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Binary wave in a helical fiber
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Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
~Received 11 November 1996; revised manuscript received 19 February 1997!

Axial dynamic tension of a flexible helical fiber is found to lead to a specific, extraordinary nonlinear wave
consisting of two different portions. The leading portion is a quasiperiodical propagating wave with rotation
opposite to the initial twist of the helix, while the rear portion is a sequence of standing waves rotating in the
reverse direction. The interface is the origin of two angular-momentum fluxes which, being different in sign,
fill up angular momenta of the leading and rear waves. The phenomenon described presents an interesting
example of a zero-total-angular-momentum wave propagating in a twisted waveguide.
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We consider an inextensible, flexible fiber of consta
mass densityr per unit length whose nonlinear vector equ
tion of motion and inextensibility condition are
respectively,1

]

]s FF~s,t !
]R~s,t !

]s G5r
]2R~s,t !

]t2
, U ]R

]s U51. ~1!

Here, F is a non-negative internal tension force,R is the
position vector,s is the coordinate aligned with the fiber, an
t is time.

There is a large body of works devoted to the nonlin
dynamics of inextensible fibers and elastic strings. For
extended reference and historical notes see, for exam
Ref. 2. An exact analytical solution describing solitary wav
in an inextensible, infinite helical fiber was obtained in R
4, some numerical results were presented in Ref. 5. Then
solution was extended for the case of an extensible strin
an arbitrary nonlinear elastic material.6 The solitary wave is
shown to exist for any subsonic velocity. Also it was show
that neglecting extensibility leads to a low-velocity asym
tote of the solution for the corresponding extensible fib
Thus the fiber can be considered as inextensible if the w
velocity is low in comparison with the sound velocity in th
material. Next, different types of solitary waves in the helic
string, rotating as a rigid body, were considered in Ref. 7
complete traveling wave solution describing all possi
types of periodical and solitary waves in an inextensible fi
was obtained in Ref. 8.

In the present work, in contrast to these steady-state
trinsic waves, a transient wave arising under an axial exte
force is considered. Such a wave of necessity bears evid
of the intrinsic waves. However, it is a complex object whi
is characterized by the presence of different types of wa
and by separation of axial rotations in different direction
The uncommonness of this wave is a consequence of
waveguide being twisted.

It may be mentioned that helicoidal systems are relev
to a wide variety of fields~deployable structures in spatia
technology, tethered satellite systems,9 textile yarn manufac-
turing processes, curvilinear fibers as reinforcements of c
posite materials,10 mechanical properties of helical DNA
550163-1829/97/55~21!/14067~4!/$10.00
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molecules, etc.!. Relating to the general problem of energ
consumption of a structure under extension,11 the original
goal of the present problem consideration was to determ
the ability of an inextensible helix to resist dynamic exte
sion ~by transferring the work of the axial tension force in
kinetic energy of transversal vibrations!.

The formulation adopted here prescribes that the
point of the fiber (s50) subjected to the external axial forc
is held on the axis of the helix (x axis!; it is connected with
the main, helical portion of the fiber, Fig. 1~a!. The length of
the helix under consideration is chosen to be large enoug
eliminate a detectable reflection. The problem is studied
merically using the simplest discrete analogue of the c
tinuous fiber. It is a chain of masses connected to each o
by inextensible, massless links. The finite difference meth
of the first order with respect to time~the explicit scheme! is
used. The accuracy of the scheme used was shown to be
high. In spite of the simplicity of the model, it is very effec
tive for calculations and leads to good agreement with
exact analytical results.12,5

The wave formed under the conditions considered
shown in Figs. 2 and 3. This ‘‘binary’’ wave consists of tw
portions: the leading, quasiperiodical, propagating wave
the rear, standing wave, Fig. 2~b!. These waves possess axi
rotations in opposite directions: the leading wave untwi
the helix, whereas the rear wave twists it. This phenome
arises for two reasons: there is an initial twist in the wav
guide that leads to a wave with rotation, and there is
external moment, and therefore the total angular momen
of the binary wave remains at zero. The wave is charac
ized by two different velocities which correspond to the lea
ing, high-speed wave front and the low-speed interface a
short transient region which separates these two diffe
waves. So, the wave as a whole is transient and consis
two totally different parts. At the same time, the structure
each part is in good accordance with the exact solutions
the steady-state waves in the corresponding infinite he
solitary, periodical, and constant-force nonlinear travel
and standing waves.

