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Abstract We consider a heavy, uniform, elastic beam rested on periodically distributed
supports as a simplified model of a bridge. The supports are subjected to a partial destruction
propagating as a failure wave along the beam. Three related models are examined and
compared: (a) a uniform elastic beam on a distributed elastic foundation, (b) an elastic
beam which mass is concentrated at a discrete set of points corresponding to the discrete set
of the elastic supports and (c) a uniform elastic beam on a set of discrete elastic supports.
Stiffness of the support is assumed to drop when the stress reaches a critical value. In the
formulation, it is also assumed that, at the moment of the support damage, the value of the
‘added mass’, which reflects the dynamic response of the support, is dropped too. Strong
similarities in the behavior of the continuous and discrete-continuous models are detected.
Three speed regimes, subsonic, intersonic and supersonic, where the failure wave is or is
not accompanied by elastic waves excited by the moving jump in the support stiffness,
are considered and related characteristic speeds are determined. With respect to these
continuous and discrete-continuous models, the conditions are found for the failure wave
to exists, to propagate uniformly or to accelerate. It is also found that such beam-related
transition wave can propagate steadily only at the intersonic speeds. It is remarkable that
the steady-state speed appears to decrease as the jump of the stiffness increases.
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1 Introduction

In a system like a uniform or a periodic waveguide, it may happen that a localized damage
causes a failure wave. Mechanically such process is similar to the phase transition, and it can
occur if the wave is accompanied by a permanent energy release sufficient to overcome the
associated energy barrier. A well-known example is a falling row of dominoes. Many studies
have been devoted to the related dynamic problems. Plane crushing waves were consid-
ered in Galin and Cherepanov (1966), Grigoryan (1967), Slepyan (1968, 1977), Slepyan and
Troyankina (1969), where shock waves were studied in discrete non-linear structures, and a
junction condition at the wavefront was discussed. It was then shown that uniqueness can be
achieved in the framework of a structured material model, where the speed-dependent wave
resistance to the transition can be determined (see Slepyan, 2002). To describe the related
phenomena a higher-order-derivative formulation for an elastic continuum (see Truskinovsky
1994, 1997, Ngan and Truskinovsky, 1999, and the references therein), and a discrete chain
model (Slepyan and Troyankina 1984, 1988) were used. Waves in discrete bistable chains
were then studied in Puglisi and Truskinovsky (2000), Slepyan (2000, 2001), Balk et al.
(2001a,b), Cherkaev et al. (2005), Slepyan et al. (2005), Vainchtein and Kevrekidis (2012).
Localized transition wave in a two-dimensional lattice model was considered by Slepyan and
Ayzenberg-Stepanenko (2004).

The problem has also a strong physical connection with dynamic crack propagation where
the energy lost under the support damage plays the role of the surface energy in fracture.
Super-critical regimes for cracks are considered in many works, mainly for mode II shear
fracture, see, e.g., Freund (1990), Huang et al. (1998), Broberg (1999), Needleman (1999),
Gao et al. (2001), Geubelle and Kubair (2001), Samudrala et al. (2002), Slepyan (2002).
Mode I and II intersonic speed problems were considered by Radi and Loret (2007, 2008) for
a porous, liquid-saturated material, where ‘intersonic’ does not mean the shear - longitudinal
range in the uniform solid material.

With regard to a large-scale long-length construction, the failure wave may be supported
by the gravity forces. In this connection we refer to papers by Bažant and Zhou (2002),
Bažant and Verdure (2007), Bažant et al. (2008), which contain a comprehensive analysis
of the collapse wave progress in the nine-eleven disaster. A bridge on pillars or a suspended
bridge, an overpass, long conveyers are examples of the constructions where the failure wave
may propagate taking energy from the gravity forces.

In this paper, we examine some simplified models of such a construction considering the
latter as a beam on a discrete supports and on a continuous elastic foundation, where the
failure wave is that of a partial damage of the supports. Mechanically, these models differ
from the above-mentioned ones by the existence of the subsonic and intersonic regimes of
the failure wave propagation: no elastic wave is excited in the steady-state regime, as far
as it propagates in the subsonic speed range, and there is such wave only behind the failure
wavefront in the intersonic regime. Note that the elastic waves, if exist, create wave resistance
to the failure wave. Possibilities of the wave radiation, in dependence on the failure wave
speed, can be seen in the corresponding dispersion relations found for related structure in
Brun et al. (2012). Dispersion diagrams to compare are plotted in Fig. 10.

The supported beam model also differs from previous phase transition models by the
fact that the failure wave speed can vary in a wide range depending on the structure and
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damage parameters, and it can be very small compared with that in the above-mentioned
bistable models. It is remarkable that the speed limit appears as low as the jump of the
support stiffness is large. Three related models are examined: (a) a dynamic beam on a
continuous elastic foundation, (b) a discrete set of masses rested on elastic supports and
connected by massless beams and (c) a dynamic beam on the set of discrete elastic supports,
Fig. 1. Stiffness of the support is assumed to drop when the stress in the pillars (or the
beam transverse displacement) reaches a critical value. The failure wave is also considered
under the condition that, at the moment of the support damage, the value of the ‘added
mass’, which reflects the dynamic response of the support, is dropped. We have found the
conditions for the failure wave to exists, to propagate uniformly or to accelerate. All speed
regimes are considered, such where the failure wave is or is not accompanied by elastic waves
excited by the jump in the stiffness and added mass. Limiting speeds are determined. We
have shown that the effect of the change of the stiffness can essentially result in the failure
wave speed limitations.

In Fig. 2 we show an illustration of a bridge failed under a wave generated by an earth-
quake. A periodic pattern is clearly visible in the collapsed structures and it corresponds to
damaged foundations of the bridges.

The paper is organized as follows: in Section 2 the uniform continuous model is pre-
sented, energy balance and the complete analytical solution for the displacement are given,
three velocity regimes are defined; in Section 3 the solution for the two discrete-continuous
structures is obtained by means of the Wiener-Hopf technique. The critical displacement at
the damaged point is analysed in Section 4 and the results for the different structure are
compared. Finally, concluding remarks are included in Section 5. The symbol “tilde” is used
for quantities normalised by the unit length and time defined in eq. (11) and in Section 3,
“bar” indicates increments with respect to the static values of the undamaged structure and
“hat” is used for mass and stiffness ratios.

2 Uniform continuous model: a beam on an elastic

foundation

We start with the simplest formulation of the structure as an infinite uniform elastic beam
placed horizontally on a uniform elastic foundation as given in Fig. 1a. The elastic foundation
approximates the action of the supporting pillars on the beam and represents the limiting
case where the distance between the supports tends to zero. Among the different models of
foundations described in Salvadurai (1979), we adopt the Winkler foundation, which is more
adequate for the case of disjoint support pillars. The foundation is considered as massless;
however, the corresponding ‘added mass’ is assumed to be included in the beam per-unit-
length mass, m. The foundation is initially stressed by the beam under gravity forces mg (g
is the acceleration of gravity).

