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ABSTRACT 

A coupled plane-bending problem is considered for an elastic Kirchhoff-Poisson plate containing a through- 
the-thickness or (part-through) surface crack under closure. The stress intensity factors at the ends of the 
crack are not zero. Asymptotic solutions are derived for cases in which the ratio of the crack length to its 
depth is large. As is shown, the width of the contact strip decreases as the crack length increases; the 
limiting contact force and moment distribution may be determined by considering an edge-cracked strip 
with zero stress intensity factor in the thickness direction. As is also shown, the crack surface interaction 
in-plane force and bending moment can be derived directly from the initial force and moment distribution 
acting in the intact plate on the prospective crack line. The same result is valid for a collinear system of 
cracks; this collinear system may include alternating open and closed crack segments. In addition, the 
closure stress distribution is determined. For the latter, the width of the contact strip asymptote is derived 
as a function of the crack length coordinate, and the asymptotic stress distribution is found as a product 
of the thickness averaged closure stress and a function of a normalized plate thickness coordinate. The 
latter stress distribution is unique and universal for any slowly curving crack or crack system under closure. 

1. INTRODUCTION 

One of the major difficulties in the analysis of either the load carrying capacity or the 
penetration of elastic plates undergoing brittle or semi-brittle deformations is the 

treatment of the cracking that occurs. Historically, the difficulties introduced by crack 
closure in cracked plates under bending have long been recognized (Smith and Smith, 
1970 ; Jones and Swedlow, 1975 ; Heming, 1980 ; Alwar and Nambissan, 1983 ; Joseph 
and Erdogan, 1989; Young and Sun, 1992, 1993). The crack closure phenomena 
treated in this paper provide a framework for the application of fracture mechanics 
to cracked plates subjected to closure. 

Consider a cracked infinite elastic plate (Fig. 1). The plate may be subjected to in- 
plane and transverse forces as well as bending moments of general distribution. The 
loading is assumed to induce internal in-plane force and moments distributions that 
vary slowly (compared to the crack depth) in the intact plate on the prospective crack 
path. Further, there are no shear stresses in the crack plane. The crack is assumed to 
be either through-the-thickness or part-through ; the latter surface crack being formed 
by the contact interaction of the through-the-thickness crack surfaces. Closure causes 
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Fig. 1. The cracked plate configuration. 

a zero stress intensity factor, except at the through-the-thickness crack tips. Never- 
theless, almost throughout, the considerations are valid for a surface crack with a 
non-zero stress intensity factor. 

Let the coordinates x,, x2 (x2 = 0 on the crack) be placed in the plate middle plane, 
and x3 be the transverse coordinate. The three-dimensional fields in the vicinity of the 
crack tips (in the x,, x,-plane) are neglected. The title problem is comprised of three 
sub-problems. The first problem is a plane problem (x,, x,-plane) for an elastic layer 
containing a through-the-thickness crack (Fig. 2) with a contact force, S(x,). This 
force S(x,) is assumed to be applied in the middle plane (x3 = 0). The second problem 
is a bending problem for a Kirchhoff-Poisson plate containing the same crack (Fig. 
3) with a contact-induced bending moment, M(x,). The third problem is a plane 
contact problem for an elastic layer containing a part-through surface crack (Fig. 4) 
with a normal stress distribution, a(~,, x3), acting on the continuation of the crack 
line, -h < x3 < h-a. Such a formulation was given by Rice and Levy (1972) ; their 
problem was reduced to two coupled integral equations that were solved numerically 
for the case of a semi-elliptical part-through crack. Rice and Levy (1972) discussed 
several important aspects in their formulation of the surface crack problem ; much of 

Fig. 2. The x,, x,-plane sub-problem. 
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Fig. 3. Pure bending of the plate 

this discussion is relevant here. The coupled plane-bending problem for a through- 
the-thickness crack in an infinite elastic plate subjected to a uniform bending moment 
was recently considered by Young and Sun (1992, 1993) with the assumption of line 
contact at the topmost compressive edge of the crack face. Closed form solutions 
for the interaction force were presented therein for a uniform far-field moment 
distribution. 

These papers (Rice and Levy, 1972 ; Young and Sun, 1992, 1993) are closely related 
to the present paper. In the present paper, the interconnections between the complete 
formulation by Rice and Levy (1972) and the simplified formulation by Young and 
Sun (1992) are established. The formulation and results obtained by Young and Sun 
(1992) are shown in this paper to be a particular case of the general asymptotic 
representation of the interaction force which follows from the formulation in Rice 
and Levy (1972) for long cracks. The three papers mentioned here also provide a 
representative survey of related papers. 

In the present paper, the width of the contact strip asymptote is derived and the 
asymptotic stress distribution is found as well as the contact force and moment 
distribution for a collinear system of cracks. 

In outline, the type of asymptotic solution considered depends on the lines of action 
of the resultant in-plane force. This resultant is expressed in terms of S”(x,) and 
M”(x,) via the coordinate xj = ey, where e/” = M”(x,)/So(x,); (only the absolute 
value is important, leyl). That is, this force and moment are statically equivalent to 
the force So acting at _Y~ = e,. There are three possible types which correspond to the 
regions : (a) 0 d le,01 < h/3, (b) h/3 < Ie:I < h and (c) le,Ol 3 h, where h is the half 
plate thickness. In (a), there is no crack opening displacement if So < 0 (clearly, there 
is no closure if S” > 0). and uncoupled untracked plane problem is at hand. In (b). 