To show this we present the appropriate analytical resu
First of all we note that under a constant internal force,F,
Eq. ~1! is satisfied by the D’Alembert solution:R
14 067 © 1997 The American Physical Society
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5R(s6c0t),c05AF/r, whereR is an arbitrary vector func-
tion which satisfies the extensibility condition in Eq.~1!. The
nontrivial wave solution of Eqs.~1! corresponds to a variabl
~propagating! internal force. This solution obtained in Ref
4 and 8 is based on the representation of the position ve
R(s,t) as the sum of a longitudinal vectorRx(s,t) and a
vectorR'(s,t) lying in the cross section of the helix:

Rx~s,t !5Rx~s,t !k5@scosg1u~j!#k,

R'~s,t !5R~j!exp~ if!, ~2!

wheref5ls/R01vt1u(j),l5sing,j5s2vt, the unit vec-
tor k is directed along thex axis,g is the angle between th
fiber in its initial helical state and thex axis; v is the wave
velocity along the fiber, andR0 is the radius of the unde
formed helix. Note that the complex representation of
rotating vectorR' ~2! was shown in Ref. 3 to permit a trav
eling wave solution for the corresponding plane problem~an
infinite ‘‘helix’’ with zero pitch was considered!.

The representation of the position vector~2! permits sys-
tem ~1! to be reduced to a system of ordinary different
equations with respect to four unknown real functio
u(j),R(j),f(j), andF(j). The integration of this system
leads to the traveling wave solution, which includes solita4

FIG. 1. ~a! Initial shape of the fiber. The suddenly applied ax
force F0 acts at the points50 which is held on the axis of the
helix. ~b! Shape of the deformed helix. The helix is shown co
pressed: the length-to-radius ratio considered in the calculatio
200 times more. Three domains are shown~from the left to the
right!: undisturbed helix, leading wave, and rear, polarized wa
~c! Axial view of the deformed helix. The polarization of the re
wave is visible.
tor

e

l

and periodic8 waves. The periodic cnoidal wave whic
propagates along the fiber with velocityv, can be defined by
two parameters, say, maximal,Fmax, and minimal,Fmin ,
internal tension. The period of the wave is expressed
follows:8

L5
2A2
usu

R0S 11 fmin

Afmin1 fmax
K~k!2Afmin1 fmaxE~k!D

3sgn~F2rv2!, ~3!

wheres5l(11c0 /v), f5F/(rv2);K(k) andE(k) are com-
plete elliptic integrals of the first and of the second kin
respectively, with parameter k5(Fmax2Fmin)

1/2(Fmax
1Fmin)

21/2. Note that the propagation of the wave along t
fiber causes its rotation around thex axis and the wave pos
sesses not only linear, but also angular momentum. In
case of the solitary wave the axial displacement and the
ternal force are as follows:4

u5~R2R0!cosg, F5rv2l2/2~12R2R0
22!. ~4!

We can now compare the structure and velocity of the le
ing quasiperiodical wave as well as the interface veloc
with the relevant analytical results. The wave front veloci
v1, as the velocity of the first peak of the wave, is nothi
but the velocityc1 of the solitary wave of the same ampl
tude @see Fig. 2 and formula~4!#. The first peak amplitude
tends to 2F0, and using this formula the wave front velocit

-
is

.

FIG. 2. ~a! Normalized tension force. The ratioT5F/F0 as a
function ofh5ls/(2pR0) is shown.~b! Propagation of local peaks
of the internal tension force. The quasifront and the interface pro
gating with different velocities@t5lc1t/(2pR0)# are visible. The
number of local peaks in the first wave is equal to that in the sec
wave.
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can be expressed in terms of the applied force as follo
v1;c152/singAF0 /r. The quasiperiodical leading wav
can be described locally by the traveling wave solution:
relation between the velocity of each peak, the minimal a
the maximal forces, and the distance between two neigh
ing peaks are in accordance with that defined by Eq.~3!, Fig.
4.

Two waves are separated by a short transient reg
Within this region the internal force,F, remains almost con
stant, F;F0, and the ‘‘interface’’ propagates with th

FIG. 3. ~a! Normalized axial velocity,w5u̇/c1. ~b! Normalized

angular momentum,h5R2ḟl/(2pR0c1). Two different waves
which rotate in opposite directions are visible.

FIG. 4. Comparison of the local ‘‘wavelength’’L as the dis-
tance between two neighboring peaks, in the leading wave, with
analytical results given by Eq.~3!, l5lL/(2pR0).
s:

e
d
r-

n.

