
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATERIALS
ORIGINAL RESEARCH ARTICLE

published: 01 September 2014
doi: 10.3389/fmats.2014.00012

Transition wave in the collapse of the San Saba Bridge
Michele Brun1,2, Gian Felice Giaccu3, Alexander B. Movchan2* and Leonid I. Slepyan4,5

1 Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di Cagliari, Cagliari, Italy
2 Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
3 Dipartimento di Architettura, Design e Urbanistica, Facoltà di Architettura, Università di Sassari, Alghero, Italy
4 School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
5 Department of Mathematics and Physics, Aberystwyth University, Aberystwyth, UK

Edited by:
Davide Bigoni, University of Trento,
Italy

Reviewed by:
Francesco Dal Corso, University of
Trento, Italy
Andrea Piccolroaz, University of
Trento, Italy

*Correspondence:
Alexander B. Movchan, Department
of Mathematical Sciences, University
of Liverpool, Peach Street, L69 7ZL
Liverpool, UK
e-mail: abm@liverpool.ac.uk

A domino wave is a well-known illustration of a transition wave, which appears to reach
a stable regime of propagation. Nature also provides spectacular cases of gravity-driven
transition waves at large scale observed in snow avalanches and landslides. On a dif-
ferent scale, the micro-structure level interaction between different constituents of the
macro-system may influence critical regimes leading to instabilities in avalanche-like flow
systems. Most transition waves observed in systems, such as bulletproof vests, racing
helmets under impact, shock-wave-driven fracture in solids, are transient. For some struc-
tured waveguides, a transition wave may stabilize to achieve a steady regime. Here, we
show that the failure of a long bridge is also driven by a transition wave that may allow
for steady-state regimes. The recent observation of a failure of the San Saba Bridge in
Texas provides experimental evidence supporting an elegant theory based on the notion
of transition failure wave. No one would think of an analogy between a snow avalanche
and a collapsing bridge. Despite an apparent controversy of such a comparison, both these
phenomena can be described in the framework of a model of the dynamic gravity driven
transition fault.

Keywords: transition waves, dynamics, structural mechanics,Wiener–Hopf functional equation, failure analysis

INTRODUCTION
The long San Saba railway bridge (Figure 1C) in the Central Texas
(also known as Harmony Ridge Bridge, 31°14′07 ′′North, 98°33′52′′

West) collapsed in May 2013 as a result of initial damage caused by
fire. A 300-yard bridge fell apart after catching fire in a dramatic
collapse captured on video (https://www.youtube.com/watch?v=
LLVKb1HxhAY). This dramatic event was the subject of attention
worldwide when it was featured on BBC News and other News
programs across the globe. The video footage provides the data
for measuring the speed of propagation of the failure, and it is
apparent that this failure reaches a steady-state regime.

Although the phenomenon of collapse of a long bridge is extra-
ordinarily complicated, we show that it can be analyzed in the
framework of an analytical model, which refers to gravity driven
transition waves. Furthermore, an explicit simple formula has been
derived for the speed V of the steady-state propagating fault:

V =

(
Dκ

ρ2

) 1
4

= 24.3 m/sec (1)

where D is the flexural rigidity, ρ is the linear mass density of the
bridge, and κ is the stiffness of the supporting pillars.

Several examples of transition faults, included in Figure 1,
incorporate an avalanche flow (Figure 1A), gravity-friction-driven
domino effect (Figure 1B), the Tay Bridge in Scotland (Figure 1D),
and San Saba burning bridge in Texas (Figure 1C). The failures of
long bridges were recorded on a number of occasions in the last
200 years. Perhaps, one of the most dramatic events was the Tay

Bridge Disaster of 1879, featured in the poetry by McGonnagall,
as caused by an impact of a derailed train:

“But when the train came near to Wormit Bay,
Boreas he did loud and angry bray,
And shook the central girders of the Bridge of Tay
On the last Sabbath day of 1879,
Which will be remember’d for a very long time.”