X? = -h 

Fig. 4. Edge-cracked strip under closure 
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the solution has a limit which corresponds to the x2, x,-plane problem; in this 
instance, the crack length influence on the crack opening displacement becomes 
negligible for long cracks. In fact, for long cracks, the problem reduces to an uncoupled 
edge-cracked x2, x,-plane problem, and the role of the x1, x,-plane and bending 
problems disappear. In other words, the closure force S and moment M are asymp- 
totically the same as the initial values, So and MO, respectively. 

Case (c) (lefol > h), however, identifies a fully coupled plane-bending problem in 
the sense that there is no plane problem limit, and the length of the crack remains an 
important variable. In this case the problem becomes asymptotically segmented in 
the following way. The coupled plane-bending problem can be considered separately 
under the equality ef = f h (ef = M(x,)/S(x,) ; the initial value is e;), the same as was 
assumed by Young and Sun (1992, 1993). The latter solutions represent the particular 
case of le,Ol = cc ; that is, only a moment was applied (So = 0). In fact, e, = + h is 
valid for <F > h without any restrictions on the far-field loading (on the prospective 
crack line, the initial distribution is assumed to be slowly variable as compared to the 
crack depth). At the same time, the x2, x,-plane contact problem solution, which 
gives us the contact stress distribution, can be easily obtained using the solution to 
the coupled problem. Note that the above types of asymptotic solutions are restricted 
to the case of a zero stress intensity factor in the plane contact problem. A non-zero 
stress intensity factor would alter the ranges considered in (a)-(c) above. 

Rice and Levy’s coupled integral equation formulation is used below as well as an 
inverse formulation. The latter clarifies some additional issues and facilitates the 
consideration of a system of cracks. The fundamental solutions are given first for the 
inverse formulation in which the force and moment are expressed in terms of crack 
opening displacement and rotation (the first and the second problems accordingly). 

2. FUNDAMENTAL GENERALIZED SOLUTIONS 

In this section, the local rectangular (x,~) and polar coordinate (Y, E) system shown 
in Fig. 5 are introduced. Neither system is connected with the global system shown 
in Fig. 1. Consider first the generalized forces (distributions) which must act on the 
intact plate to produce a S-discontinuity in the z+ displacement on the x-axis but 
without any shear stresses on the same axis : 

Fig. 5. Cartesian and polar coordinate systems. 
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v(s) = lil-$ uJx,y) = -,!iT_ u,,(x,y) = 6(.x). 
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a,,.=0 (-m<x<oo,y=O). (1) 
Using the complex variable z = .X + iy and assuming plane stress, the displacement 
and stress fields which correspond to the above conditions (Slepyan, 198 1, Appendix 

I) are given by 

E - E cos4u E o,,=--Rez=- 
271 ,“3 2n y= +2nx 

-? (y-+0), 

E 2cos2a-cos4a E 

Y2 
-+2&x-l (y-0) 

(sin 4a - sin 2%) 

Y2 
-+o (y-0). (2) 

in which E is Young’s modulus, v is Poisson’s ratio, and 6(x) is the Dirac &function. 

Consider next the fundamental deflection function u, that generates a d-dis- 
continuity in the angle of rotation &~/ay of each side of the discontinuity, but without 

any shearing force RI. on the same axis : 

R,.=O (-cc <x< cn,y=O). (3) 

The required solution must satisfy the Kirchhoff-Poisson equation A2u= = 0 and is 
deduced to have the form 

(4) 

This gives 

I+v 
u, = 2n1nr+ & 3+u-2(1-v); 1 (5) 

This solution is anti-symmetrical with respect to y and behaves as required by (3) : 

au,_ l+v y l-v x=1’ 
---++ ---+ &6(x) (y- f0). 

a_y 27c r’ 7t r4 

The jump in the rotation &Jay, for a crack located on the x-axis undergoing 
symmetrical deformations can be expressed using the above fundamental solution 
and the superposition principle. This leads to an integral equation with respect to the 
slope ; the same consideration applies in the plane problem where the main unknown 



1732 L. I. SLEPYAN et al. 

is the jump in u,.-displacement. In and of itself, the problem of a through crack under 
bending is physically ill-posed because of the interpenetration of the crack surfaces. 
However, with suitable closure conditions, the coupled plane-bending problem is 
physically meaningful. 

The bending and twisting moments corresponding to the expression in (5) are given by 

M, = -D($+LIQ), M,. = _D(!+v$), 

M, = - (1 -v)D azuz ~=$((l-Y2)sin2n+(l-v)2sin4.), 

wx>K+M) = & ((I-v)2cos4a, -2(1-v2)cos2c(), 

(M,,yJ _ g ( ly, _ (3+yv) ) (Y = 0). (7) 

in which D represents the bending stiffness and is given by D = E’I; cos ct = x/r and 
sin CI = y/r. In D, E’ = E/( 1 -v’) and Z = 2h3/3, I and h being the moment of inertia 
and half the plate thickness, respectively. 

The Kirchhoff shear force, R,., is expressed as 

RJ = D$ 3+(2-v)% =(l-v)2gsincrcos4r. 
7-w3 

If the expression for uz from (4) is substituted into (8) and use is made of the fact that 
A2uz = 0 for y # 0, it quickly follows that 

R, = _ D(l-v12 a4 
? 47c 

d.u4(2Ylnr+Y) -+ 0 (Y -0). 

The above fundamental solutions can be used for any crack systems to derive the 
integral equations for plane, bending or coupled problems (as mentioned above, the 
bending problem should not, in general, be considered by itself but only as a com- 
ponent of the coupled problem). 

