1.

2. The MSB (bit position [1]) of the sum together with the rounding-mode and the carry-bit R are
fed to the correct injection box to determine which value is selected: x or x + 1. This selection
implements the correction of the injection in case the product is in the range [2,4).

3. The MSB determines whether the product is in the range [1,2) or in the range [2,4). If the MSB
equals 1, then the product is shifted to the right so that it will be in the range [1,2]. Note, that the
MSB includes the injection but ignores the carry-bit C[— 52]. Nevertheless, we prove in Section
5 that the rounding is correct.

The order of the selections is chosen to obtain a reasonable delay and cost. If a further reduction
in timing is desired, one could perform the right-shifting that is controlled by the MSB before the
selection which implements the injection correction. However, such a change would require having
two right-shifters rather than one.

Finally, two corrections take place: (a) the LSB of the rounded product is fixed (in the case of
a discrepancy between RNE and RNU, as explained later); and (b) the MSB of the rounded product
is fixed since significand overflow might occur. Therefore, the product has to be brought to the
range [1,2). This is done by or-ing the two most-significant bits of the product (the two bits left of
the radix point) to produce the final most-significant bit of the product.

Note, that the first stage of the pipeline is engaged in double-precision multiplication during the
first and second clock cycles. Therefore, a new multiplication can be issued only after two clock
cycles, yielding a throughput of one double-precision multiplication per two clock cycles as
depicted in Fig. 2.

4.2. Single precision

We assume that Registers A and B hold 24-bit normalized significands. Note, that one could
consider packing two single-precision significands in each register, and perform the corresponding
multiplications one after the other. We omit this packing possibility to simplify the description.

In single-precision multiplication, multiplexer Amux shifts A by 29 positions to the right. This
“right-justification” causes the least-significant bit of the single-precision product (i.e. bit [— 23]) to
be placed in the same position as the least-significant bit of the double-precision product (i.e. bit
[— 52]). The advantage of this shifting is that the bit positions required for rounding in both
precisions become identical and hence the same circuitry can be used. Multiplexer Bmux selects
B but keeps it “left-justified” (i.e. the radix point is aligned with the radix point in double precision).

In the first clock cycle the multiplication array computes A4-B + injection. The computed
products are latched in the sum and carry registers, and no feedback is used.

During the second clock cycle, the product, stored in registers sum and carry, is compressed and
rounded. The lower part is input to the carry & sticky computation box, and the upper part is

174 G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180

added using the 3-way adder. The only modification compared to the double-precision rounding is
the position of the MSB. Since the single-precision product is aligned with the double-precision
product with respect to the L-bit position, the MSB of the single-precision number appears in
position [— 28]. The selection of the correct MSB is done by the msb-mux. At the end of the
computation, the product needs to be shifted back 29 positions to the left so that it is “left-justified”.

Note, that the first stage of the pipeline is engaged in single-precision multiplication only during
the first clock cycle. Therefore, a multiplication can be issued immediately after a single-precision
multiplication, yielding a throughput of one single-precision multiplication per clock cycle as
depicted in Fig. 2.

5. Details

In this section, we describe the functionality of the non-standard boxes that appear in Fig. 5: the
injection box, the carry & sticky computation box, the correct injection box and the fix LSB & MSB
box.

Injection box: The injection box reduces the four IEEE rounding modes to three rounding modes
based on the sign of the product. The value of the injection is then determined by the reduced
rounding mode. The shifting of the multiplicand 4 by 29 positions to the right in the case of single
precision unifies the injection value for single precision and double precision.

Carry & sticky computation box: Fig. 3 depicts the functionality of the carry & sticky computation
box with the sticky low and carry low registers. The sum and carry strings are given two logical
names: sUM, CARRY; and sum,, CARRY,, Where the subscript refers to the clock cycle in which the
stored value is latched. The bit positions of sum; and carry; are [— 26: — 105] and the bit
positions of sum, and carry, are [1: — 78].

The computation of the carry, round and sticky bit proceeds as follows: In a double-precision
computation in the second clock cycle, the sum; and carry; are input into the 26 carry-save digit

SUM, CARRY 3rd&double
C[-78] sticky_low

12x26 ¢ ¢
\i Y
@;@ AND)|
Y

pre-process
—+ 2x27 +26
\/ Y

carry sticky

f

carry, round-bit sticky

Fig. 3. Carry and Sticky computation box.

