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Binary wave in a helical fiber
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Axial dynamic tension of a flexible helical fiber is found to lead to a specific, extraordinary nonlinear wave
consisting of two different portions. The leading portion is a quasiperiodical propagating wave with rotation
opposite to the initial twist of the helix, while the rear portion is a sequence of standing waves rotating in the
reverse direction. The interface is the origin of two angular-momentum fluxes which, being different in sign,
fill up angular momenta of the leading and rear waves. The phenomenon described presents an interesting
example of a zero-total-angular-momentum wave propagating in a twisted waveguide.
[S0163-18297)08021-1

We consider an inextensible, flexible fiber of constantmolecules, etg. Relating to the general problem of energy
mass density per unit length whose nonlinear vector equa-consumption of a structure under extenstbrihe original
tion of motion and inextensibility condition are, goal of the present problem consideration was to determine
respectively, the ability of an inextensible helix to resist dynamic exten-
sion (by transferring the work of the axial tension force into
kinetic energy of transversal vibrations
=1 @ The formulation adopted here prescribes that the end
point of the fiber 6=0) subjected to the external axial force
Here, F is a non-negative internal tension forck, is the is held on the axis of the helixx(axig); it is connected with
position vectors is the coordinate aligned with the fiber, and the main, helical portion of the fiber, Fig(al. The length of
t is time. the helix under consideration is chosen to be large enough to
There is a large body of works devoted to the nonlinearliminate a detectable reflection. The problem is studied nu-
dynamics of inextensible fibers and elastic strings. For ammerically using the simplest discrete analogue of the con-
extended reference and historical notes see, for examplénuous fiber. It is a chain of masses connected to each other
Ref. 2. An exact analytical solution describing solitary waveshy inextensible, massless links. The finite difference method
in an inextensible, infinite helical fiber was obtained in Ref.of the first order with respect to timéhe explicit schemeis
4, some numerical results were presented in Ref. 5. Then thissed. The accuracy of the scheme used was shown to be very
solution was extended for the case of an extensible string dfigh. In spite of the simplicity of the model, it is very effec-
an arbitrary nonlinear elastic materfalhe solitary wave is tive for calculations and leads to good agreement with the
shown to exist for any subsonic velocity. Also it was shownexact analytical result€:®
that neglecting extensibility leads to a low-velocity asymp- The wave formed under the conditions considered is
tote of the solution for the corresponding extensible fibershown in Figs. 2 and 3. This “binary” wave consists of two
Thus the fiber can be considered as inextensible if the wavportions: the leading, quasiperiodical, propagating wave and
velocity is low in comparison with the sound velocity in the the rear, standing wave, Fig(. These waves possess axial
material. Next, different types of solitary waves in the helicalrotations in opposite directions: the leading wave untwists
string, rotating as a rigid body, were considered in Ref. 7. Athe helix, whereas the rear wave twists it. This phenomenon
complete traveling wave solution describing all possiblearises for two reasons: there is an initial twist in the wave-
types of periodical and solitary waves in an inextensible fibeiguide that leads to a wave with rotation, and there is no
was obtained in Ref. 8. external moment, and therefore the total angular momentum
In the present work, in contrast to these steady-state, inef the binary wave remains at zero. The wave is character-
trinsic waves, a transient wave arising under an axial externated by two different velocities which correspond to the lead-
force is considered. Such a wave of necessity bears evidendgg, high-speed wave front and the low-speed interface as a
of the intrinsic waves. However, it is a complex object whichshort transient region which separates these two different
is characterized by the presence of different types of wavewaves. So, the wave as a whole is transient and consists of
and by separation of axial rotations in different directions.two totally different parts. At the same time, the structure of
The uncommonness of this wave is a consequence of theach part is in good accordance with the exact solutions for
waveguide being twisted. the steady-state waves in the corresponding infinite helix:
It may be mentioned that helicoidal systems are relevansolitary, periodical, and constant-force nonlinear traveling
to a wide variety of fieldgdeployable structures in spatial and standing waves.
technology, tethered satellite systefrtextile yarn manufac- To show this we present the appropriate analytical results.
turing processes, curvilinear fibers as reinforcements of com=irst of all we note that under a constant internal foree,
posite materials® mechanical properties of helical DNA Eq. (1) is satisfied by the D’Alembert solutionR
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FIG. 2. (a) Normalized tension force. The ratib=F/F, as a
function of »=\s/(27R,) is shown.(b) Propagation of local peaks
FIG. 1. (a) Initial shape of the fiber. The suddenly applied axial of the internal tension force. The quasifront and the interface propa-
force F, acts at the poins=0 which is held on the axis of the gating with different velocitie§ r=\c,t/(27R,)] are visible. The

helix. (b) Shape of the deformed helix. The helix is shown com- nymber of local peaks in the first wave is equal to that in the second
pressed: the length-to-radius ratio considered in the calculation igaye.