The substantial damage shown in Figure 1D includes multiple
sections destroyed, apparently as a result of a failure wave prop-
agating along the bridge. Due to a lack of recording technology,
no video footage was available at the time, and no experimental
observations were made.

Similar to a slab snow avalanche (Bartelt et al., 2006; Heierli
et al., 2008), where the fault (moving snow powder versus solid
base) reaches a steady regime, the collapse of the Harmony Ridge
Bridge also fits into the framework of transition waves, and more-
over, an elegant analytical model enables one to predict the steady
regime of propagation of this fault. Although the physical back-
ground in these two cases is different, we note that the balance of
energy is required, which includes potential, kinetic, and inter-
nal energy. The dissipation mechanism in the avalanche flow
is explained via heat transfer and friction (Bartelt et al., 2006),
whereas in the collapsing bridge the energy is taken away from
failure region by radiating waves (Brun et al., 2013a). Also, elegant
crack (or anti-crack) propagation models are applicable to both
cases (Slepyan, 1981, 2002, 2010; Heierli et al., 2008). A simple
gravity-friction-driven failure wave is also known for a domino
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Brun et al. Transition wave in a collapsing bridge

FIGURE 1 | Examples of gravitationally driven failure waves occurring in nature and in structural systems are shown. (A) A slab snow avalanche.
(B) A falling domino. (C) The failure of the San Saba Bridge (Texas, May 2013). (D) The Tay Bridge disaster. Dundee, Scotland, 1879 (from
http://en.wikipedia.org/wiki/The_Tay_Bridge_Disaster).

row (Figure 1B), and the steady-state regime is independent on
the initial conditions (Maddox, 1987; Stronge, 1987).

The theoretical background developed by Brun et al. (Brun
et al., 2012, 2013b,c) refers to long bridge structures as waveguides
rather than finite size elastic bodies. That approach enables one to
bring the notion of so-called Floquet–Bloch waves from Physics
(Brillouin, 1953; Kittel, 1996) in the areas such as Metamateri-
als pioneered by Veselago (1968) and Pendry (2000). Important
related areas in Applied Mathematics involve averaging and high-
frequency homogenization (Movchan and Slepyan, 2007; Craster
et al., 2010). Dispersion of waves and the pass band structure
are of paramount importance in understanding of fundamental
mechanism of vibration of long bridges. For a model example, a
recent analytical work (Brun et al., 2013a) presented the analysis
of a class of functional equations of the Wiener–Hopf type that
describes transition waves in a periodic flexural system. The notion
of configurational forces enables us to develop the model further
to take into account the non-linear features of the physical prob-
lem. The new mathematical approach has delivered an accurate
estimate of the failure wave speed in the collapse of the Harmony
Ridge Bridge as compared with the rare footage, which was taken
during propagation of the fault.

In this paper, we show an unusual, and unexpected to a cer-
tain degree, phenomenon of a transition wave in a long collapsing
bridge. We also demonstrate the link with a certain class of solu-
tions, known as Bloch waves, in infinite periodic systems, which
provide the best description of the influence of individual con-
stituents and their interaction within the macro-system of the
bridge. Transition waves and failure phenomena are also consid-
ered in relation to damage and impact of structured solids, such
as honeycombs and bistable lattices. The approach to failure as
a transition wave was advocated through lattice models (Slepyan
and Troyankina, 1984; Fineberg and Marder, 1999; Balk et al., 2001;
Cherkaev et al., 2005; Slepyan et al., 2005) including the advanced
molecular dynamics simulation (Abraham and Gao, 2000).

The importance of such problems is also apparent to eluci-
date ways to prevent such destructions in earthquake protection
systems.

MATERIALS AND METHODS
UNWANTED VIBRATIONS OF LONG BRIDGES
An unusual example of a failure wave occurred in the unfortunate
collapse of the San Saba railway bridge. One would assume that
the structure was optimally designed and capable of withstand-
ing both quasi-static and dynamic loads. Nevertheless, a 300-yard
bridge fell apart after catching fire in a dramatic collapse.