We consider the failure wave as the propagation of partial damage of the foundation.
Namely, we assume that the foundation stiffness drops at the wave front, η ≡ x−vt = 0, from
its initial value, κ1 (ahead of the front) to κ2 < κ1 (behind the front), while the transverse
displacement w reaches a critical value wc at the front, η = 0. The critical displacement is
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(a)

(b)

(c)

Figure 1: Supported beam models. Undamaged and damaged parts are indicated with
subscripts 1 and 2, respectively. (a) Beam on elastic foundation. The beam has mass density
m1,2 = m0

1,2 + M1,2/a and bending stiffness D; the foundation has stiffness per unit length
κ1,2 = κ

0
1,2/a. (b) Discrete set of masses M0

1,2 = m0
1,2a + M1,2 connected horizontally by

massless beams of bending stiffness D and rested on elastic supports of stiffness κ
0
1,2 placed

at distance a. (c) Dynamic beam of density m0
1,2, added mass M1,2 and bending stiffness D,

on the set of discrete elastic supports of stiffness κ
0
1,2 placed at distance a. The transverse

displacement is denoted as w.

reached as a result of dynamic excitation superimposed on the static load due to gravitational
forces and, based on simple physical considerations, wc > mg/κ1. In this case, tensionless
elastic foundations for beams, like the ones analysed in Nobili (2012) using a variational
approach in statics, are not necessary. Also, the problem is considered assuming that a part
of the added mass disappears simultaneously with the jump discontinuity of the foundation
stiffness. In this case, m = m1 ahead of the front and m = m2 < m1 behind the front. Under
the moving discontinuity, elastic waves can be excited propagating behind or/and ahead of
the failure wave front; however, the static values of the beam vertical displacement are equal
to m1g/κ1 (far ahead of the front) and to m2g/κ2 (far behind the front). This allows us to
draw some conclusions based on energy considerations.
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Figure 2: View of the destroyed “Puente Viejo” over the Biobio river, that links Concepcion
and San Pedro de la Paz, 500 km south of Santiago, Chile, after the 8.8 magnitude earthquake
on February 27, 2010. c© Nicolás Piwonka, National Geographic.

2.1 Energy considerations

Consider the loading diagram shown in Fig. 3, where q1,2, and qc are the initial, the final and
the critical load at damage acting on the support, respectively. The other values pointed in
the figure are

q∗ =
κ2

κ1
qc , w1 =

q1

κ1
, w2 =

q2

κ2
, wc =

qc

κ1
, (1)

where q∗ is the load at critical point η = −0 in the damaged structure and w1,2 is the beam
static displacement at η = ±∞. It can be seen that the work of the gravity forces, the static
strain energy density at η = −∞ (where the kinetic energy of decaying waves is zero) and
the energy loss due to the failure are

A =
1

2
q1w1 + q1(wc − w1) + q2(w2 − wc) , E2 =

1

2
q2w2 , E∗ =

1

2
(qc − q∗)wc . (2)

Since the energy of the beam itself in the steady-state regime is invariable in η, the energy
excess per unit length is (Slepyan, 2002)

E0 = A − E2 − E∗ =
1

2

(
q2
2

κ2

− q2
1

κ1

)
+

(q1 − q2)qc

κ1

− q2
c

2κ1

(
1 − κ2

κ1

)
, (3)

The energies are also shown in the load-displacement plane in Fig. 3. From this static value
the energy radiated by elastic waves, if exist, must be deducted. In this general case, for the
uniform propagating failure wave the energy balance is (Hayes, 1977)

E0 − U1(c1/v − 1) − U2(1 − c2/v) = 0 , (4)

where U1,2 and c1,2 are the energy density and the group velocities of the waves at ±η > 0.
Note that U1 = 0 in the sub- and intersonic regimes and U2 = 0 in the subsonic regime.

In this problem, there is a range of the failure wave speed, 0 ≤ v < v2, where no elastic
wave can be radiated in steady-state motion. The critical velocity v2, indicated in Fig. 4,
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is the resonant wave velocity corresponding to the lower dispersion curve. At this regime
the phase and group velocities are equal. The value of v2 is given the next section. For
this subsonic regime, we can conclude that the failure wave cannot propagate if E0 < 0. In
the opposite case, where there is a positive excess of the energy, the steady-state regime
is impossible, and the failure wavefront move unsteadily spending the energy excess on the
radiation of elastic waves, which arise under nonuniform motion. In the neutral case, E0 = 0,
any value of the speed in the subsonic range satisfies the energy balance. However, in the
latter case, the system parameters are connected by a relation following from the equation
E0 = 0. In particular, if no loss of the mass is assumed, this relation is

wc = w∗
c := w1

√
κ1/κ2 . (5)

In the subsonic regime, the wave propagates nonuniformly if the real critical displacement wc

is less than the value w∗
c , otherwise it cannot propagate. When wc < w∗

c , which means that
E0 > 0, steady-state motion is possible at v > v2, solution of (4) as shown in the example at
the end of Section 2.

Note that the last term in Eq. (3), the energy lost under the support damage, plays the
role of the surface energy (or the effective surface energy) in fracture. The peculiarity of the
considered problem is that the energy release under the support damage remains positive
not only in the cases where there is no wave radiation, but also in a part of the intersonic
speed range, and this occurs in the continuous model as well. Then, in the actual model
there is a regime where both positive energy release and wave radiation occur, in contrast
with continuum models of steady-state crack propagation, in which energy release to the
crack tip excludes the presence of wave radiation and vice versa.

2.2 Flexural waves, normalization and dispersion relations

We based on the Bernoulli-Euler model for the beam and the Winkler model for the contin-
uous foundation as in Fig. 1a. Thus, the dynamic equation is

D
∂4w(x, t)

∂x4
+ m

∂2w(x, t)

∂t2
+ κw(x, t) = mg . (6)

where w is the transversal displacement, κ is the foundation stiffness and g is the acceleration
of gravity. The foundation stiffness and possibly the density take different values ahead of and
behind the wavefront, respectively. This continuous structure is assumed to be a limiting
representation of the corresponding discrete-continuous system consisting of a continuous
beam on a discrete periodic set of supports. Accordingly, the distributed mass density and
support stiffness are assumed to be those averaged over the period, a

m = m0 + M/a , κ = κ
0/a , (7)

where m0 is the beam mass density, M is the added mass due to the supports and κ
0 is the

discrete support stiffness (see also Section 3).
We consider the steady-state regime, assuming that the displacement depends only on

η = x − vt, where v is the failure wave speed. The equation of motion (6) becomes

Dw(η)IV + mv2w′′(η) + κ w(η) = mg (8)
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Figure 3: Load q versus displacement w diagram for the beam on elastic foundation; q1 and
q2 are the gravitational loads for the undamaged and damaged structure of stiffness κ1 and
κ2, respectively, and w1 = q1/κ1, w2 = q2/κ2 are the corresponding static displacements.
The critical load and displacement at damage are qc and wc, respectively, whereas q∗ is the
load corresponding to the displacement wc of the damaged structure. A is the work of the
gravitational loads, E2 is the static strain energy in the damaged structure at η → −∞ and
E∗ is the energy loss at failure. The energy excess E0 is the difference between the area of
the two triangles P4P5P6 and P1P2P3 in the (w, q) space.

with

κ = κ1 (η > 0) , κ = κ2 < κ1 (η < 0) ,

m = m1 (η > 0) , m = m2 (η < 0) . (9)

In this equation, v is considered as the input parameter. Once the steady-state solution is
obtained, it must be used to satisfy the failure condition

w(0) = wc . (10)

If the latter equation can be satisfied it serves for the determination of the speed v; otherwise,
the steady-state formulation failed as it was discussed in Section 2.1. A similar approach
has been successfully used in Mishuris, Movchan and Slepyan (2009), Nieves et al. (2013)
and Carta et al. (submitted) to analyse crack propagation in elastic and thermoelastic 2D
lattices.
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Figure 4: Dispersion diagrams for the waves in uniform beams on elastic foundation of stiff-
ness κ. The dispersion curves are shown for the undamaged foundation (ω1(k) for stiffness
κ = κ1), the damaged one (ω2(k) for κ = κ2, with κ̂ = κ2/κ1 = 0.36) and the limiting
case with κ = 0 (grey curve); no loss of mass is considered. Straight lines correspond to
the different regimes of the failure wave speeds, v = ω/k= const. The group velocities
c1,2 = dω1,2/ dk coincide with the speed v at the resonant regimes, where v = v2 =

√
2(κ̂)1/4

and v = v1 =
√

2. The (ω, k)-points corresponding to the radiated waves are marked by small
bullets; such resonant points are marked by larger bullets. The non-dimensional variables
are used corresponding to the length and time units introduced in (11).