200 times more. Three domains are sho@inom the left to the

right): undisturbed helix, leading wave, and rear, polarized wavegpq periodié waves. The periodic cnoidal wave which
(c) Axial view of the deformed helix. The polarization of the rear propagates along the fiber with velocity can be defined by
wave is visible. two parameters, say, maxima¥, ., and minimal, F .,
internal tension. The period of the wave is expressed as

=R(s*Cot),co=VF/p, whereR is an arbitrary vector func-  fj1ows:8
tion which satisfies the extensibility condition in Ed). The
nontrivial wave solution of Eqg1) corresponds to a variable 22 1+f .
(propagating internal force. This solution obtained in Refs. L= o T K(K) = v mint fmaE(K)
4 and 8 is based on the representation of the position vector |l VFmint fmax
R(s,t) as the sum of a longitudinal vectd,(s,t) and a 2
vectorR, (s,t) lying in the cross section of the helix: X sgriF—pv), 3)
whereo=\(1+cq/v),f=F/(pv?);K(k) andE(k) are com-
Ru(s,t) =Ry(s,t)k=[scosy+u(§) ]k, plete elliptic integrals of the first and of the second kind,
respectively, with parameter k= (F mnax— Fmin) YA Fmax
R, (s,t)=R(&)expi ), (2 +Fnn Y2 Note that the propagation of the wave along the

_ . . ) fiber causes its rotation around thexis and the wave pos-
where¢=As/Ro+ wt+ 6(£),\ =siny,{=s—ut, the unit vec-  gagqeq not only linear, but also angular momentum. In the

tork is directed along the axis, y is the gngle_ between the aqe of the solitary wave the axial displacement and the in-
fiber in its initial helical state and the axis; v is the wave  iarnal force are as followh:

velocity along the fiber, andR, is the radius of the unde-

formed helix. Note that the complex representation of the u=(R-Rg)cosy, F=pvA%2(1-R?R;2). (4)

rotating vectoR, (2) was shown in Ref. 3 to permit a trav-

eling wave solution for the corresponding plane problam We can now compare the structure and velocity of the lead-

infinite “helix”” with zero pitch was considered ing quasiperiodical wave as well as the interface velocity
The representation of the position vecta@y permits sys-  with the relevant analytical results. The wave front velocity,

tem (1) to be reduced to a system of ordinary differentialv,, as the velocity of the first peak of the wave, is nothing

equations with respect to four unknown real functionsbut the velocityc, of the solitary wave of the same ampli-

u(é),R(&),¢(&), andF(&). The integration of this system tude[see Fig. 2 and formul&d)]. The first peak amplitude

leads to the traveling wave solution, which includes solftary tends to F,, and using this formula the wave front velocity
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FIG. 5. Normalized wave front velocit¥/=v,/c; as a function
-1 ‘ of 7=\c t/(27Ry).
=" (Il
_2 T D’Alembert wave velocityv,~cy=+Fo/p. Note that the
=3l i structure of the wave is formed in time, and the above-
written relations should be considered in the asymptotic
-4} sense. The results presented here differ from the limiting
' ' ‘ ' values by 2—3%. The establishment of the wave front veloc-
0 10 20 n 30 40 ity, vy, in the “pitch-of-the-helix-associated” time,r

=\cqt/(27mRy), is shown in Fig. 5. In ther scale, the ten-
dency rate ofv, to the velocityc, of the corresponding

FIG. 3. (a) Normalized axial velocityw= u/c,. (b) Normalized

angular momentumh=R?$\/(27Ryc;). Two different waves
which rotate in opposite directions are visible.

solitary wave is independent of the pitch of the helix.
Consider now the second wave. It consists of standing

waves which do not propagate along the fiber. At the same

time, the rear wave as a whole propagates along the fiber:

can be expressed in terms of the applied force as followsere is a phase transition from the first, quasi-periodical
v1~c1=2/sirry\/m. The quasiperiodical leading wave wave mode to the second, standing wave.mod_e. The rear
can be described locally by the traveling wave solution: the/VaVe appears to be almost completely polarized in a rotating
relation between the velocity of each peak, the minimal and!@ne; Figs. b) and Ic). This wave can also be locally
the maximal forces, and the distance between two neighboﬁescr'bed by an analytical solution. The standing wave solu-

ing peaks are in accordance with that defined by(B).Fig. tion (;an4be obtained in the same way as the traveling wave
4. solution” In  Eq. (2) put Ry(st)=R,(s)k,R(&)

Two waves are separated by a short transient regiori; R(S),¢(t) = wt. Substituting this representation into Eq.