G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180 175

sticky and carry-bit computation. The sticky-bit output is latched by the sticky low register. The
carry-bit output, which is the C[— 78] carry bit, is latched by the carry low register. In the third
clock cycle, the sum, and carry, and the carry low are input into the 26 carry-save digit sticky and
carry bit computation. The sticky-bit output is combined with the sticky low to obtain the sticky bit
S. The carry-bit output is the C[— 53] carry bit. The round bit R (corresponding to the bit in
position [— 53] in the non-redundant binary encoded sum of sum and carry) and the carry-bit
C[— 52] are computed by adding C[— 53] with sum,[— 53] and carry, [— 53].

In single-precision multiplication, only sum, and carry, are valid, and the computation of the
carry, round and sticky bit is completed in one cycle.

The pre-process box before the carry and sticky boxes computes the bitwise anp, xor and or of the
inputs which are used by the carry box and the sticky box.

Correct injection box: The correct injection box deals with adding the correction to the injection
when the product is in the range [2,4). Assuming that the msb bit signals this case correctly, the
correction of the injection is as follows:

1. In RZ, no correction is required.

2. In RNU, the correction value is 277 = 2723, This is one bit to the right of the LSB of the
product. However, if the round-bit R equals 1, then the correction together with the round-bit
amount to 272, which implies that the sum needs to be incremented.

3. In R, the correction value is 2~ ®~ Y = 2752 This means that the sum needs to be incremented.

Therefore, the cor_iny signal which controls the inc-mux is defined by
cor_INJ = msh anD (RI or (RNU anD R)).

Fix LSB & MSB box: In case of the rounding mode RNE, our rounding algorithm computed
RNU instead of RNE. To fix the LSB of the rounded product, we introduce the signal npd (no pull
down) which equals 0 when the LSB should be pulled down.

We define the npd signal by

npd = RNE or R or S or (msb anp Z[— 53]).

The correctness proof of the signal npd is given in Section 6. Fig. 4 depicts the functionality of the
Fix LSB & MSB box. The multiplexer deals with shifting back the product to the left in case of
single precision. The position of the MSB in single-precision multiplication is [— 28].

The msb might fail to report overflow correctly, namely, the sum does not overflow, but the
incremented sum does. In this case, the rounded result equals 2, as proved below, and therefore, the
post-normalization shift is implemented by an or-gate, which fixes the MSB.

6. Correctness

The main issue that we address in this section is whether the usage of the msb signal for deciding
if an overflow occurred is correct. As long as the msb bit indicates whether the exact product is
greater than or equal to 2, it is easy to see that the algorithm rounds correctly. But one should also
consider the following cases in which the msb signal is “wrong”: (a) msb = 0 and the exact product is

176 G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180

Z[1:0] Z[-1:-51] Z[-28:-29] Z[-30:-51] Z[-52] npd 0

ZJ[51—+ 2 + 22+ 1{» % 1 29

[Or | (AND]

1 1 + 1
S

53+ 53

1 single
MUX I

o]

Fig. 4. Fix LSB & MSB box.

greater than or equal to 2; and (b) msb = 1 and the exact product (without the injection) is less than
2. The following claim shows that correct rounding can be based on the signal msb even though the
msb signal might be wrong. Moreover, the proof of Claim 1 shows that, whenever the msb signal is
wrong, the rounded product equals 2.

We prove the correctness of rounding in double-precision computations. The proof in case of
single-precision computations follows the same lines.

Claim 1. Let exact denote the exact product, namely Exact = |A|-|B|. Consider the registers
suMm[1: — 104] and carry[1:— 104] which satisfy

[sum[1: — 104]| + |carry[1: — 104]| = EXACT + INJECTION.
Let sum = |sum[1: — 52]| + |carrY[1: — 52]| and define msb by

1 if sum =2,
msb =
0 otherwise.

Then correct rounding of Exact can be computed as follows:

rrz(EXACT + INJECTION) if msb = 0,

rmode(EXACT) = .
¥rz(EXACT 4 INJECTION + cOr_INI) if msh = 1,

where modee {RZ,RNU,RI}.

Proof. We consider two main cases: (1) msb = 0; and (2) msb = 1:

1. Suppose msb = 0. If exact <2 then the claim follows from the definition of injection. If
EXACT = 2, then

EXACT + INJECTION € [2, sum + 27 1), (1)

The reason for this is that the contribution of |sum[— 53: — 104]| + |carry[— 53: — 104]] is in the
range [0,2751).