We introduce the natural length and time units as

ξ = (D/κ1)
1/4, τ =

√
m1/κ1 . (11)

After the normalization

(x, η, w) = ξ(x̃, η̃, w̃) , (t, ω−1) = τ(t̃, ω̃−1) , (v, c1,2) = ξ/τ(ṽ, c̃1,2) ,

k = k̃/ξ , g = (ξ/τ2)g̃ , (E0, E2, E∗, A, U1, U2) = κ1ξ
2(Ẽ0, Ẽ2, Ẽ∗, Ã, Ũ1, Ũ2) , (12)

Eqs. (8) become

w̃IV (η) + ṽ2 w̃′′(η) + w̃(η) = g̃ (η > 0) ,

w̃IV (η) + m̂ ṽ2 w̃′′(η) + κ̂ w̃(η) = m̂g̃ (η < 0) , (13)

where m̂ = m2/m1 and κ̂ = κ2/κ1. Separating the initial static displacement of the undam-
aged structure we implement the substitution w̃ = w̄ + g̃. Then, the above equation takes
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the form

w̄IV (η) + ṽ2 w̄′′(η) + w̄(η) = 0 (η > 0) ,

w̄IV (η) + m̂ ṽ2 w̄′′(η) + κ̂w̄(η) = Q (η < 0) , (14)

where Q = g̃ (m̂ − κ̂).
In the following, the symbols “tilde” and “bar” are omitted for ease of notation and

we consider the case m1 = m2. The displacements referred to in the following text are
normalised dynamic perturbations with respect to the corresponding static values.

The corresponding dispersion relations are

ω1 = ±
√

1 + k4 , (η > 0) , ω2 = ±
√

κ̂ + k4 (η < 0) , (15)

where k is the wave number.
We consider three ranges of the velocity, v, corresponding to subsonic, intersonic and

supersonic speeds. The boundaries separating these ranges correspond to equalities v =
ω/k = c1,2 = dω1,2/ dk (c1,2 are the group velocities). These are two critical velocities
corresponding to resonance modes. For a homogeneous beam on an elastic foundation loaded
by a constant-velocity moving load, a single critical velocity exists. The corresponding
problem was analysed introducing some damping in Kenney (1954), as a limit of the transient
solution in a finite structure in Steele (1967a), or with a perturbation solution including
geometric and material nonlinearities in Steele (1967b). In the considered case, we have two
such critical values, one, v1, corresponds to the intact structure and the other, v2, corresponds
to the damaged structure.

These critical speeds separate the three ranges as follows:

• subsonic range: 0 ≤ v < v2 =
√

2(κ̂)1/4 ,

• intersonic range: v2 < v < v1 =
√

2 ,

• supersonic range: v > v1.

Dispersion diagrams (15) and sonic regimes are shown in Fig. 4. Elastic wave radiation at
the failure wave front η = 0 corresponds to the intersection points of the dispersion relations
(15) with the propagating wave rays, ω = v k, and the radiated wave propagates at η < 0 if
v > c2 and at η > 0 if v < c1.

2.2.1 Subsonic regime

Although, as follows from the energy considerations, the only ‘neutral case’ correspond to
the steady-state regime in this speed range, we consider the subsonic regime in detail. We
show how the deformed shape of the beam in a vicinity of the transition point depends on
the speed. Eqs. (13) yield

w(η) = e−α1η(A1 cos β1η + B1 sin β1η) (η > 0) ,

w(η) = eα2η(A2 cos β2η + B2 sin β2η) + Q/κ̂ (η < 0) ,

α1 =
1

2

√
2 − v2 , β1 =

1

2

√
2 + v2 ,

α2 =
1

2

√
2
√

κ̂ − v2 , β2 =
1

2

√
2
√

κ̂ + v2 , (16)
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where the constants, A1, ..., B2, defined by the continuity conditions with respect to the
displacement and its first three derivatives at η = 0, are

A1 =
Q√

κ̂(1 +
√

κ̂)
, A2 = − Q

κ̂(1 +
√

κ̂)
,

B1 = −
√

2 − v2(1 +
√

κ̂) − 2
√

2
√

κ̂ − v2

√
κ̂

√
2 + v2(1 − κ̂)

Q ,

B2 =

√
2
√

κ̂ − v2(1 +
√

κ̂) − 2
√

κ̂

√
2 − v2

κ̂

√
2
√

κ̂ + v2(1 − κ̂)
Q . (17)

The displacement at the transition point

w(0) =
Q√

κ̂(1 +
√

κ̂)
=

(√
κ1

κ2
− 1

)
g (18)

is independent of the speed as it should be in the subsonic speed range. It corresponds to the
energy balance relation (5) (note that in (18) we have separated the initial non-dimensional
displacement equal to g). This regime can exist if the critical value of the displacement
coincide with w(0) given by this relation. The plots of w(η) and of w(0) as a function of κ̂

are presented in Fig. 5. In connection with energy considerations given in Section 2.1, we
can see from Fig. 5b that, independently on the velocity v ≤ √

2(κ̂)1/4, the wave propagate
nonuniformly if κ2/κ1 < (wc/g + 1)−2 (in normalized coordinates) and it cannot propagate
otherwise. In this regime the critical displacement for dynamic propagation coincides with
the static displacement.

(a) (b)

Figure 5: The beam on continuous elastic foundation. Subsonic speed regime (v <
√

2κ̂
1/4):

(a) Displacement profile w(η), in the static case (v = 0) and at velocities v = 0.9, 1.15, for
κ̂ = 0.5 (v2 = 1.189). (b) Displacement w/g at η = 0 as a function of the stiffness ratio
κ̂ = κ2/κ1. Dashed lines indicate the case shown in Fig. 5a.
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2.2.2 Intersonic regime

This regime is characterized by a sinusoidal wave propagating behind the transition point.
Among two waves satisfying the equation we choose the wave with group velocity below the
failure wave velocity (see Fig. 4), that is we keep the wave excited by the transition (the
other propagating from minus infinity could correspond to a remote source). Thus

w(η) = e−α1η(A1 cos β1η + B1 sin β1η) (η > 0) ,

w(η) = A2 cos β2η + B2 sin β2η + Q/κ̂ (η < 0) ,

α1 =
1

2

√
2 − v2 , β1 =

1

2

√
2 + v2 ,

β2 =

√
v2/2 −

√
v4/4 − κ̂ , (19)

where the constants, A1, ..., B2, are defined by the same continuity conditions as above for
the subsonic case; they are

A1 =
v2 − 2κ̂ −√

v4 − 4κ̂

2(1 − κ̂)κ̂
Q , B1 = −√

2 − v2
v2 + 2κ̂ −√

v4 − 4κ̂

2
√

2 + v2(1 − κ̂)κ̂
Q ,

A2 = −2 − v2 +
√

v4 − 4κ̂

2(1 − κ̂)κ̂
Q , B2 = −

√
2 − v2

√
v2 −√

v4 − 4κ̂√
2(1 − κ̂)κ̂

Q . (20)

In particular,

w(0) =
v2 − 2κ̂ −√

v4 − 4κ̂

2κ̂

g . (21)

Since w(0) depends on v, this allows us to satisfy the condition (10). The displacement
profiles w(η) for different values of the speed v are presented in Fig. 6a.