Within this region the internal forcés, remains almost con- (1) and 'Eaking int9 account the boundary relation
stant, F~F,, and the “interface” propagates with the Fo=F(0)R'k=F(0)R,(0) one obtains

R,=Fo/F, R'=F2—FJF. (5
3.5 ; -
) nume 'icall ® As a result of the integration of Eql) [with Eq. (5) taken
3 + analylica into account we obtain
®
25t o ® ¢ F= Fmax_prRzlzv Rmax= \/2/(Pw2) \/Fmax_F01 (6)
= e® ® whereF o and F,;,=F¢ are minimal and maximal values
2 @@@ ] of the tension. Integration of Eqg5) and (6) yields the
o%® R—s relation in terms of elliptic functions and permits the
1.5 @Q wavelength to be found as a distance between two points
,\9' R=0 as a function of two parameters, $ay,, andw. Note
10 20 3'0 4'0 50 that the solution described can be obtained formally from the
n general traveling wave solutidhif we put v=0A=0. In

FIG. 4. Comparison of the local “wavelengthl’ as the dis-

this case, the wavelength is defined by E). Calculations
show that the numerical results are in good agreement with
expressiong5) and(6): the difference does not exceed 0.5%

tance between two neighboring peaks, in the leading wave, with théhe calculations were performed for= /6 with 80 nodes
analytical results given by E@3), | =\L/(27Ry).

at pitch of the helix
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Expressiong5) and(6) can be essentially simplified. The vit—s cit—s
tension force in the second wave is almost constant and U1=U2( — ~Uy——

. . . - . U1 Uz)t (Cl Co)t

asymptotic relations can be written down describing this

wave, using small parametgr=(F . Fo)/Fy<<1. One

, SE[Uzt,Ult]. (8)

Now we can write down the required estimations of the dis-

can find placement and velocity at the end poist O:
R | ws m\Fq Rmax V2u
=—~sinl—=|, L~ , ~ . (D eyt
Rmax JFo 1) L T uozf u’ds=1/2( 1-cosy)(c,+co)t,
0

Dynamic extension of a helix is also of interest in con-
nection with the general problem of energy consumption of a : .
structure by tran%ferring F:he external forgg work intg kinetic vo=Uo=\Fo[ 1+ (siny)/2]tan y/2). ©)
energy*! In this sense, the relation between the applied force L
and axial velocity of the end point of the helias the rate of ~1h€ accuracy of the estimation E() depends ony. The
its extensioh is important. A rough analytical estimation of €Stimation differs from the numerical results by 3% for
this relation(which is y dependentis derived below. y=ml12, by 8% fory= /6 and by 25% fory==/3.

It follows from Egs. (5)=(7) that the “stretch” of the In concluglqn, note_ that Fhe same probllem was considered
helix, u’, in the second wave almost reaches the maximalor @ plane, initially sinusoidal fiber. In this case, the struc-
value 1- cosy because the difference Lurlg othhe wave Ior?_ks like tEat qf the Iead_ing Wa(;/ehin the

, - . elix. However, in this case there is no rotation, and the most
IR 1| =(F~Fo)/F<(Fma—Fo)/Fo=p is negligible, interesting phenomenon considered as a separation of the
Wwave into two parts does not take place: the rear standing
wave does not arise at all.

Fig. 2@. Thus we assume that, in the second wave
u’=uj,=1-cosy that corresponds to the straight fijeote
that the helix in Figs. (& and 1b) is shown highly com-
pressedl Further the stretch of the helix in the first wave, This research was supported by Grant No. 94-00349 from
averaged by the quasiperiod of the wave, is assumed to bethe United States—Israel Binational Science Foundation
linear function ofs (that is rather close to the results ob- (BSF), Jerusalem, Israel, Grant No. 9673-1-96 from the Min-
taineg: istry of Science, Israel, and by Colton Foundation, USA.
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