G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180 177

Since msb = 0, it follows that sum < 2 — 2732, Substituting the upper bound on sum in Eq. (1)
yields

EXACT + INJECTIONE [2,2 + 27 °2). (2)

We assume that the exact product is in the range [2,4), and hence, the injection should be
corrected by adding an injection correction. The correction of the injection, cor—_iny, is in the
range [0,2 7 52], therefore

EXACT + INJECTION + COR_INJE[2,2 + 27°1). (3)

The definition of injection and the injection correction implies that r,,g.(EXACT) =
rrz(EXACT 4+ INJECTION + cor_iNy). Egs. (2) and (3) imply that

Frz(EXACT + INJECTION + COR—INJ) = Frz(EXACT + INJECTION) = 2

and part 1 follows.
. Suppose msb = 1. If exact = 2 then the claim follows from the definition of injection and the
injection correction. If Exact < 2, then since mecTion e [0,2732), it follows that

EXACT + INJECTIONE [2,2 + 27 52), 4)

The proof now follows the proof in case msh =0. [

We now prove that correct rounding is computed by the circuitry described in Fig. 5.

Claim 2. Consider the notation used in Claim 1:

1. If msb = 0 then

rrz(EXACT + INJECTION) = sum + C[— 52]-27 52,

2. If msb =1 then

Frz(EXACT + INJECTION + COR_INJ)

= ((sum/2 + (C[— 52] + cor_iny)- 27 33)div 27 52)- 2732,

Proof. The definitions of sum and C[— 52] imply that

EXACT + INJECTION = sum + C[— 52]-27°2 + tail, (5)

where tail e [0,27°2). If msb = 0, it follows that the rounded product is in the range [1,2], and part

(1) of the claim follows.

The second part of the claim follows from the shifting of the significand by one position to the

right and chopping off the tail in positions [— 53:— 105]. O

178 G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180
> A | > B |
iy ol
1.\'{ cycle | Amux I | Binux I 1.\‘.1- cycle
single single
sign(A) xor sign(B)
153
rnd_mode T +27
mzecnon f
53
PPG & add tree ~
2nd cycle
& double W
L x353
st LB TTT g C[-78], sticky_low
st -26-27-28. -79
w0 oy s & i
21534 SUM L carry low
CARRY L sticky low
2x53+ 2x26
2x1 2x1 2x27
' 2nd cycle 2x26
doubl,
3-way add double
carry & sticky
sum+2 __sum+1 ____sum .
| 7 128 computation
msb’s
Y .
54+ +54 54+ single
msb-mux
msb
'
€521 carry-mux md_mode CI-52L RS
—
x+1 x
54 54
. inj_cor | correct R
inc-mux - R
injection
S4+
/
shift right - b
55’; Z[1:-53]
-
R S
fix LSB & MSB
-
RNE, single
53 i
Fig. 5. Block diagram of the dual precision multiplier.

Finally, we prove that the npd bit for the L-bit fix in RNE-mode is computed correctly.

Claim 3. Consider the signal npd defined by

npd = RNE or R or S or (mshb ano Z[— 53]).
Then, npd equals zero iff a tie occurs in RNE.

G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180 179

Proof. In RNE, a tie occurs, iff the rounding operand lies at the midpoint between two representa-
ble numbers. In the non-overflow case, this is indicated by R = 1 and § = 0, in the overflow case
L =1,R=0,and § = 0. However, the bits L, R, and S do not correspond to the product a- b, but
the number a-b + injection. In the non-overflow case the injection is an increment in the
R-position, and for the overflow case it is an increment in the L-position. Thus, we get the following
conditions for a tie:

RNE ovf L R S
1 0 don’t care 0 0
1 1 0 0 0

Consider the signal npd’ defined by
npd = RNE or R or S or (ovf anp Z[— 53]).

The discussion above implies that npd’ = 0 iff a tie occurs. The signal npd is obtained from the
definition of signal npd’ by substituting msb for ovf. As proved in Claim 1, if msb # ouvf, then the
RNU value equals 2. Therefore, if msb # ovf, there is no need to fix the LSB, and the claim
follows. O

7. Conclusions

A new rounding algorithm, called injection-based rounding has been presented. This rounding
algorithm is compared with previous rounding algorithms. Injection-based rounding is advantage-
ous in (a) simplifying the circuitry required for rounding; and (b) supporting multiple precisions.