3. INTEGRAL EQUATION FORMULATION 

Consider the crack on the x,-axis : -I < x, < 1, x2 = 0 (Fig. 1). Using the above 
fundamental solutions for plane and bending problems one can express the force SX2 
and the moment A4+ at x2 = Of by the superposition principle (in this case 
cos 2a = cos 4c( = 1 and So = Sz, and M” = Mz*), giving 

dt = -SO(x,)+S(x,), 

Eh ’ 

-4 

4(5> 
n -r(i”-x1)’ 

d5 = V^(-MO(x,)+M(x,)), (10) 
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Fig. 6. Averaged crack opening displacement and rotation angle. 

in which C = 3( I+ v)/(3 + v)h2, -I < x, < I and So and Ma are the initial force and 
moment acting in the intact plate, and S and Mare the crack surface interaction force 
and moment; c is the crack opening displacement, and C#I is the crack face rotation 
(Fig. 6). Note that S_t and M:, exert no influence, as usual ; in addition, it is assumed 
that the shear force S” .~,(z and the twisting moment Mt,,, are both zero. 

The inverse form of the integral equation formulation used by Rice and Levy (1972) 
can be derived from (10) using the following relations (Rice and Levy, 1972 ; Slepyan, 
1981). These equations arise naturally in the consideration of a Griffith crack under 
arbitrary loading; in this context they link the crack opening displacement and the 
stress distribution on the plane JJ = 0. In this paper, (11) and (13) are useful in several 
contexts, as will become evident. Hence, for - co < x = X, < cc andf+(x) = 0, given 
that the subscript “ + ” or “ - ” implies that x2 > I2 or x’ < I’, respectively, 

where 

Then 

in which 

1 s ’ f-(5> i a-(x) 

= -,(5-x)2 d5 = M+(X) 

’ f-(x) = --n s a- (OW, 0 d5 
-/ 

(11) 

(12) 

(13) 

(14) 
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Thus, the inverse of (IO), for (XT < ?), is 

$0,) = -c& s ’ [M"(5)-M(I")IL(x,,r)d~. -/ 
Three different regions may be in existence along the crack line : crack closure, open 
non-contacting crack faces, and crack faces in full contact. In these regions, the 
solution has to satisfy conditions outlined in the next section. 

4. EDGE-CRACKED STRIP 

In the closure region, the global planar and bending deformations of the thin plate 
are well described by the usual assumptions (for example, planes remain plane and 
perpendicular to the neutral axis). However, “close” to the crack surface interaction 
area, the deformations can only be described by an “inner” or “local” elasticity 
solution. The stress distribution of the local problem differs from that for the global 
problem by a self-equilibrated stress field; the latter causes an additional crack 
opening displacement such that “far enough” from each crack the actual physical 
extent of contact can be deduced by prescribing kinematic compatibility. The plane 
contact problem (Fig. 4) describing the conditions in the closure region, similar to 
the paper by Rice and Levy (1972), relies heavily on the solution for an edge-cracked 
strip in plane strain subjected to an axial force S and moment M per unit thickness. 

Following the procedure in Rice and Levy (1972), and given the configuration in 
Fig. 4, it quickly follows that the mode I stress intensity factor is given by 

06) 

in which [ = a/2/2, while a = a(~,). In terms of the weight function approach employed 
by Wu and Carlsson (1991) and the relevant expressions in Tada et al. (1985), it 
follows that 

in which 

Fdi) .m = (1 _[)3’2 5 

FmK) 
“La = (1 _[)‘/’ . 

In (18) 

(19) 

The results presented by Kaya and Erdogan (1987) (see their Table 3) apparently 
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provide the most accurate normalized stress intensity factor and crack-mouth-opening 

displacement data for the tension and bending of an edge-cracked strip, especially for 

long crack lengths (i > 0.8). A best fit of this SIF data leads directly to the following 

values for the coefficients a; and cc: (i = 0,1,. ,7), consecutively, stated here as 

c(;:1.1215, -1.6109,6.9817, -17.044,27.437,-27.441,15.252,-3.5748. (20) 

x(:“: 1.1215, -2.9725,8.8068, -21.257,34.836, -35.100.19.489, -4.5500. (21) 

At this juncture, it is important to note that the behavior of various quantities will 
be required for long crack lengths or [ large ([ + 1). The weight function approach 

employed in Wu and Carlsson (1991) is sound even for long crack lengths, but still 

loses accuracy for [ > 0.85. For this reason, the function g,,! is obtained independently 
from Kaya and Erdogan (1987). 

If 2: and 4 denote the additional displacement and rotation of one end of the strip 
relative to the other due to the introduction of the crack, 

(22) 

By elastic reciprocity, a+, = M~,~. The quantities v, 4, S and M are the same as in the 

bending-plane coupled problem (10) or (15). In terms of the closure contact problem, 

where u?(.Y,, O+, x1) is the crack opening displacement, and G(.Y,,_x~) is the stress 

distribution in the closure strip. The asymptotic stress distribution for a narrow 
contact strip as a + 2h is presented below. If S”, MO and the crack length, 21, are 
given, the above equations together with the integral equations present the closed 
system of the equations for the problem under consideration. 

The asymptotic solutions central to this paper are achieved by first providing a 

wide-ranging (0 < [ = a/2h < 1) description of the coefficients. x2,,, as functions of 
the ratio e,(.~,) = M(x,)/S(x,). From Dempsey et al. (1995), it is apparent that the 
most suitable form is 

(24) 

where a is the crack length in this plane problem (in the coupled plane-bending 
problem, a = a(~,) is the depth of the crack opening). 