Even advanced engineering analysis and optimal design were
not sufficient to prevent a collapse of this relatively modern system.
This was a hard and dramatic lesson to learn and a mathematical
model offered here shows an unexpected link to a notion of tran-
sition waves, which would not be commonly used by structural
engineers and architects. An accurate finite element model (FEM)
of San Saba Bridge has been developed for the eigenvalue analysis
presented here. The bridge in its actual dimensions is displayed in
Figure 2A. The standard procedures of engineering analysis would
require identification of low-frequency resonance vibrations. As in
Figure 2, the “dangerous” vibrations would normally be associated
with horizontal motion of the main deck of the bridge. One would
not expect the vertical vibrations of the main deck to be of any con-
cern, as the frequencies involved are relatively high. The detailed
discussion of this data is given below, and the surprising outcome
is that the vertical vibrations play a significant role in formation
of the transition wave.

ANALYSIS OF THE SAN SABA BRIDGE FAILURE
In elastic waveguides, the notion of Floquet–Bloch waves is com-
monly used (Mead, 1970; Graff, 1991; Brun et al., 2013b) to
describe the rate of transmission of energy and to visualize the
vibrating structure. Such waves are also proved to be essential in
understanding the failure of systems with embedded structural
elements like lattices (Slepyan and Troyankina, 1984; Marder and
Gross, 1995; Fineberg and Marder, 1999; Slepyan, 2010) or sup-
porting pillars (Brun et al., 2013a) as common for long bridges.
Namely, the dispersion relations for Floquet–Bloch waves are
embedded into the structure of the Wiener–Hopf equation that
describes propagation of a failure wave, which may occur in the
form of fracture or a transition wave. In the particular case of
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Brun et al. Transition wave in a collapsing bridge

FIGURE 2 | Analyses of the first 100 eigenmodes of the San Saba Bridge.
(A) Finite element model of the “millipede-like” bridge structure
implemented in Strand7. (B) Localized mode at frequency f =8.53 Hz. The
upper deck of the bridge acts as a waveguide, while relative large amplitude
vibrations are localized in the pillars. (C) Torsional mode, f =13.68 Hz.

(D) Horizontal flexural mode involving transverse displacement of the upper
deck; f =4.00 Hz. (E) Vertical flexural mode involved in the bridge failure;
f =10.66 Hz. (F), Eigenfrequencies of the five types of vibration modes:
transverse flexural and longitudinal horizontal modes, vertical, localized in the
supporting pillars and torsional.

the San Saba Bridge, when we refer to two different phases, these
are the intact bridges in front of the moving failure region and the
bridge devoid of its support behind the failure front. The transition
can excite elastic waves propagating in both directions. In this case,
the bridge can be compared to a flexural elastic beam rested on an
elastic foundation (continuous or discrete as in Figures 3D,E).

In the framework of fracture mechanics, we consider the fail-
ure wave as a “negative exfoliation” of the bridge from its support,
where the bridge is represented as a heavy string on a rigid foun-
dation (Figure 5). In this case, not only the critical force but also
the energy release rate can play the role of the transition criterion.

The observation of the failure of the San Saba Bridge sug-
gests that two main stages can be identified: (1) the transient
accelerating propagation of the failure (Figure 3A) and (2) the
steady-state regime (Figure 3B), where the speed of the failure

wave is approximately constant. The velocity of propagation of
the failure wave in Figure 3C shows that the steady-state regime is
reached after the failure of the first 31 pillars.

Whereas the first transient stage (shown in Figure 3A) is a
highly complex non-linear phenomenon, the steady-state regime
can be analyzed in relatively simple analytical terms. It also appears
that the structure would be substantially damaged by the time the
steady regime is reached and any attempt to stop the propagation
of the failure wave should be made at the initial transient stage.