In Fig. 6b we also plot the value of w(0) as a function of velocity v for κ̂ = 0.5. The
steady-state propagation speed v corresponds to equality w(0) = wc > 0 when κ2/κ1 <
(wc/g + 1)−2. We note that such a speed v depends on the safety factor wc/g + 1 (expressed
in term of non-dimensional values).

As can be seen in Fig. 6b the displacement, w(0), monotonically decreases as the speed,
v, increases from the critical value, v = v2 =

√
2(κ̂)1/4, and becomes negative when the speed

exceeds a value. These negative values correspond to a hypothetic case where the energy
lost at the moment of the damage is less than its real minimal value, that is the critical load
is less than the initial static load, qc < mg.

The critical displacement w(0) versus v is shown in Fig. 7a for different values of κ̂,
while the total speed bound w(0) = 0 is given in the (κ̂, v) space in Fig. 7b. The steady
propagation of the fault in the intersonic regime is not forbidden when w(0) > 0, which
implies that the velocity v satisfies the following constraint

√
2κ̂

1/4 < v <
√

1 + κ̂. (22)

It is also noted that for the intersonic velocities within the interval (
√

1 + κ̂,
√

2) the failure
wave propagation is not possible.
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(a) (b)

Figure 6: The beam on an elastic foundation. Intersonic regime (
√

2κ̂
1/4 < v <

√
2):

(a) Displacement profile w(η) at different velocities, v = 1.19, 1.25, 1.40, for κ̂ = 0.5. (b)
Displacement at η = 0 as a function of velocity for the ratio κ̂ = 0.5 (1.189 < v < 1.414);
the critical displacement wc is attained at v = v∗.

(a) (b)

Figure 7: The beam on an elastic foundation. Intersonic regime (
√

2κ̂
1/4 < v <

√
2). (a)

Displacement at η = 0 as a function of velocity for the ratios κ̂ = 0.25, 0.5, 0.75, 0.9. (b)
Total bound w(0) = 0 at different values of the velocity v and the support stiffness contrast
κ̂. The grey area shows the intersonic regime, bounded by the dashed lines v2 =

√
2(κ̂)1/4

and v1 =
√

2. Steady failure propagation is possible when w(0) > 0.

2.2.3 Supersonic regime

Finally, we address the case when the velocity of the transition front v >
√

2. In this case,
elastic waves are generated in both regions η > 0 and η < 0. The displacement takes the
form

w(η) = A1 cos β1η + B1 sin β1η (η > 0) ,

12



w(η) = A2 cos β2η + B2 sin β2η + Q/κ̂ (η < 0) ,

β1 =

√
v2/2 +

√
v2/4 − 1 , β2 =

√
v2/2 −

√
v2/4 − κ̂ , (23)

where the group velocity of the elastic wave ahead of the transition front is greater than the
speed of the latter (see Fig. 4), and the constants defined by the continuity conditions are

A1 = − v2 −√
v4 − 4κ̂√

v4 − 4 +
√

v4 − 4κ̂

Q
κ̂

, B1 = 0 ,

A2 = − v2 +
√

v4 − 4√
v4 − 4 +

√
v4 − 4κ̂

Q
κ̂

, B2 = 0 . (24)

Thus,

w(0) = − v2 −√
v4 − 4κ̂√

v4 − 4 +
√

v4 − 4κ̂

1 − κ̂

κ̂

g < 0. (25)

Since the transition can occur when w(0) > 0 this evidences that the wave cannot propagate
at supersonic velocities. Thus, the absolute maximum of the failure wave speed is

√
1 + κ̂.

subsonic intersonic supersonic

Figure 8: The beam on an elastic foundation. Displacement at the transition point is given
in black continuous lines as a function of velocities in the subsonic, intersonic and supersonic
regimes for κ1/κ2 = 0.35, 0.45, 0.75. Grey line indicates the critical displacement wc/g = 0.3
and black circles correspond to the steady-state propagation of the fault at v∗ = 1.106, 1.164.

We conclude this section on the beam on elastic foundation with the results shown in
Fig. 8. The displacement w(0) is plotted as a function of the failure velocity v for the
stiffness ratios κ̂ = 0.35, 0.45, 0.75. It is possible to distinguish the subsonic regime (where
w(0) is constant), the intersonic regime (where w(0) decreases with the increase of v) and

13



the supersonic regime (where w(0) is always negative), delimited by the critical velocities
v2 =

√
2κ̂

1/4 and v1 =
√

2. At the critical displacement wc/g = 0.3 corresponds a maximum
ratio κ̂ = 0.592 for the fault propagation. Therefore, propagation is not possible for κ̂ = 0.75,
which is also in agreement with the fact that in (3) the energy excess E0 = −0.357(1 −
κ̂)g2/2 < 0. For κ̂ = 0.35, 0.45, where E0 is positive, steady-state propagation is given by
the intersection points w(0) = wc at v = 1.106, 1.164 (see Eq. (21)), respectively; two values
which satisfy the constraint (22). It is trivial to verify that steady-state velocities satisfy
energy balance (4) where

U1 = 0, U2 =
1 − κ̂

4κ̂
2

(
v4 − v2

√
v4 − 4κ̂

)
, 1 − c2

v
=

√
v4 − 4κ̂

v2
. (26)

3 Discrete-continuous model

A uniform elastic beam of the mass density m0 is assumed to be placed on concentrated
elastic supports at x = na, a > 0, n = 0,±1, ... (see Fig. 1c). We denote the stiffness, κ

0,
of the intact and damaged supports by κ

0
1 and κ

0
2 , respectively. Also the “added mass” M

proportional to a is assumed to be placed at the junction points corresponding to positions
of elastic supports. Thus,

κ
0 = κ

0
1 , M = M1 , m0 = m0

1 (before the support damage, η > 0) ,

κ
0 = κ

0
2 < κ

0
1 , M = M2 , m0 = m0

2 (after the support damage, η < 0) . (27)

The supported cross-sections have the coordinates x = na. The steady-state regime is
considered in the sense that the displacement w at x = na is a function of η = na − vt,
whereas the displacement of the beam between the supports is a function of two variables:
w = w(x, η). Thus, w(η) = w(na, η).

The dynamic equations for the structure before the damage are

D
∂4w(x, η)

∂x4
+ m0

1

∂2w(x, η)

∂t2
= m0

1g (x 	= an) ;

M1
∂2w(η)

∂t2
+ κ

0
1w(η) − Q+(η) + Q−(η) = M1g ,

M+(η) −M−(η) = 0 (x = an) , (28)

where D is the bending stiffness, m0
1 is the beam mass per unit length and g is the gravity

acceleration; Q±(η) and M±(η) are the transverse force and the bending moment at the right
(superscript +) and at the left (superscript −) of the junction point x = na, respectively
(see Fig. 9, panel I).