The c(+, are dimensionless compliance coefficients and are defined by 
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‘7 

Fig. 7. Compliance coefficients A+([) versus c = 4x,)/2/1, a measure of the relative length of the crack in 
the thickness direction. 

adi> = s ’ sn(vr)s,(rl) dvl. (25) 
0 

The expressions for Al,, in (24) are obtained first by the analytical integration of (25) 
and then a curve fit of the resulting long expression ; in this manner, the key asymptotic 
behavior for small and large < is explicitly captured. 
In (24) 

A,VS = i /31”[‘, A,$, = ; p;mii, A,, = i pym[’ (26) 
i=O ,=o i=O 

and the coefficients B;“, /$“’ and /?y” (i = 0, 1, , . , , 7), consecutively, were found to be 
given by 

8?:0.6289, -1.1958,3.9677, -7.5021,8.4922, -4.1681, -0.3916,0.7977. (27) 

PI”’ : 0.6289, - 1.6922,4.7820, -9.9758,13.3192, - 10.4698,4.3208, -0.70347. 

(28) 

py”’ :0.6289, -2.1844,5.9693, - 12.5870,17.6467, - 15.0777,7.0682, - 1.39412. 

(29) 

The compliance functions A,,([) are plotted in Fig. 7. Note that 

F,(O) = F,(O) = F;(l) = 3F,(l) z 1.1215, 

A,,(l) = Ao z 0.6289,A,,,(l) = A,,,,(l) = A,/3,A,,,,(l) = Ao/9. (30) 

5. FRACTURE CRITERION 

To complete the problem formulation a fracture criterion has to be specified. 
Griffith’s energy criterion is suitable. In this case, the asymptotes of the force, S, and 
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moment, M, as well as the crack opening displacement, U, and rotation, 4, are 
important on the crack line ahead of the crack tips. Based on the expressions 

S - A,:ylx,--l. M - A,/m (x, -+ l-to), (31) 

[; - A,fi, 4 - A,& (x, + I-O) 

the energy release rate is given by 

c = ~(A,A,.+A,~A,). 

In terms of the stress intensity factors, the same result can be expressed as 

K, 

(32) 

(33) 

where, for (x, = +f), 

These energy release rate expressions are the same (in the present notation) as in the 
paper by Young and Sun (1992). 

Note that, in this paper, the contact force and moment (S and M) will not be 
accurately determined in the vicinity of the crack tips. However, this shortcoming is 
of no concern as far as the determination of the energy release rate is concerned ; the 
latter is defined, as usual by global considerations. Further, this shortcoming is of 
decreasing significance as the crack length versus plate thickness increases. 

6. LIMITING CASES AND ASYMPTOTES 

The nature of the problem under consideration depends, to a large extent, on the 
ratio e/” = MO/SO. Different scenarios are outlined here that serve to identify the 
influence of e)‘. 

Consider the case of a long through-the-thickness crack subjected to a compressive 
in-plane force initially located such that 0 6 le:/ d /r/3. In this case, So d 0 and there 
is complete closure of the through crack : a = 0, Y = 4 = 0, and a(.~,, .Y,>) d 0 is 
negative for -h d x3 d h. The equations in (10) and (22) are satisfied by S = S”, 
M = M” and by the fact that the parameters LX+ = 0 (since < = 0). For this range of 
e,, an intact infinite layer would experience only compressive stresses through the 
depth. Alternatively, consider the plane problem of two semi-infinite layers (of thick- 
ness 2h) laid end to end and subjected to smooth compressive contact by far-field 
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forces So whose line of action is restricted to vary between -h/3 < x3 d h/3. In this 
case, the same complete closure would result and the above parameter values apply. 

Consider next the case of either a long surface crack with K = 0 or a long through- 
the-thickness-crack under closure. The in-plane force and moment combination is 
such that while crack opening takes place (a > 0), h/3 < le/o( < h. As l/a + co, the 
solution is simply that for the edge-cracked strip described above in (22) for S = So, 
M = MO. In other words, while the quantities S, M, v and 4 can be obtained and are 
functions of crack length 21, the limit as l/a -+ w3 exists. For long cracks and for 
h/3 < @I < h, the solution is obtained by simply considering a plane problem (Fig. 
4). This solution is valid everywhere on the crack line except small (as compared the 
crack length) vicinities of the crack tips, X, = k 1. 

Now consider the case je/“j > h which has no plane problem limit. This fact is 
readily apparent because the value of lej = lM/Sl cannot be greater than unity. 
Clearly, given a zero stress intensity factor at x3 = a(~,) and e, 6 -h, the edge- 
cracked strip would not remain in equilibrium as l/a + co. This leads directly to the 
conclusion that, in this coupled case, the interaction force S, and moment M cannot 
tend to the applied force So and moment IV”, respectively, as the crack length 21 
increases. However, from (15) it is evident that in-plane (averaged) crack opening 
displacement v and rotation I#J increase under a constant force, S and moment M, as 
the crack length increases. Under this increase, (22) can only be satisfied by an 
associated increase in the coefficients, rr,,,. The latter is possible only if the ratio, le,/hl 
(generally less then unity) tends to unity; such behavior is crucial and is evident in 
(24) and Fig. 7. 

Thus, as the crack length increases the ratio le,/h( tends to unity; the larger the 
value of I, the less the difference h - le,{. This is true everywhere on the crack line 
- 1< X, < I except in the vicinity of the crack tips (x, - f &on a scale relative to 
the plate thickness. 