D’Alembert wave velocityv2;c05AF0 /r. Note that the
structure of the wave is formed in time, and the abov
written relations should be considered in the asympto
sense. The results presented here differ from the limit
values by 2–3%. The establishment of the wave front vel
ity, v1, in the ‘‘pitch-of-the-helix-associated’’ time,t
5lc1t/(2pR0), is shown in Fig. 5. In thet scale, the ten-
dency rate ofv1 to the velocity c1 of the corresponding
solitary wave is independent of the pitch of the helix.

Consider now the second wave. It consists of stand
waves which do not propagate along the fiber. At the sa
time, the rear wave as a whole propagates along the fi
there is a phase transition from the first, quasi-periodi
wave mode to the second, standing wave mode. The
wave appears to be almost completely polarized in a rota
plane, Figs. 1~b! and 1~c!. This wave can also be locally
described by an analytical solution. The standing wave so
tion can be obtained in the same way as the traveling w
solution.4 In Eq. ~2! put Rx(s,t)5Rx(s)k,R(j)
5R(s),f(t)5vt. Substituting this representation into E
~1! and taking into account the boundary relatio
F05F(0)R8k5F(0)Rx8(0) one obtains

Rx85F0 /F, R85AF22F0
2/F. ~5!

As a result of the integration of Eq.~1! @with Eq. ~5! taken
into account# we obtain

F5Fmax2rv2R2/2, Rmax5A2/~rv2!AFmax2F0, ~6!

whereFmax andFmin5F0 are minimal and maximal value
of the tension. Integration of Eqs.~5! and ~6! yields the
R2s relation in terms of elliptic functions and permits th
wavelength to be found as a distance between two po
R50 as a function of two parameters, sayFmax andv. Note
that the solution described can be obtained formally from
general traveling wave solution,8 if we put v[0,l[0. In
this case, the wavelength is defined by Eq.~3!. Calculations
show that the numerical results are in good agreement w
expressions~5! and~6!: the difference does not exceed 0.5
~the calculations were performed forg5p/6 with 80 nodes
at pitch of the helix!.
e

FIG. 5. Normalized wave front velocity,V5v1 /c1 as a function
of t5lc1t/(2pR0).
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Expressions~5! and~6! can be essentially simplified. Th
tension force in the second wave is almost constant
asymptotic relations can be written down describing t
wave, using small parameterm5(Fmax2F0)/F0!1. One
can find

R

Rmax
;sinS vs

AF0
D , L;

pAF0

v
,

Rmax

L
;

A2m

p
. ~7!

Dynamic extension of a helix is also of interest in co
nection with the general problem of energy consumption o
structure by transferring the external force work into kine
energy.11 In this sense, the relation between the applied fo
and axial velocity of the end point of the helix~as the rate of
its extension! is important. A rough analytical estimation o
this relation~which isg dependent! is derived below.

It follows from Eqs. ~5!–~7! that the ‘‘stretch’’ of the
helix, u8, in the second wave almost reaches the maxim
value 12cosg because the differenc
uRx821u5(F2F0)/F<(Fmax2F0)/F05m is negligible,
Fig. 2~a!. Thus we assume that, in the second wa
u85u28512cosg that corresponds to the straight fiber@note
that the helix in Figs. 1~a! and 1~b! is shown highly com-
pressed#. Further the stretch of the helix in the first wav
averaged by the quasiperiod of the wave, is assumed to
linear function ofs ~that is rather close to the results o
tained!:
ad
d
s

a

e

al

,

a

u185u28
v1t2s

~v12v2!t
;u28

c1t2s

~c12c0!t
, sP@v2t,v1t#, ~8!

Now we can write down the required estimations of the d
placement and velocity at the end point,s50:

u05E
0

c1t

u8ds51/2~ 12cosg!~c11c0!t,

v05u̇05AF0@11~sing!/2#tan~g/2!. ~9!

The accuracy of the estimation Eq.~9! depends ong. The
estimation differs from the numerical results by 3% f
g5p/12, by 8% forg5p/6 and by 25% forg5p/3.

In conclusion, note that the same problem was conside
for a plane, initially sinusoidal fiber. In this case, the stru
ture of the wave looks like that of the leading wave in t
helix. However, in this case there is no rotation, and the m
interesting phenomenon considered as a separation of
wave into two parts does not take place: the rear stand
wave does not arise at all.
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