We introduce the same length and time units ξ = (D/κ1)
1/4, τ =

√
m1/κ1 as in (11),

with κ1 = κ
0
1/a, and the mass density unit m1 = m0

1 +M1/a. In these terms, the normalized
quantities denoted by tilde are

(x, a, η, w) = ξ(x̃, ã, η̃, w̃), M1,2 = m1aM̃1,2 ,

(t, ω−1) = τ(t̃, ω̃−1) , v = (ξ/τ)ṽ , g = (ξ/τ 2)g̃ ,

14



Figure 9: Inertial beam on elastic supports distributed at distance a. Panel I: configuration
of the concentrated mass M. Panel II: auxiliary solution configuration for the beam.

Q(x, η) = −D
∂3w(x, η)

∂x3
=

D

ξ2
Q̃(x̃, η̃) , Q̃(x̃, η̃) = −∂3w̃(x̃, η̃)

∂x̃3
,

M(x, η) = D
∂2w(x, η)

∂x2
=

D

ξ
M̃(x̃, η̃) , M̃(x̃, η̃) =

∂2w̃(x̃, η̃)

∂x̃2
. (29)

The equations of motion (28) become

∂4w̃(x̃, η̃)

∂x̃4
+

m0
1

m1

∂2w̃(x̃, η̃)

∂t̃2
=

m0
1

m1

g̃ (x 	= an) ; (30)

M̃1
∂2w̃(η̃)

∂t̃2
+ w̃(η) − 1

ã

[
Q̃+(η̃) − Q̃−(η̃)

]
= M̃1g̃ , M̃+(η̃) − M̃−(η̃) = 0 (x = an) . (31)

Recall that in the damaged region, η < 0, the values κ
0
1 , M1, m0

1 are replaced by κ
0
2 < κ

0
1 ,,

M2 and m0
2. For this case, equation (30) and the first equation in (31) take the form

∂4w̃(x̃, η̃)

∂x̃4
+

m0
2

m1

∂2w̃(x̃, η̃)

∂t̃2
=

m0
2

m1
g̃ (x 	= an) ; (32)

M̃2
∂2w̃(η̃)

∂t̃2
+

κ2

κ1
w̃(η̃) − 1

ã

[
Q̃+(η̃) − Q̃−(η̃)

]
= M̃2g̃ . (33)

In the following the symbol “tilde” is omitted for convenience.
We now separate the initial static state by the substitution

w(x, η) = g +
m0

1

24 m1

(x − an)2(x − a(n + 1))2g + w̄(x, η) , (34)

where the first term on the right-hand side represents the static displacement at x = na
corresponding to the positions of the supporting pillars, whereas the second one stands for
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the relative displacement of the beam with respect to the supporting pillars and w̄ is the
normalised dynamic perturbation. Correspondingly,

Q±(η) = ±m0
1

m1

g a

2
+ Q̄±(η), M±(η) =

m0
1

m1

g a2

12
+ M̄±(η). (35)

We obtain that for η > 0

x 	= an :
∂4w̄(x, η)

∂x4
+

m0
1

m1

∂2w̄(x, η)

∂t2
= 0 ;

x = an : M1
∂2w̄(η)

∂t2
+ w̄(η) − 1

a

[
Q̄+(η) − Q̄−(η)

]
= 0 ,

M̄+(η) − M̄−(η) = 0 , (36)

and for η < 0

x 	= an :
∂4w̄(x, η)

∂x4
+

m0
2

m1

∂2w̄(x, η)

∂t2
=

m0
2 − m0

1

m1

g ;

x = an : M2
∂2w̄(η)

∂t2
+

κ2

κ1

w̄(η) − 1

a

[
Q̄+(η) − Q̄−(η)

]
= C ,

M̄+(η) − M̄−(η) = 0 ,

C = g(1 − κ2/κ1 + M2 − M1) . (37)

In the following text, the symbol “bar” is omitted for convenience of notation. We also
restrict our attention to the case where the damage is concentrated at the pillars, positioned
at x = na, and m0

1 = m0
2 = m0.

3.1 Interaction of the neighboring supported cross-sections

We now consider the interaction of the neighboring cross-sections placed at the elastic sup-
port points, say, at x = 0 and at x = a. For the steady-state regime the dynamic equation
for the displacement of the beam placed between these cross-sections follows from (36) as

∂4w(x, η)

∂x4
+ v2m0

m1

∂2w(x, η)

∂η2
= 0 . (38)

In terms of the Fourier transform on η with parameter k we have

∂4wF (x, k)

∂x4
− v2k2m0

m1
wF (x, k) = 0 with v2k2 = − lim

ε→+0
(ε + ivk)2 . (39)

In the following, we will make use of an auxiliary solution of this equation corresponding to
the boundary conditions (see Fig. 9, panel II)

wF (0, k) =
(
wF (0, k)

)′
= 0 , wF (a, k) = w0 ,

(
wF (a, k)

)′
= φ0 . (40)
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It is

wF = W (x)w0 + Φ(x)φ0 ,

W (x) =
(cosh λa − cos λa)(cosh λx − cos λx) − (sinh λa + sin λa)(sinh λx − sin λx)

2(1 − cosh λa cos λa)
,

Φ(x) =
(cosh λa − cos λa)(sinh λx − sin λx) − (sinh λa − sin λa)(cosh λx − cos λx)

2λ(1 − cosh λa cos λa)
, (41)

where λ = (m0/m1)
1/4

√
kv − i0. The transverse shear force, Q = −w′′′, and the bending

moment, M = w′′, follow from this as

QF (0, η) = Qw0w0 + Qφ0φ0 , QF (a, η) = Qwaw0 + Qφaφ0 ,

MF (0, η) = Mw0w0 + Mφ0φ0 , MF (a, η) = Mwaw0 + Mφaφ0 , (42)

with

Qw0 =
λ3(sinh λa + sin λa)

1 − cosh λa cos λa
, Qφ0 = −λ2(cosh λa − cos λa)

1 − cosh λa cos λa
,

Qwa =
λ3(cosh λa sin λa + sinh λa cos λa)

1 − cosh λa cosλa
, Qφa = − λ2 sinh λa sin λa

1 − cosh λa cos λa
,

Mw0 =
λ2(cosh λa − cos λa)

1 − cosh λa cos λa
, Mφ0 = −λ(sinh λa − sin λa)

1 − cosh λa cos λa
,

Mwa = − λ2 sinh λa sin λa

1 − cosh λa cos λa
, Mφa =

λ(cosh λa sin λa − sinh λa cos λa)

1 − cosh λa cos λa
. (43)

Note that for low speeds, v → 0, the compliance coefficients tend to their static values,
namely

Qw0 → Qwa → 12

a3
, Qφ0 → Qφa → − 6

a2
,

Mw0 → −Mwa → 6

a2
, Mφa → −2Mφ0 → 4

a
. (44)

3.2 The Wiener-Hopf equation

We now rearrange Eqs. (36), (37) making the Fourier transform and using expressions (42),
(43). We denote

{w+(k), φ+(k)} =

∫ ∞

0

{w(η), φ(η)}eikη dη ,

{w−(k), φ−(k)} =

∫ 0

−∞
{w(η), φ(η)}eikη dη , (45)

and deduce

(1 − M1v
2k2)w+(k) + (κ2/κ1 − M2v

2k2)w−(k) +
2

a
(Qwa − Qw0 cos ka)wF (k)

+
2i

a
Qφ0 sin ka φF (k) =

C

0 + ik
,

iMw0 sin ka wF (k) + (Mφa −Mφ0 cos ka)φF (k) = 0 . (46)
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Excluding φF (k) we obtain