Theoretically, we consider the steady-state regime. The propa-
gation of a failure wave is modeled for an infinite beam supported
by a (non-homogeneous) piecewise continuous elastic founda-
tion (Figure 3D). As a result of the damage, the stiffness of the
left and right parts of the foundation is different. The prediction
of this simple continuous model has a good applicability to the
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Brun et al. Transition wave in a collapsing bridge

FIGURE 3 |The collapse of San Saba Bridge. Snapshots of the bridge
failure: (A) The initial transient regime, (B) the consequent steady-state
regime. (C) Failure velocity V shown as a function of the front failure
position (number of collapsed pillars). Steady-state propagation is reached
when the pillar no. 31 collapses. (D,E) Structural models adopted for the
analysis of the steady-state propagation of the failure wave [linear density
ρ (kg/m), bending stiffness D (N ·m2)]. (D) Continuous beam on
continuous elastic foundation [stiffness per unit length κ1,2 (N/m2), before

and after failure, respectively]. (E) Discrete–continuous model on discrete
elastic foundation [participating mass M (kg), and stiffness κ0

1,2 (N/m)].
(F) Normalized vertical displacement w at the transition point η=0 as a
function of the normalized velocity v for the continuous (D) and
discrete–continuous (E) structural models (see the Section “Three
Dynamic Regimes of Interfacial Waves” in Supplementary Material for the
normalization). Steady-state propagation of the failure is possible only in
the intersonic velocity interval 4

√
4κ2/κ1 < V /(ξ/τ) <

√
(1+ κ2/κ1).

cases when the bridge structure is of a semi-discrete nature and
the supporting elements are distributed periodically (Figure 3E).
The speed of a steady-state propagation of the interphase damage
appears to be well identified by the continuous model as shown
in Figure 3F. On the other hand, transient stage requires more
insight, which is gained via the semi-discrete model involving
point masses at the junction points as well as distributed inertia
along the flexural beam.

RESULTS
EVALUATION OF THE SPEED OF THE FAILURE WAVE
The solution leads to the expression of the vertical flexural dis-
placement W (0) (see Figures 3D,E) measured in the moving
system of coordinates centered at the front of the transition wave:

W (0) =



(√
κ1
κ2
− 1

)
ρg
κ1

for V ≤ 4
√

4 κ2
κ1

(
ξ
τ

)
,

V 2τ 2
−2(κ2/κ1)ξ

2
−

√
V 4τ 4−4(κ2/κ1)ξ4

2(κ2/κ1)ξ2
ρg
κ1

for 4
√

4 κ2
κ1

(
ξ
τ

)
≤ V ≤

√
2
(
ξ
τ

)
, (2)

−
V 2τ 2

−

√
V 4τ 4−4(κ2/κ1)ξ4

√
V 4τ 4−4ξ4+

√
V 4τ 4−4(κ2/κ1)ξ4

κ1−κ2
κ2

ρg
κ1

for V ≥
√

2
(
ξ
τ

)
,

where κ1 and κ2<κ1 are the stiffness of the supporting pillars on
the left (before collapse) and on the right (collapsed) parts with
respect to the moving front transition point η= 0, g is the gravi-
tational force, and ρ the linear density of the beam structure (see
Figure 3D).

The generic approach applies to a wide range of parameters
of elastic systems and hence the results are linked to charac-
teristic length ξ = (D/κ1)1/4 and time τ =

√
ρ/κ1 with D, the

bending stiffness of the beam (see Figures 3D,E). Three veloc-

ity regimes are present: subsonic
(

V ≤ 4
√

4κ2
κ1

(
ξ
τ

))
, intersonic(

4
√

4 κ2
κ1

(
ξ
τ

)
≤ V ≤

√
2
(
ξ
τ

))
, and supersonic

(
V ≥
√

2
(
ξ
τ

))
.

