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Abstract A discrete two-dimensional square-cell
lattice with a steady propagating crack is considered.
The lattice particles are connected by massless
bonds, which obey a piecewise-linear double-
humped stress–strain relation. Initially, Hooke’s
law is valid as the first stable branch of the force–
elongation diagram; then, as the elongation be-
comes critical, the transition to the other branch
occurs. Further, when the strain reaches the next
critical value, the bond breaks. This transition is
assumed to occur only in a line of the breaking
bonds; the bonds outside the crack line are as-
sumed to be in the initial branch all the time. The
formulation relates to the crack propagation with
a ‘damage zone’ in front of the crack. An analyti-
cal solution is presented that allows to determine
the crack speed as a function of the far-field energy
release rate, to find the total speed-dependent dis-
sipation, and to estimate the role of the damage
zone. The analytical formulation and the solution
present a development of the previous ones for
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1 Introduction

The classical continuum model of the material can
be considered as the slowly-varying approximation
of a discrete or structured material. This accuracy
is sufficient for the analysis of regular processes in
which waves corresponding to the microstructural
scales can be neglected. However, in fracture, the
energy release through the propagating crack tip
imposes no lower limit on the wave length, and
the asymptotic approximation of this kind is not
sufficient. Under the microstructural influence a
part of the macrolevel energy release is spent on
the excitation of the microlevel and this phenom-
enon cannot be observed within the framework of
the homogeneous model. The most important fact
is that the dissipation due to the energy transfer
to the microlevel is crack speed- and structure-
dependent. This is why the use of structured mod-
els is important for fracture dynamics. Analytical
studies of discrete lattice models allow, in partic-
ular, to clarify the connections between the clas-
sical (macrolevel) description of fracture and the
microlevel behavior. While the solution describes
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the complete pattern of the lattice dynamics, its
long-wave (low-frequency) asymptote describes
the macrolevel dynamics. Comparing these solu-
tions can determine the total dissipation and the
speed-dependent local-to-global energy release
ratio.

Fracture based on a linear homogeneous lattice
model was first analytically considered in Slepyan
(1981). References to the following works and main
results on this topic can be found in Slepyan (2002).
Also see Marder and Gross (1995) and Marder
(2004). The localized crack-like transition wave
in homogeneous bistable-bond lattices, as a more
general problem containing the crack problem as
a particular case, was considered in Slepyan and
Ayzenberg-Stepanenko (2004). The well-known
Frenkel–Kontorova model (Frenkel and Kontor-
ova 1948; Braun and Kivshar 1998) relates to this
theme as well. Recently, the lattice-net with bonds
of nonzero density was considered in Slepyan
(2005). Main concepts of the fracture process zone
and the corresponding references can be found in
Broberg (1999); we also note Botsis and Chudnov-
sky (1987).

In addition to the high-frequency radiation, in
the lattice works some other phenomena were re-
vealed, in particular:

(a) Possibilities of supersonic crack propagation
in a lattice where the crack can take energy
from the initially stressed neighboring layers
or from a wave (Slepyan 2002).

(b) The role of a structure-associated dynamic
amplification factor, which appears to be a
governing phenomenon in the rate of frac-
ture. In a viscoelastic lattice, cracks can grow
slowly. This is valid if the relaxation and creep
times belong to a static-amplitude-response
domain where the dynamic factor does not
manifest itself (Slepyan 2000, 2002). Other-
wise, in particular in an elastic lattice, cracks
cannot grow slowly (Marder and Gross 1995).

(c) The instability of a fast straight-line crack
(Marder and Gross 1995) and some irregu-
larities in mode II crack growth (Slepyan and
Ayzenberg-Stepanenko 2002).

(d) A size effect in fracture as a strong influence
of the cell size is revealed in the viscoelastic
lattice model (Slepyan et al. 1999).

The present paper is based on a presentation
at ICF11 (Turin 2005). We show that analytical
methods remain applicable to a more sophisticated
case of the stress–strain relation provided that the
nonlinearity manifests itself only in the transition
line—between the neighboring rows of the lattice
particles.

The analytical approach is suitable for two-
dimensional, periodic on x lattices of a general
view; however, the following conditions are as-
sumed to be satisfied. The lattice knots in a line
parallel to the x-axis, the line n = 0, are connected
with those in the neighboring line n = −1 by identi-
cal, physically nonlinear transition-line bonds. The
force–elongation diagram is presented in Fig. 1.