L1(k)w+(k) + L2(k)w−(k) =
C

0 + ik
=

C(L1(k) − L2(k))

(0 + ik)[1 − κ2/κ1 + (M1 − M2)(0 + ikv)2]
,

L1(k) = 1 + M1(0 + ikv)2 +
2

a

[
(Qwa − Qw0 cos ka) +

Qφ0Mw0 sin2 ka

Mφa −Mφ0 cos ka

]
,

L2(k) =
κ2

κ1
+ M2(0 + ikv)2 +

2

a

[
(Qwa − Qw0 cos ka) +

Qφ0Mw0 sin2 ka

Mφa −Mφ0 cos ka

]
. (47)

Finally, the Wiener-Hopf type equation follows in the form

L0(k)w+(k) + w−(k) =
C

(0 + ik)[1 − κ2/κ1 + (M1 − M2)(0 + ikv)2]
[L0(k) − 1] ,

L0(k) = L1(k)/L2(k) . (48)

3.3 Factorization

To facilitate this action we assume that a small dissipation exists in proportion to the strain
rate, that is, we correct the expression for the bending moment to be

M =
∂2w(x, η)

∂x2
+ α

∂3w(x, η)

∂t∂x2
, (49)

where α is a small time parameter of viscosity. The non-dimensional beam equation after
the Fourier transform on η becomes

(1 + ikvα)
∂4wF (x, k)

∂x4
− v2k2wF (x, k) = 0 , (50)

that results in the change of the parameter λ

λ =⇒ λ

(1 + ikvα)1/4
=

(
m0

m1

)1/4 √
kv − i0

(1 + ikvα)1/4
= O

(|k|1/4
)

(v > 0, k → ∞) . (51)

Now the product

L(k) =
M2

M1
L0(k) → 1 (k → ±∞) (52)

has no zeroes on the real k-axis (if κ
0
2 > 0). It means that its index is zero, i.e.

Ind L(k) =
1

2π
[ArgL(∞) − ArgL(−∞)] = 0 . (53)

Besides, the integral of lnL(k) over the real k-axis converges. This allows us to use the
Cauchy type integral for the factorization of this function, that is to represent

L(k) = lim
�k→0

L+(k)L−(k) , L±(k) = exp

[
± 1

2πi

∫ ∞

−∞

ln L(ξ)

ξ − k
dξ

]
(±�k > 0) . (54)
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Eq. (48) can be represented in the form

L+(k)w+(k) +
M2w−(k)

M1L−(k)
= G(k)

[
M1

M2
L+(k) − 1

L−(k)

]
,

G(k) =
M2C

M1(0 + ik)[1 − κ2/κ1 + (M1 − M2)(0 + ikv)2]
. (55)

First consider the case M1 = M2 = M . In this case, we have

G(k)

[
L+(k) − 1

L−(k)

]
= C1 + C2 , C1 =

g

ik
[L+(k) − L+(0)] ,

C2 =
g

0 + ik

[
L+(0) − 1

L−(k)

]
, (56)

where C1,2 are regular in the upper (C1) and lower (C2) half-planes of k. The solution follows
as

w+(k) =
g

ik

L+(k) − L+(0)

L+(k)
,

w−(k) =
g

0 + ik
[L+(0)L−(k) − 1] . (57)

In particular, using the limiting relations

w(±0) = lim
k→±i∞

(∓ik)w±(k) , L±(±i∞) = 1 (58)

we find that

w(+0) = w(−0) = w(0) = g[L+(0) − 1] (59)

with

L±(0) =

√
κ1

κ2
exp

[
±1

π

∫ ∞

0

ArgL(k)

k
dk

] (
L(0) =

κ1

κ2

)
, (60)

where ArgL(k) is equal to zero in a vicinity of k = 0 and exponentially decreasing as k → ∞.
So the above integral converges.

In the case M2 < M1, the function G(k) in (55) can be split by the corresponding terms
as follows

G(k) = C1(k) + C2(k) ,

C1(k) = C0

[
L+(k) − L+(0)

0 + ik
− 1

2

(
L+(k) − L+(β)

0 + i(k − β)
+

L+(k) − L+(−β)

0 + i(k + β)

)]
,

C2(k) = C0

[
L+(0)

0 + ik
− 1

2

(
L+(β)

0 + i(k − β)
+

L+(−β)

0 + i(k + β)

)]
− G(k)

L−(k)
,

C0 =
M2C

M1(1 − κ2/κ1)
, β =

1

v

√
1 − κ2/κ1

M1 − M2

, (61)
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and the solution is obtained as

w+(k) = C0

[
1 − L+(0)/L+(k)

0 + ik
− 1

2

(
1 − L+(β)/L+(k)

0 + i(k − β)
+

1 − L+(−β)/L+(k)

0 + i(k + β)

)]
,

w−(k) = C0L−(k)

[
L+(0)

0 + ik
− 1

2

(
L+(β)

0 + i(k − β)
+

L+(−β)

0 + i(k + β)

)]
− G(k) . (62)

In particular, it follows that

w(+0) = w(−0) = w(0) = C0

[
L+(0) − 1

2
(L+(β) + L+(−β))

]
. (63)

We stress that the solution corresponds to the limit α → 0.

4 The critical displacement w(0)

We present in this section the dependance of the critical displacement w(0) on the velocity of
failure propagation v. This gives precise information on the range of velocity where steady-
state regime is attainable or not, and where steady-state propagation is stable or unstable,
information that cannot be obtained from the uniform continuous model of Section 2. Also,
it is possible to establish a connection with subsonic, intersonic and supersonic regimes of
the uniform continuous model considered in Section 2 and find a universal character of the
propagation which does not depend on some geometric parameters as the pillar normalized
distance a. In this work we focus our attention on numerical results where m0

1 = m0
2,

M1 = M2 and κ2/κ1 < 1; the analysis of the model, where a contrast between the inertial
properties of the damaged and undamaged structure is present, is left for a future work.

In the limit α = +0, ArgL(k) is a piecewise constant function over a semi-infinite support
(v > 0), which makes the computation of the integral on an unbounded domain in Eq.
(60) particularly difficult. To overcome this problem we consider two models, the first one
with massless beams, where the inertial effects are concentrated in correspondence of the
elastic supports (shown in Fig. 1b), and the second one where we introduce a small positive
dissipative term α (see Eq. (49)).

4.1 The lattice beam model for masses concentrated at nodal

points

We evaluate the displacement according to formula (59), which also includes evaluation of
the Arg[L(k)] and of the integral in Eq. (60). This results will enable us to judge on the
values of the speed of the propagating fault in the discrete flexural system. We consider the
case when the normalised masses M1 and M2 used in the previous section are now replaced
by the total redistributed mass, which includes the added masses assigned to junction points
x = na and the mass assigned earlier to the beam between the neighbouring supports, as (in
the non-dimensional form) M1+m0/m1 = 1 and M2+m0/m1 = 1−M1+M2, respectively. In
this section, we assume that M1 and M2 are equal, and we use the notation M = M1 = M2.
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As a result, we deal with a system of unit point masses placed at x = an and connected by
non-inertial elastic beams. In this case the equation (38) reads as

∂4w(x, η)

∂x4
= 0 . (64)

and hence, when an < x < a(n−1), the displacement is cubic in x. For x = an the equations
are the same as in (36) and (37).