In particular, the important regime is identified for the intersonic
propagation as the steady-state corresponding to w(0)≥ 0, which
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Brun et al. Transition wave in a collapsing bridge

is a monotonically decreasing function of the crack speed. In
particular, when w(0)= 0 we have

V = V =

(
ξ

τ

)√
1+

κ2

κ1
, (3)

which becomes V = (D κ1/ρ
2)

1/4
= ξ/τ in the limit of a com-

plete failure of the damaged foundation (i.e.,κ2→ 0) as in Figure 4
and in Eq. (1). The analytical model of Brun et al. (2013a) predicts
the speed of steady propagation to be in the left neighborhood of
the upper limit V . In the following, we will show that the pre-
dicted speed matches amazingly with the observation recorded
during the failure of the bridge.

RESONANCE MODES AND “INSIGNIFICANT” FLEXURAL VIBRATIONS
A direct transient analysis for a failing bridge would involve a
large-scale computational model and is not considered to be fea-
sible in the engineering practice. Of course, the choice of initial
conditions and evolution of the structure becomes an important
and challenging part of the computational procedure. A con-
ventional engineering approach would allow an extensive and
detailed analysis of eigenfrequencies and resonant modes. How
useful would this information be in the circumstances related to
San Saba Bridge?

To answer this question, we have done a complete eigenfre-
quency analysis in the framework of an FEM based on the indus-
trial grade tool Strand7. The computational model has not been
simplified in any way, and every technical detail has been embed-
ded in a full three-dimensional FEM computational domain as
shown in Figure 2A. The details of computational parameters are
supplied in the supplementary material. The computed eigenfre-
quencies accurately represent the resonant vibrations of the actual
San Saba Bridge.

For an undamaged structure, the vertical flexural modes would
not attract much significant attention of a Structural Engineer,
since they correspond to relatively high-frequency range (f= 10.4–
11.1 Hz) compared to the modes involving a horizontal motion
of the upper deck of the bridge (f= 1.6–8.9 Hz). In Figure 2,
the first types of eigenmodes are shown: an example of a trans-
verse flexural mode is represented in Figure 2D, a mode where
vibrations are localized within the supporting beam is shown in
Figure 2B, a typical torsional mode is reported in Figure 2C and,
finally, a vertical flexural mode is given in Figure 2E. The overall
diagram with eigenfrequencies (Figure 2F) suggests that the ver-
tical flexural vibrations would be in the highest frequency range
among the identified vibrations. The three-dimensional computa-
tion has revealed that the low-frequency vibrations of the San Saba
Bridge correspond to horizontal modes, transverse (Figure 2D)
and longitudinal. On the contrary, the vertical flexural vibrations
(Figure 2E) occur in a narrow band at much higher frequencies
and also take into account the effect of the longitudinal stiffness of
the supporting pillars. The corresponding resonance frequencies
are in the same range of the frequencies associated with local-
ized vibration of the pillars (f= 8.5–10.6 Hz) and torsional vibra-
tions (f= 10.9–14.4 Hz), making difficult to distinguish different
eigenmodes.

FIGURE 4 | Vertical displacement w (0) at the failure point as a function
of the velocity v . The curves are shown for stiffness ratios κ2/κ1→0
(similar to the real bridge) and κ2/κ1 =0.25. The velocity
v = V /(ξ/τ) =

√
(1+ κ2/κ1), corresponding to w (0)=0 is an upper limit for

the steady-state velocity of propagation. Steady-state propagation is
possible only in the intersonic velocity regime, the velocity interval where
the curves are monotonically decreasing. The steady-state failure
configuration (Figure 3B) shows that the vertical displacement w (0) is of
small magnitude and the critical velocity is in the left neighborhood of
v = V /(ξ/τ) = 1.