The lattice half-planes, n ≥ 0 and n ≤ −1, are
connected only by these bonds, that is, the local
interaction between the half-planes is assumed.
The connections between the knots in the half-
planes can be, in principle, any, but each half-plane
is assumed to represent a linear system. The lat-
ter condition can also follow from the assumption
that relatively large strains may occur in the tran-
sition-line bonds only. For simplicity it is assumed
that the tensile force, T, in the transition-line bond
depends on the elongation, q, only. With the goal
to derive an analytical solution, the dependences,
T(q), shown in Fig. 1 are accepted. These depen-
dences are characterized by two branches, each of
a constant tangent modulus. If the ratio q∗∗/q∗ is

Fig. 1 The piecewise linear force–elongation diagram.
1 is the first, initial branch, T = q. 2 is the second branch,
T = q − P∗; it comes in force at t = t∗ when the elongation
reaches the critical value, q = q∗. The final break of the
bond occurs at q = q∗∗ (t = t∗∗): T = 0 for t > t∗∗. The case
of a free crack corresponds to q∗∗ = q∗, while there is a line
‘damage zone’ if q∗∗ > q∗. The vertical distance between
the branches is denoted by P; P = P∗ for t∗ < t < t∗∗ and
P = q for t > t∗∗
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large enough, such that q < q∗∗ all the time, and
also in some other cases, a closed analytical solu-
tion can be obtained. In the case of a diagram with
a general path from the first branch to the other,
the problem can be reduced to an integral equa-
tion. The infinite two-dimensional lattice or a lat-
tice strip is assumed to be under self-equilibrated
loads.

Specifically, in the present paper, a square-cell
periodic lattice is considered. The steady-state
dynamic problem is formulated for a crack propa-
gating at a given speed, v, along the x-axis. In this
case, the transition-line bond elongation is q = q(η),
where η = x − vt. It is assumed that the transi-
tion-line bonds are in the initial phase for q < q∗;
the first transition occurs at q = q∗, while the final
break takes place at q = q∗∗ > q∗. The solution de-
fines the crack speed as a function of the far-field
(global) energy release rate. It also defines the total
speed-dependent dissipation caused by the struc-
ture-associated radiation. Finally, it elucidates the
role of the second branch of the diagram.

Note that the square-cell lattice is intended to
model anti-plane shear; however, a hypothetical
plane deformation with only vertical displaceme-
nts—with the same formulation and results—can
also be assumed. We use the latter viewpoint when
it is more convenient; for example, when displace-
ments and forces are to be shown in a plane figure.

2 Formulation

2.1 Equations

Consider a square-cell lattice, Fig. 2, whose
bonds between the lines n = 0 and n = −1 obey
the piecewise-linear double-humped stress-strain
relation presented in Fig. 1, while the other bonds
follow the first linear branch of the diagram. The
dynamic equation of the intact square-cell lattice is

M
d2um,n

dt2
= μ0

(
um+1,n + um−1,n + um,n+1

+um,n−1 − 4um,n
)
, (1)

where um,n are displacements, m and n are horizon-
tal and vertical numbers of particles, respectively
(their coordinates are x = ma, y = na; a is the cell
size), and μ0 is the bond stiffness. This equation is

Fig. 2 The square-cell lattice

valid outside the crack, that is, for the left-hand side
with n > 0 and n < −1. The symmetry condition is

um,−n−1 = −um,n . (2)

Under this condition, the equation for the particles
with n = 0 is

M
d2um,0

dt2
= μ0(um+1,0 + um−1,0 + um,1 − 3um,0)

−2μum,0 , (3)

where μ is not a constant; it follows from the stress–
strain diagram, Fig. 1. For simplicity we here con-
sider the diagram with parallel branches

μ = μ0 (t < t∗), μ = μ0 − P∗ (t∗ < t < t∗∗)
μ = 0 (t > t∗∗) , (4)

where t = t∗ is the moment when the strain of
the considered bond, qm = 2um,0, reaches the first
critical value, qm = q∗; t = t∗∗ is the the moment
when the strain reaches the second critical value,
qm = q∗∗; the bond breaks at this moment.