Figure 10: Dispersion diagrams ω1(ka), κ = κ1, and ω2(ka), κ = κ2, for waves in the
discrete flexural system, Fig. 1b. The diagrams are given for stifness ratio κ2/κ1 = 0.5
and normalized span length a = 2.0. The straight line ω = k v (v = 0.23) has a finite

number of intersections (denoted with small black circles) at wavenumbers k
(1)
1 , . . . , k

(1)
3 and

k
(2)
1 , . . . , k

(2)
5 with the two dispersion curves ω1 and ω2, respectively. The velocities vI , vII ,

vIII , vIV are reported in the critical displacement diagram in Fig. 12.

The Wiener-Hopf equation for the one-sided Fourier transform of the displacement has
the form (48) with M1 = M2. Taking into account Eq. (44) we deduce

L1(k) = 1 + (0 + ikv)2 +
12

a4

(1 − cos ka)2

2 + cos ka
,

L2(k) = κ2/κ1 + (0 + ikv)2 +
12

a4

(1 − cos ka)2

2 + cos ka
. (65)

Consequently, the dispersion equation describing the waves for η > 0 and η < 0 are

ω1 =

√
1 +

12(1 − cos ka)2

a4(2 + cos ka)
,
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ω2 =

√
κ2

κ1

+
12(1 − cos ka)2

a4(2 + cos ka)
, (66)

respectively. The corresponding dispersion curves are shown in Fig. 10.
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-

-
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Figure 11: The piecewise constant (a) Arg[L1], (b) Arg[L2] and (c) Arg[L] as a function of
the normalized wavenumber ka. Results are given for a = 2.0 and v = 0.23. Jumps occur at
the intersection point wavenumbers k

(1)
1 , . . . , k

(1)
3 and k

(2)
1 , . . . , k

(2)
5 highlighted in Fig. 10.

Due to Eq. (52) L0(k) = L(k) = L1(k)/L2(k). In this case, Arg[L(k)] is a piecewise con-
stant function with a finite, speed-dependent support (v > 0) vanishing in the neighborhood

of the origin. The jumps occur at the points of intersection at k = k
(1)
j , k = k

(2)
j between the

ray ω = kv and the dispersion curves ω1,2(k), as shown in Fig. 10. The graphs of Arg[L1(k)],
Arg[L2(k)] and Arg[L(k)] for v = 0.23 are given in Fig. 11. According to Eqs. (59) and (60)
the displacement at the origin is given by the formula

w(0) = g

[√
κ1

κ2

(
n1∏
i=1

k
(1)
2i

k
(1)
2i−1

n2∏
j=1

k
(2)
2j−1

k
(2)
2j

)
k

(2)
2n2+1

k
(1)
2n1+1

− 1

]
, (67)

where 2n1 + 1 and 2n2 + 1 are the number of intersections of the straight line ω = kv, with
the two dispersion curves ω = ω1(k) and ω = ω2(k), respectively. Note that in Fig. 10 and
Fig. 11, at v = 0.23, n1 = 1 and n2 = 2.

The critical displacement w(0) as a function of the speed v is given in Fig. 12 for the
stiffness ratio κ2/κ1 = 0.5 and span length a = 2 and compared with the continuous beam
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Continuous

Discrete

Figure 12: Critical displacement w(0) as a function of the speed v. The uniform continuous
model (Fig. 1a, eqs. 18, 21 and 25) is compared with the discrete massless beam model
(Fig. 1c, eq. 67). Results are given for κ2/κ1 = 0.5 and in the discrete model a = 2. The
velocities vI , vII , vIII , vIV are reported in the dispersion diagram in Fig. 10. The critical
displacement wc/g = 0.3 is denoted by the grey line.

model on elastic foundation. It is evident the jagged structure for v < vI , where the straight
line ω = kv has multiple intersection with the dispersion curves ω1 and/or ω2 and, in
principle, different waves can radiate from η = 0. At v = 0.23 waves can radiate with
wavelength k = k

(1)
2 in the region η > 0 and with wavelengths k = k

(2)
1 , k

(2)
3 , k

(2)
5 in the region

η < 0 (see Fig. 10). In this low-speed region more and more sinusoidal waves arise as the
speed decreases, with intensities extremely sensitive to the speed, causing irregularities in
the dependence of the critical displacement on v.

However, additional conditions have to be fulfilled by displacement (67) to be a steady-
state solution of the problem (36)-(37). Namely, w(0) must be an increasing function of v;
otherwise, the formally found steady-state regime is unstable. In this latter case, the failure
wave accelerates. This is similar to low crack speeds in discrete lattices (Marder and Gross,
1995).

But this is not enough. The condition of admissibility needs to be satisfied globally: the
displacement w(0) must first reach the critical value at η = 0, that is, it must be below
this level at η > 0. Note that Slepyan and Ayzenberg-Stepanenko (2004) considered a local
necessary condition equivalent to

dw(η)

dη
= −1

v

∂w

∂t
< 0 (η = 0), (68)
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for the problem of transition waves in bistable-bond lattices. Considering the limiting relation

ẇ(0) = lim
k→i∞

(−ik)(ikv)

[
w+(k) − w(0)

(−ik)

]
(69)

and that for k → +i∞
1

L+(k)
∼ 1 − 1

2πi

∫ ∞

−∞

ln L(ξ)

ξ − k
dξ , (70)

we check the range of velocity where

ẇ(0) =
v w(0)

2π

∫ ∞

−∞
ln L(k) dk > 0. (71)

By using the symmetries of L1(k) and L2(k), the integral in (71) is given by∫ ∞

−∞
ln L(k) dk = 2

∫ ∞

0

ln(|L(k)|) dk. (72)

which is integrable but the integrand has logarithmic singularities. Then, the integral can
be split as ∫ ∞

0

=

∫ k1

0

+

∫ k2

k1

+ . . . +

∫ kM

k2(n1+n2+1)

+

∫ ∞

kM

(73)

where (k1, k2, . . . , k2(n1+n2+1)) are the 2n1+2n2+2 intersection points between the line ω = k v
and the dispersion curves ω1 and ω2, such that ki < kj for i < j. For the parameters con-

sidered in Fig. 10, at v = 0.23, the wavenumbers are (k
(2)
1 , k

(2)
2 , k

(2)
3 , k

(1)
1 , k

(1)
2 , k

(2)
4 , k

(2)
5 , k

(1)
3 ).

The first 2n1 + 2n2 + 2 integrals can be computed numerically using standard quadrature
rules for integrand having logarithmic singularities at the endpoints and kM has been chosen
to be sufficiently large to guarantee that | ∫∞

kM
ln(|L(k)|) dk|/| ∫ kM

0
ln(|L(k)|) dk| < 10−6.

These values are reported in Table 1. We see that for v ≤ 0.55, ẇ(0) < 0 (except at
v = 0.2), showing that in this range no steady-state propagation, w = w(x, η), can exist.

v ẇ(0)
0.10 −0.35 ∗ 10−3

0.15 −0.25 ∗ 10−3

0.20 0.12 ∗ 10−1

0.25 −0.12 ∗ 10−2

0.30 −0.80 ∗ 10−3

0.35 −0.88 ∗ 10−2

0.40 −0.82 ∗ 10−2

0.45 −0.18 ∗ 10−1

v ẇ(0)
0.50 −0.88 ∗ 10−2

0.55 −0.25 ∗ 10−2

0.60 0.31 ∗ 10−2

0.65 0.83 ∗ 10−2

0.70 0.13 ∗ 10−1

0.75 0.19 ∗ 10−1

0.80 0.24 ∗ 10−1

0.85 0.30 ∗ 10−1

v ẇ(0)
0.90 0.36 ∗ 10−1

0.95 0.43 ∗ 10−1

1.00 0.52 ∗ 10−1

1.05 0.62 ∗ 10−1

1.10 0.76 ∗ 10−1

1.15 0.10 ∗ 100

1.175 0.77 ∗ 10−1

1.2 0.11 ∗ 10−1

Table 1: Value of the displacement time derivative ẇ(0) at different speeds v.