Knowledge concerning the limiting behavior of e, allows one to separate the plane 
contact problem (22) from the coupled plane-bending problem (10) (or (15)). First, 
note that the averaged crack opening displacement is zero at x3 = e,; that is, 

B(x,,x,) = v(x,)-x3$(x,) = 0 for x3 = e,. (35) 

Clearly, e,. = v/#. To determine the limiting closure behavior for long cracks, the 
procedure is to first let e, = f h, and hence, e,. = t_ h in (10) [( 15)], then substitute the 
crack opening displacement and rotation so obtained into (22) to find the difference, 
h - le,{. The closure behavior and associated stress distribution are determined in this 
manner below. 

7. CLOSURE CONTACT PROBLEM 

The through-the-thickness or surface crack in Fig. 4 seeks its own natural extent 
of contact ; smooth crack-tip closure requires that 
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1.0 
1 

0.0 
0.0 0.5 r 1.0 

Fig. 8. Ratios I, and I< versus i. 

1 F,(i) 
K(a) = 0 or 1, = -;=3F,,o. 

In addition, given that e,. = o/4, it is evident from (22) and (24) that 

1 = _ : = i Mi) -3bLm 
c 

h 3 A,,,, (0 - 31,A,,,, (i) . 
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(36) 

(37) 

The value of [ appearing in (37) is tied to the value of 1, appearing in the same 
equation through (36). 

The parameters 1, and lr are plotted versus [ in Fig. 8. 

8. CLOSURE FORCE AND MOMENT DISTRIBUTION 

Consider now the case in which e, = const ; that is, ~(4) - e,4(() = 0 and from (10) 

S(x,) = 
SO(x,)+v^e,MO(x,) 

1 +v^e,.e, ’ 
M(x,) = e,S(x,). 

From this, neglecting any shortcomings in the crack tip regions, and assuming the 
crack segment under consideration to be subjected to closure, one can express the 
interaction force and moment as follows, given that M = e,S, e, = -h, e, = -h. 

S(x,) = 
S”(x,)-ChM”(x,) 

1 +v^h2 

By the result in (39), the formulation by Young and Sun (1992), (viz. efe,. = h2), is 
justified for long cracks. At the same time, note that such a formulation is valid not 
only for the case M” = const, So = 0, but for a general distribution of the in-plane 
force, S”, and bending moment, MO, along the crack line. However, the crack does 
have to be long, and the variation has to be slow on the scale of the plate thickness. 

Now consider a more general problem in which a (multi-segment) portion is 
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subjected to closure. In this case, the difference ~(5) -e&(t) with e, = + h is non-zero 
only in the open crack segments (called hereafter open crack area or OCA) because 
z)(<) -e,.&(c) = 0 in the closure region. It is assumed that e, = const in the closure 
region ; that is, either e, = + h or e,. = -h. This more general case may be described 

by 

Eh 

-1 

(u-ec4)dy = -S”-ce,.MO, x, E OCA 

OCA (5-.x1)’ 
(40) 71 -So-v^e,.M’+(l +v^e,e,)S, x, $OCA 

where eL = ef = f h. In (40), the difference v - e,.$ plays the same role as the function 
f(t) in (11) or the role of crack opening displacement as in plane crack theory. In this 
sense, the open segments may be viewed as cracks. Note that the difference v-e,.4 is 
zero in the closure segments and intact regions. 

Now let there be a single open segment only ; in this case, (40) can be solved using 
(13) assuming S” and MO to be known. The interaction force outside of the “crack” 
is thus given, for (x, $OCA), by 

S(x,) = 
So(x) + v^e,.MO sgn x 

1 + v^e,.e, - nJm oCA s 

So + \je,.MO J’pdc 

1 + v”e,e, 4 -x1 ’ 
(41) 

To solve (40) for several open crack segments, the equivalent of (12) for several 
collinear cracks must be used. Note that the transition points between the open and 
closed segments, excluding the “real” crack tips at x, = f I, must be associated with 
zero stress intensity factors at these points. This requirement serves to locate these 
points. 

9. SYSTEM OF CRACKS 

The main difference between the integral equation formulations summarized by 
(10) and by (15), is that the former can be used to model more general crack system 
due to the validity of the superposition principle with respect to the averaged crack 
opening displacement, V, and rotation, $. The general representation for the integral 
equation kernels (2b), (2~) and (7) must be used. However, in the present paper, anti- 
symmetrical crack opening displacements caused by non-zero lateral forces (8) are 
not considered. Any system of cracks considered must, at this stage, be subjected to 
zero lateral force on the crack lines. 

The solution in (38) and (39) for the closure force and moment distribution is 
independent of the crack tip coordinates and the evolution of the contact (closure) 
region. Therefore, this solution is valid for any collinear system of cracks with e, = h 

(or ef = -h) over each crack (that is, each crack has to be long). Clearly, the limits 
- I, I in the integrals in (10) need only cover the extent of closure, similar to the 
considerations in (40) with respect to the OCA. Then, if e, is constant on the closure 
segments, the closure force and moment are expressed by (39) because u-e,4 = 0. 
Thus, in this case of a collinear system of cracks under closure, and the unilateral 
contact conditions on these long crack surfaces, the interaction is independent of the 
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Fig. 9. A non-collinear crack system 
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details of the actual crack lengths and spacing on this line. At the same time, the crack 
opening displacement and rotation cannot be expressed in terms of the right hand 
sides of (10) by the formula (12) as for a single crack. The integral representation of 
the crack opening displacement (and hence, for the rotation) can be formed for 

any number of cracks and such solutions are available, albeit considerably more 
complicated than (12). Thus, the crack opening displacement and rotation, in contrast 

to the closure force and moment, depend on the specifics of the collinear crack 
distribution. 