We demonstrate these advantages in a design of an IEEE floating-point multiplier capable of
performing single- and double-precision multiplication. In single precision, the latency is two clock
cycles and a new multiplication operation can be started every clock cycle. In double precision, the
latency is three clock cycles and a new multiplication operation can be started only after two clock
cycles. The multiplier saves hardware by using a half-sized multiplication array and by using the
same rounding circuitry for both precisions.

Acknowledgements

We would like to thank Holger Leister, Stuart Oberman, and Wolfgang Paul for helpful
discussions. Access to patent descriptions provided by the IBM Patent Server helped us find related
patents.

References

[1] W.S. Briggs, D.W. Matula, A 17 x 69 bit multiply and add unit with redundant binary feedback and single cycle
latency, Proceedings 11th Symposium on Computer Arithmetic, number 11, 1993, pp. 163-170.

180 G. Even et al. | INTEGRATION, the VLSI journal 29 (2000) 167—-180

[2] Chromatic’s Mpact 2 boosts 3D, Microprocessor Rep. 10 (15) (1996) pp. 1, 6-10.
[3] J. Fandrianto, B.Y. Woo, VLSI floating-point processors, Proceedings Seventh Symposium on Computer Arithme-
tic, number 7, 1985, pp. 93-100.
[4] C. Gamez, R. Pang, Apparatus and method for rounding operands, U.S. patent 5258943, 1993.
[5] C. Hansen, MicroUnity’s media processor architecture, IEEE Micro 16 (4) (1996) pp. 34-41.
[6] Hitachi SH-4 gets graphically superscalar, Microprocessor Rep. 10 (14) 1996.
[7] N. Quach, N. Takagi, M. Flynn, On fast IEEE rounding, Technical Report CSL-TR-91-459, Stanford University,
January 1991.
[8] M. Saishi, T. Minemaru, Multiplication circuit having rounding function, U.S. patent 5500812, 1996.
[9] Samsung launches media processor, Microprocessor Rep. 10 (11) (1996) pp. 1, 6-9.
[10] M.R. Santoro, G. Bewick, M.A. Horowitz, Rounding algorithms for IEEE multipliers, Proceedings Ninth Sympo-
sium on Computer Arithmetic, 1989, pp. 176-183.
[11] R.K. Yu, G.B. Zyner, 167 MHz radix-4 floating point multiplier, Proceedings 12th Symposium on Computer
Arithmetic, 1995, pp. 149-154.
[12] G. Zyner, Circuitry for rounding in a floating point multiplier, U.S. patent 5150319, 1992.

Guy Even received his B.Sc. degree in Mathematics and Computer Science from the Hebrew
University in Jerusalem in 1988, and his M.Sc. and D.Sc. degrees in Computer Science from the
Technion in Haifa in 1991 and 1994, respectively. During 1995-1997, he was a post-doctoral fellow
in the Chair of Prof. Wolfgang Paul at the University of the Saarland at Saarbruecken. Since 1997,
he has been a faculty member in the Electrical Engineering — Systems Department in Tel-Aviv
University. His current areas of research include computer arithmetic and the design of IEEE
compliant floating-point units, approximation algorithms for NP complete problems related to
VLSI design, and the design of systolic arrays.

Silvia Melitta Mueller — B.Sc. in Mathematics and Computer Science (1988), M.Sc. in Mathematics
(1989), D.Sc. in Computer Science (1991), and Habilitation in Computer Science (1998) from the
University of Saarland at Saarbruecken. During 1992-1993, a post-doctoral fellow in the Interna-
tional Computer Science Institute in Berkeley. During 10/97 and 08/98, visiting scientist in the
Chair of Prof. Charles Leiserson at MIT, Laboratory for Computer Science. During 1998-1999,
a faculty member in the Computer Science Department in University of Saarland. Since 09/99,
engineer in the S/390 processor development department in IBM Germany, Laboratory Boeblin-
gen. Current areas of research include design of advanced multi-processor systems, microproces-
sors, and floating-point units, and formal hardware verification.

Peter-Michael Seidel studied Computer Science and FElectrical Engineering at the University of
Hagen, Germany, from which he graduated in 1996. He completed his PhD in computer science in
1999 at the chair of Prof. Wolfgang Paul at the University of the Saarland, Germany, where he was
supported by a fellowship of the German National Science Foundation (DFG). Currently, he is an
assistant professor in the Computer Science and Engineering Department at Southern Methodist
University in Dallas, Texas. His current areas of research include: computer arithmetic, computer
architecture, and the design of IEEE compliant floating-point units.