Following the behavior of the transversal displacement w(0) at higher velocities, it can
be seen that there is a sort of plateau in the range vI < v < vII with a drastic drop in the
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Continuous

Figure 13: Critical transversal displacement w(0) as a function of the speed v. The discrete
massless beam model (continuous grey lines) and the uniform continuous model (dashed black
line) are represented with κ2/κ1 = 0.5. In the discrete model a = 0.25, 1.0, 2.0, 4.0, 8.0.

range vII < v < vIII . This dependence shows strong similarities with the behavior of the
continuous model.

We can conclude that steady-state propagation, when possible, occurs in a range of velocity
which is exceptionally well approximated by the narrow range of velocities (22), within the
intersonic regime, provided by the continuous model of beam on elastic foundation. In such
a velocity range, the steady state solution for the discrete case is linearly stable and satisfies
the conditions (71) and the critical one w(0) = wc.

In Fig. 13 the displacement w(0) is given as a function of velocity v for different values of
the normalised span length a. We note the good agreement between the continuous and the
discrete models for sufficiently small values of a, which is expected on physical ground, an
issue that will be better discussed in Section 4.2. Also, the continuous model is approached
from below at decreasing values of a.

4.1.1 Dispersion diagram transformation and the continuous limit

Let a → +0. Expanding in ka we deduce from (66) that in any finite range of the wavenumber
the dispersion relations take the form

ω1 ∼
√

1 + k4 , ω2 ∼
√

κ2/κ1 + k4 , (74)
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Figure 14: Dispersion diagrams ω1,2(k) for the discrete massless beam model. Results are
given for a = 1.4, 1.2, 1.0, +0 and κ2/κ1 = 0.5.

while the remaining periodic part of the dispersion curves moves away to infinity (see Fig. 14).
In this transformation, the two branches, ω1 and ω2 (66), coalesce, becoming closer and
closer, and the separation ω1(k) − ω2(k) → 0 as a → 0. Hence in the limit the cross points
other than those corresponding to the asymptotic formulae (74), do not contribute to the
product in (67) for the displacement w(0). At the same time, these asymptotic expressions
coincide with the dispersion relations (15) derived for the continuous model, which has the
same average density and the same average support stiffness as the discrete model. Thus,
the dynamic response of the discrete flexural system is shown to converge to the continuum
limit as a → 0.

4.2 Inertial beam model

For the case of dynamic beam on the set of discrete elastic supports (Fig. 1c) the dispersion
diagrams for the undamaged and damaged structures have infinite numbers of curves (see,
for example, Brun et al., 2012) and Eq. (67) is still valid, but with n1, n2 → ∞. To compute
the displacement w(0) is then convenient to introduce some dissipation as in (49) and make
use of Eqs. (59) and (60).

In Fig. 15 the displacement w(0) is given as a function of velocity v for different values
of the normalised span length a. Computations have been done assuming α = 0.01 and the
integral in (60) was truncated imposing a relative error smaller than 10−6. The comparative
analysis between the results of Fig. 13 and Fig. 15 shows larger differences at increasing values
of a, where the difference between the coefficients in (43) and in (44) is more pronounced
and the wave propagation is better described by the beam inertial model.
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Continuous

Figure 15: Critical displacement w(0) as a function of the speed v. The discrete inertial
beam model (continuous grey lines) and the uniform continuous model (dashed black line)
are represented with κ2/κ1 = 0.5. In the discrete-continuous model m0/m1 = 0.67 and
a = 0.25, 1.0, 2.0, 4.0, 8.0.

Despite of the fact that the interval of velocity where oscillations are present increases
with a, all the curves display a drastic drop in correspondence of the intersonic regime
identified by the model of beam on elastic foundation, thus giving a universal property for
the steady-state failure propagation in such mono-dimensional structures.

Finally, we report some data deduced from real life bridges, showing the range of possible
engineering applications of the proposed model. We first consider a bridge of average dimen-
sion, the S’Adde bridge, whose geometrical and material properties are given in the caption
of Fig. 4 of Brun et al. (2012), with a span length of 90 m. In such a case the normalised
span length is a = 2.02 for vertical flexural waves and a = 0.83 for horizontal flexural waves.
In addition, we also pay attention to the Millau viaduct, one of the tallest vehicular bridge
and the longest multiple cable-stayed bridge in the world (Magalhães et al., 2012). The steel
structure has Young Modulus E = 210000 MPa, moments of inertia Jy = 1137.7 m4 and
Jz = 8267.5 m4, vertical and transverse stiffness κz = 20000 MPa m and κy = 41.84 MPa
m, respectively, and span length of 342 m. Then, the structure has normalised span length
a = 7.61 for vertical flexural waves and a = 0.99 for the horizontal ones, showing that, also
for this extreme structure, we are in the range of a where the presented model can be used
to model the steady-state failure propagation.
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5 Concluding remarks

We have obtained novel results on an advance of a transition flexural wave through a beam-
like periodically supported discrete structure. Both propagating and evanescent waves are
included in a general solution and hence influence the interaction between different nodal
points within the discrete system.

It was shown that in the considered problem, in contrast to the ‘classical’ fracture in
continuum mechanics, the energy release under the support damage remains positive not
only in the case where there is no wave radiation but also in a part of the intersonic speed
range. In this case, a part of the total energy released from the heavy beam is radiated by
an elastic wave excited by the jump in the stiffness of the support.

The model has several significant applications in structural mechanics, including safety
evaluation and design algorithms for earthquake resistant long bridges. The necessary condi-
tion, reduced to evaluation of the critical displacement, under which a failure of the support-
ing piles of a bridge can propagate, has been identified and analysed for a range of physical
parameters. The failure has been modeled as a drop of the stiffness of the support and of
the total mass. For the model of inertial continuous beam on distributed elastic foundation
the solution has been obtained by solving directly the corresponding equations of motion
for steady-state propagation and checking, in addition, the energy balance. Computational
examples, as outlined in the above section, strongly suggest the applicability of the proposed
model to real life bridge systems such as the S’Adde bridge and the Millau viaduct.

We note that the model discussed in the paper is radically different from models describing
crack propagation in discrete lattices, both in scalar (anti-plane shear) and vector cases. The
present models deal with the fourth-order flexural wave equation, whose dispersion properties
include unique features, which are absent in the two-dimensional lattice crack models.

A regime, which we refer to as intersonic, has been identified (
√

2(κ)1/4 < v <
√

2), and
it has been shown that the solution corresponding to the steady propagation of the interface
wave is intersonic. An efficient and elegant mathematical approach based on analysis of a
functional equation of the Wiener-Hopf type, has led to the expression of the displacement on
the interface wave to be written as a product of terms evaluated directly from analysis of the
kernel function of the Wiener-Hopf equation. The discrete model has been compared with
the simpler continuous approach, and of course it has been shown that the lattice solution
possesses new feature, not reported in the past for interfacial flexural waves.

Lastly, the conditions allowing the failure wave to propagate and the characteristic wave
speeds are found.
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