The ability of the method put forward in this paper to treat non-collinear crack 
systems is now briefly examined. Consider two cracks located asymmetrically on 

different crack lines with an angle y between the crack lines (Fig. 9). The crack opening 
displacement, 6(.u,) at point A on the first crack line with coordinate x,, in accordance 
with the relations in (2) induces the force, L$?, at point B on the second crack line 
coordinate y, (Fig. 9) as follows 

In the same way, the moment M+ at point B caused by a S-crack rotation at point 
A (see formulas (7)) is given by 

By superposition, these expressions lead to integral equations similar to those in 
(10) but with more complicated kernels. 

10. CONTACT STRESS DISTRIBUTION 

Consider the closure contact problem (Fig. 4) under the force, S, applied along the 
line of action .x7 = e, < 0. The stress distribution can be expressed as 

h+x, 
yI = 2h-a’ (44) 
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(a) 

Fig. 10. (a) Two elastic quarter planes under closure. (b) Closure stress distribution for long cracks : solid 
curve-(46) ; dashed curve-(49). 

In this qualitative expression, the crack depth a is defined by eP In terms of the q- 
coordinate, the extent of contact is invariable and remains equal to unity as 
(x3 +/2)/(2/r-a) tends to infinity under the condition a + 2h. This limit corresponds 
to the unilateral contact of two elastic quarter-planes contacting along a zone of 
contact of unit length 0 < q < 1 (Fig. 10a) under the force S/(2h-a) applied at 
infinity along the line of action x3 = eP The asymptotic closure stress distribution is 
a function solely of q and directly proportional to S/b, where b = 2h-a. Such a 
contact problem is the same as the corresponding problem for an elastic half-plane 
with a semi-infinite crack perpendicular to the surface (with a zero stress intensity 
factor). Significantly, the desired closure contact stress is unique and valid in general 
under the condition b << 2h. 

As a + 2h, and as h becomes very large (as for two quarter-planes), the parameter 
[ -+ 1. The “outer” problem’s closure parameters I, and I, both tend to unity (Fig. 8). 
For the case of two contacting quarter-planes, the “inner” parameter, the difference 
between a and 2h has decreased to a finite constant value, here called the closure 
width, 1,, = 2h --a. The line of action of the far-field force S, denoted now by QJ,, 
(Fig. lOa), has a unique value if K(a) = 0. This value is readily obtained from the 
paper by Kipnis (1979) as 



Asymptotic solutions for crack closure in an elastic plate 1743 

M X2--4 
vlo = 

ZJZG-(1) 
= 0.3680338, 

in which G-(l) = 1.245698. Referring again to the situation depicted in Fig. 10a (the 
unilateral contact of two quarter-planes), note that g, defines the line of action of the 

compressive forces 15’1, with zero applied moment, such that K(u) = 0. 
A closed form solution to the closure stress distribution is available from the paper 

by Kipnis (1979), who studied the problem of a semi-infinite crack lying on the 
bisector of an elastic wedge of angle 2a subjected to a far-field load and moment. For 

the case of CI = n/2 the eigenvalue equation in (1.4) of Kipnis gives I. = n, (n = I, 
2,. . .). Setting K = 0 to satisfy the closure condition, the accurate stress distribution 

2 is found to be given by 

in which 

(47) 

In (47) 

g(x) = 
cosh(2nx) - 2( 1 +2x2) cosh(rrx) + 1 

cosh(2nx) - 1 
(48) 

The function g(0) = (rc2 - 4)/2rc2, while g(x) rapidly tends to unity for large x. 
This closure stress is well approximated by the simple expression C = C,( 1 -q)” ; 

for this distribution, the average value (C,/(p+ 1)) acts at y10 = l/@+ 2). From (45), 
p = 0.7171 and then 

Q) z 1.717l(S/b)(l -y1)“-7’7’, gmax z 1.85S/h. (49) 

The maximum contact stress, which is especially important with regard to crushing 

considerations, is defined as well. 
A general simple approximation for the closure stress distribution, applicable for 

arbitrary values of h, is now chosen here : 

WI) = 2(@)(1 --vl). (50) 

Such a distribution is exact for b = 2h - 0. This linear approximation for the closure 
stress distribution corresponds with the linear approximation of the function 1,: 
I, = -e,/h ~(1+2[)/3. 

The accurate closure stress distribution in (46) and the approximate expression in 



1744 L. I. SLEPYAN et al. 

Table 1. Closure stress distribution (Fig. lob) 

I ‘&d/S v ‘&>/S r? b%)/S 

0.00 1.85167 0.10 1.64177 0.20 1.45709 
0.30 1.29061 0.40 1.13697 0.50 0.99169 
0.60 0.85049 0.70 0.70837 0.80 0.55774 
0.90 0.38118 0.95 0.26520 1 .oo 0.00000 

(49) are plotted in Fig. lob. Values for the accurate curve are provided in Table 1. 
Note that the accurate value for the maximum stress is only slightly modified from 
the approximate value in (49)* : cmax z 1 .SSS/b. 