DISCUSSION
PREDICTION OF THE SPEED OF THE TRANSITION WAVE
The first impression gained from the computational model is that
the vertical flexural motion is less relevant to the identification of
dangerous vibrations within the dynamic design process, and the
main attention should be given to the low-frequency transverse
modes. As follows from the physical evidence, the vertical flexural
mode that is driven by gravitational forces, is the one, which leads
to a failure wave. This also suggests that the standard, although
advanced, engineering techniques would not lead to the right con-
clusion in the explanation of the failure wave in the San Saba
Bridge. However, the information provided by the finite element
computations, combined with the knowledge of flexural Bloch
waves, leads to the correct answer, and prediction of the steady
regime also includes an accurate estimate of the speed of the fail-
ure wave. The comparison between the FEM and the simplified
waveguide model for an elastic beam structure, supported by the
elastic foundation (Figures 3D,E), shows that the parameters of
the system are chosen so that the frequencies generated by FEM
(Figure 2F) match well with the pass band interval identified for
Floquet–Bloch waves in the periodic waveguide model (Brillouin,
1953; Brun et al., 2013a).

The movie taken for the wooden section of the San Saba Bridge,
together with the measurements, show that the length of the failed
section is around 209 m, and the speed of the steady-state prop-
agation approaches V = 22.4 m/s (see Figure 3C). To compare
with the analytical model, we require the evaluation of the inter-
nal unit length ξ = 0.382 m and unit time τ = 0.157× 10−1 s,
which has been estimated form the FEM implementation as
detailed in the supplementary material (in Figures 3D,E the
parameters are: a= 4.26 m, D= 0.8× 106 Nm2, κ1= 37.5 MPa,
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Brun et al. Transition wave in a collapsing bridge

FIGURE 5 | Inextensible non-linear string model of the bridge
structure is shown. The string is subjected to tension
T (y )=T (0)+ ρgy, where ρ is the linear density and g is the

gravitational force. At steady-state regime of failure propagation, the
configurational force P η = ρgH is the energy release rate Gη,
independent of the velocity v.

κ2→ 0, ρ= 9.23× 103 kg/m). The interphase wave speed for
the failing bridge appears to be v = V /(ξ/τ) = V /V =

(22.4 m/sec)/(24.3 m/sec) = 0.922, which is exactly within the
predicted range, as shown in Figures 3F and 4.

It is noted that an extremely complex phenomenon, which is
transient and highly non-linear, has been explained in the frame-
work of the propagating failure wave. On a practical note, it is
also worth mentioning that the initial transient stage would allow
an intervention by “removing certain sections of the bridge” and
hence stopping the propagation of the fault.

CONFIGURATIONAL FORCE ACCOMPANYING THE BRIDGE FAILURE
We have shown that the failure wave speed is bounded by speeds
of the flexural waves, which can propagate in front and behind the
transition point.

A simplified model based on the analysis of an inextensible
string on a rigid foundation (Figure 5) shows that the energy
release rate can be considered as the transition criterion similarly
to that used in fracture mechanics (Slepyan, 1981, 2002). This
approach gives an elegant and explicit approximation of the force
acting on failing bridge at the front of the transition wave. Such a
force is the Eshelby configurational force (Eshelby, 1951; Maugin,
1993; Bigoni et al., 2014).

The horizontal configurational force (as in Figure 5) acting at
the transition front is equal to

Pη = ρgH . (4)

It is independent of the speed of the transition wave, and is simply
the potential energy with respect to the ground level. Furthermore,
by adding the condition ρgH=Gc, where Gc stands for the critical
energy release rate required to fail a single section of the bridge,
we observe that if ρH is maintained below Gc/g the failure will
not propagate, and, as expected, the lighter and lower structure
appears to be more resistant to failure compared to heavier and
taller bridge systems.

Both linear and non-linear regimes of the transition wave of
failure are fully covered by the model presented here. The formu-
lae (1) and (3) for the velocity of failure propagation are simple
and accurate, but their derivation is highly non-trivial and cannot
be achieved by an intuitive ad hoc effort. Availability of the exper-
imental data was a unique occurrence for a large-scale failure such
as the widely featured in press San Saba Bridge. The theory, which
is in full agreement with the observational data, paves the way to

the design of highly robust and dynamically resistant structures,
which includes long bridges and skyscrapers.
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