An alternative deduction of the value of q0 is as follows. First, the behavior of efas 
a -+ 2h needs to be determined. Remembering that I, = -<Ah, note that for [ = 1 --c: 
and&+0 

4 If- l-k+-, k,=@(l). 

Recalling that Z,(l) = 1, kfcan be defined as &1)/1,(l), or, equivalently, as 

k, = Fy(l)-E’,(l), & = & $1). (52) 

(51) 

From (51), h+e, -(1/2&b. Given that y10 E (h+e,)/b, it quickly follows that q0 = kf/2. 

However, the curve fit expressions in (19), along with the data in (20) and (21), give 
an inaccurate value of 0.3824 for qO. A more precise curve fitting of the original data 
from Kaya and Erdogan (1987) using Tablecurve (an automated non-linear curve 
fitting program that uses a 64-bit Levenburg-Marquardt algorithm) was attempted. 
The best-fit was obtained using a rational function of two fourth order polynomials 
and gave a value of 0.3687. The interesting point here is that an extra constraint on 
the functions FJ[) and F,J[) is now available via (52) ; that is, 

k, = t’,(l) -R,,,(l) = 2r/,, = 0.7360675. (53) 

The values listed in (20) and (21) are quite adequate unless rather special asymptotic 
considerations are involved, as above. 

11. ASYMPTOTIC CLOSURE WIDTHS 

The asymptotic equalities, e/^=_ e,. = + h, developed to describe the coupled plane- 
bending cracked-plate problem, are suitable for the determination of the closure force 
and moment, but are not suitable for the determination of the stress distribution in 
the contact area. With this goal in mind, it is first necessary to find the asymptote for 
the contact strip width 2h - CI, where a is the crack depth portrayed in Fig. 4. 

This asymptotic result can be found from an asymptotic representation of the 
coefficients Q, in (22). If [ = 1 -a and E + 0 
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0.0 

Fig. II. Normalized closure width b(.u,) versus location along the crack length. 

1 
c(j.,l - ___ 

(1 G)2 
A,,,(l)(l -2E--k/,,E), kj.,, = *,,,(l) dc 

~ Y!&&(l). 

Further, note (52) and the following identities : 

Aj.,(1) = E;,(1)Fj,(1)/2, kj.,, = 2F{i+2p,. 

Directly from (55), 

2k, = k,., -k,,, = k,,, -k,,, and L + k,,,,,, = 2L. 

Using these asymptotic equalities, and (22) 

Thus, the required contact width, b(x,), can be asymptotically expressed as 

n&k, 2/&(x, ) 
@,)=2/z-a=2h(l-[)= --E’p 

u(x,) . 

(54) 

(55) 

(56) 

(57) 

(58) 

In this formula, the force S is defined by (39), and the displacement z’ can be found 
by (15), for a single crack and a collinear crack system. Note that this asymptotic 
formula is valid in contact region(s) where b/2h << 1, and that it does not hold in the 

vicinity of the crack tips (x, - + 0, where c(x,) + 0. 
The contact width function b in (58) is shown in Fig. 11 for various values of the 

half-crack length to plate thickness ratio 1/2h (v = 0.3). The latter ratio is chosen to 
facilitate comparison with Fig. 11 in the paper by Joseph and Erdogan (1989). Figure 
11 is for the case of zero initial force and a uniform moment distribution : S” = 0, 
M” = A@, where I@ # 0 is a constant. From (38), it is apparent in this case that 
S = S, is also a constant. Since S* also appears in the expression for L’ = z’*, in this 
particular instance, the closure force does not actually appear in the contact width 
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expression b = b,. Noting that v* is given by (15), and that b, is given by (58), it is 
found that 

b, 7c (1 - v2)A& 2h 
v*(x,) = -gpq, -=- 

2h 2 J-T 1. 
(59) 

As has already been discussed, the asymptotic expressions in this paper are expected 
to lose validity in the vicinity of the crack tips x, w ) 1. This remark notwithstanding, 
the agreement between the analytical result in (58) that is plotted in Fig. 11 above 
and the numerical calculations plotted in Fig. 11 in the paper by Joseph and Erdogan 
(1989) is very good, especially for larger values of 1/2h. Preliminary numerical cal- 
culations have revealed that the agreement is remarkable for lj2h > 8. 

Using the same asymptotic representations, (54) and (56), the second formula in 
(22) reveals that the crack rotation asymptote behaves as 

+f. (60) 

This result corresponds to straight crack surfaces which are normal to the plate 
neutral axis and plate surfaces over almost the entire plate thickness. That is, in the 
asymptotic sense, the elastic layer considered in Fig. 4 behaves as a Kirchhoff-Poisson 
plate. 

12. FUTURE CONSIDERATIONS 

Crack closure is a major influence in terms of the compliance of cracked plates 
under bending, the energy release rate during crack propagation, and the different 
types of (complex) crack systems formed under different loading conditions. As a 
result, crack closure is a key ingredient in applications involving the quasi-static and 
dynamic forcing of cracked plates. The asymptotic distributions of the closure contact 
width and the closure stresses are applicable to even rather short cracks of rather 
general shape as well as to general systems of cracks. In the case of non-collinear 
systems of cracks, only the solution to the integral equations with respect to the 
contact forces and moments poses a problem. The closure contact width and the 
closure stress distribution, however, are defined in closed form in terms of these forces, 
moments, and crack opening displacements. In the dynamics of a plate subjected to 
crack closure, in particular, the mechanics of wave propagation and reflection have 
yet to be considered. In this topic, a combined formulation may be suitable : (i) quasi- 
static considerations that apply in the context of the closure contact (elasticity) 
problem given that the time to establish the self-equilibrated closure stresses is found 
to be short enough, plus (ii) a dynamic formulation for the global cracked-plate 
problem ; the contact width and the contact stress distribution would depend on time 
as a parameter. For supported cracked plates, such as an ice sheet or pavements, the 
global, plate-fluid or plate-soil problem can be separated, in the above sense, from 
the closure contact problem the same as in the dynamic problem discussed. The 
closure contact width and closure stress distributions remain valid for this topic as 
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well. Finally, the fracture mechanics presented in this paper can be used to analyze 

the stability of compression loaded symmetrically cracked configurations undergoing 

crack closure. 

13. CONCLUSIONS 

Four main conclusions follow from the analysis in this paper (valid both for any 
through-the-thickness crack, including a curvilinear crack and for more general crack 

systems) : 

1. Consideration of the crack closure problem as being one of line contact along 
the topmost edge is suitable for the determination of the closure force and moment 

distribution but not for the determination of the contact width and the contact 
stresses. 

2. The asymptotic distribution of the closure forces and moments has been deter- 
mined in terms of the initial force and moment. This result is applicable to not only 

a single crack but also a collinear system of cracks. 
3. The asymptotic distribution of the extent of contact under closure has been 

determined in terms of the closure force and moment and the (far-field) Poisson 
Kirchhoff plate averaged crack opening displacements. 

4. The asymptotic closure stress distribution is unique and universal ; the generality 
of the local plane contact conditions forms the basis for this universality. 
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APPENDIX : FUNDAMENTAL SOLUTIONS 

In this appendix, the fundamental solutions stated in (2) and (4) which reproduce the 
conditions stated in (1) and (3), respectively, are derived. In the following, the referenced x, y 
rectangular coordinate system is shown in Fig. 5 ; u, and u.~ denote the displacements in the x- 
and y-directions, respectively. 

To derive the plane fundamental solution for the conditions stated in (1) consider an infinite 
elastic plane subjected to the concentrated force, P = X” + ip, which is applied at the origin 
of the coordinate system. The Kolosov-Muskhelishvili complex representation (Muskhelishvili, 
1977) is used ; the displacements and stresses are expressed in terms of two analytical functions, 
4(z) and $(z) of the complex variable, z = x+ iy 

2p(u,+iu,) = ~&z)-z~--$@, 

or,. - a,, +2ia,, = 2[Z@‘(z) + 11/‘(z)], 

ary + a,.,, = 4 Re 4’(z), (61) 

in which n denotes the shear modulus, K = (3 - v)/(l +v), while v denotes the Poisson’s ratio. 
The solution to this problem is well known (Muskhelishvili, 1977 ; 556a.4”) : 

(62) 

in which _?f = ,Y“/2h and Y = p/2h. Before constructing the required solution, note that, for 
(n=O,l,...)and(y+*O), 

Rez-“-’ +_x-“-‘,n!Ims~“-’ + +(-l)“+‘n6’“‘(x) 

PP’(x) = (n_m)! E#““)(x)(m < n),x”‘r”6’“‘(x) = 0 (m > n). (63) 

Therefore, as y * f0, 

Rezz-* +x-I, ImZzz’ + f&(x), 

Rezzz’ + .xw2, IrnFz-’ -+ &n8(x). (64) 

The solution is constructed by supposing that the following forces are applied near the origin : 
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parallel to the .u-axis, + P,/Zu at (s = *cr. 0) ; 

parallel to the y-axis, f P,/2a at (0, _V = k u). 
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In the limit as c1+ 0, the actual loading imposed is succinctly expressed in the form 

P -+ - P,6’(.Y)&.v) - iP,tqS)S’(j~). 

From (62) 

(65) 

4= 

Now from (61), (63) and (64). the generalized limits of (66) as J’ + f0 are 

u, + * 
P,+(2K- l)P, 

4.ffu(ti+ 1) 
6(.u), - 

~,, ~ +(2+W-(2-“)P’ii’(,r), 

2(x+ 1) 

(66) 

(67) 

The required conditions are such that the coefficients of &6(-r) and &cT’(.r) in (67) should be 
unity and zero, respectively. Therefore. 

P, = 2@(2 -K)/K, P, = 2/1(2+ ti)/K. (68) 

In this case 

u, +iu,, = - 

The fundamental solution for the conditions stated in (3) can be constructed from a com- 
bination of second order derivatives of the solution to a free plate subjected to a concentrated 
lateral force P. The latter can be written as any function which satisfies the homogeneous 
equation of the plate bending, A%, = 0 (Z # 0), subject to the “distributed” loading, 
q(.u,y) = Pan. Such a solution is 

The required derivatives correspond to similar limits as for the plane problem but in this case 
for generalized moments. They may be introduced by means of three forces on the -y-axis and 
the three forces on the y-axis : 

%(x+u)S(?,)-2’S(.x)S(y)+ ~S(.\._,)S(~~). 
a’ u1‘ (12 

P’lj(r+n)ii(.x)-2P,d(?,)d(u)+ 55(.lW,)d(.Y). 
Cl? a’ a? 

In this case, the generalized limit, (I --) 0 gives 

P + P,6”(.x)6(?,) + P,b(x)?Y’(y). (72) 

If the same linear operator as used in (72) is applied to the function in (70) and the resulting 
behavior is examined as _Y + k0 to construct the desired limiting behavior defined in (3) it is 
readily apparent that P, = 2uD and P, = 20 and that the fundamental solution is as stated in 
(4). 