In the following we use M, μ0, and a as the nat-
ural units of mass, stiffness, and size, respectively.
Further, we consider a steady-state regime

um,n = um,n(η) , qm = q(η) , η = m − vt , (5)

where v = const is the nondimensional crack speed
(the ratio of the crack speed to the long-wave speed
c = a

√
μ/M). In this formulation, the crack is as-

sumed to be at the left, η < 0, and q(0) = q∗∗.
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For our goal it is convenient to reformulate this
nonlinear problem as follows. Consider the lin-
ear lattice all the bonds of which are in the ini-
tial phase for any q. Introduce self-equilibrated
pairs of external forces, P(η), applied to the par-
ticles connected by the transition-line bonds. The
forces are directed along the corresponding bond;
they must compensate the difference in the tensile
forces between the real and linear dependences.
The intact bonds together with the external forces
act on the transition-line particles, n = 0 and n =
−1, in the same way as if the bonds followed the
given nonlinearity. Hence, such a reformulation
does not influence the lattice dynamic behavior.
These forces are

P(η) = 0 (η > l) , P(η) = P∗ (0 < η < l) ,

P(η) = q (η < 0) , (6)

where the point η = l is defined by the condition
q(l) = q∗.

The elongation caused by these forces is ex-
pressed in terms of the corresponding fundamental
solution, Q(η), which reflects the structure of the
intact lattice as a whole. The fundamental solu-
tion properties and their connections with the lat-
tice structure are of the most interest. Below the
main points in deriving analytical solutions are dis-
cussed. Nondimensional variables are used.

2.2 Causality principle for steady-state solution

A steady-state solution is not unique if a homoge-
neous solution exists related to a free wave.
Uniqueness can be achieved in various ways, in
particular, by the use of a rule based on the cau-
sality principle. Under this principle, the solution
is considered as the limit of the solution to the
corresponding transient problem with zero initial
conditions. In terms of the Fourier transform on η

with parameter k, this consideration results in the
following rule. The transformed steady-state solu-
tion can be presented as a function of two vari-
ables, k and ikv, and the latter must be treated as
the limit: 0 + ikv ≡ lim(s + ikv) (s → +0), where
the parameter s reflects the Laplace transform on
t (the transient solution is considered as a function
of two independent variables: t and η). Details can
be found in Slepyan (2002).

From a physical point of view, the causality prin-
ciple as stated in the above narrow sense says that
the solution should not contain waves carrying
energy from infinity (nor waves exponentially grow-
ing to infinity). This is also called the Mandelshtam
principle (see Bolotovsky and Stolyarov 1972). It
corresponds to the case where no energy source
at infinity is assumed. In a broad sense, the cau-
sality principle permits all waves to occur whose
sources are prescribed by the problem formula-
tion. In particular, some remote sources may be
assumed to exist at infinity and the corresponding
waves carrying energy from infinity can be pres-
ent in the solution. These latter waves do not obey
the above-mentioned rule. Note that such waves
always appear in fracture if the energy flux to the
propagating crack tip is caused by remote forces.
In this case, the rule serves to guide the derivation
of the other part of the solution.

3 Solution

3.1 Governing equation

Using the Fourier transform on η we find

(h(k) + 2)uF
n (k) − uF

n+1(k) − uF
n−1(k)

= 0 (n > 0) ,

(h(k) + 3)uF
n (k) − uF

n+1(k) (7)

= PF(k) = q−(k) + P∗
exp(ikl) − 1

ik
(n = 0)

with

qF = 2uF
0 = q+ + q−, h(k) = 2(1 − cos k)

+(0 + ikv)2, r(k) = h(k) + 4,

q+ =
∫ ∞

0
q(η) exp(ikη) dη, (8)

q− =
∫ 0

−∞
q(η) exp(ikη) dη .

From this and the condition uF
n → 0 [n →

∞, h 	= 0, h 	= −4)] the governing equation fol-
lows as

L(k)q+ + q− = P∗
ik

[L(k) − 1] [exp(ikl) − 1
]

,

L(k) = √
r(k)/h(k) . (9)
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3.2 Factorization

With the purpose to use the Wiener–Hopf tech-
nique to resolve Eq. 9 consider the functions h(k)

and r(k). For 0.31584619 ≈ v∗ < v < 1 there is
only one positive root of h = 0: k = h1(v) + i0,
and one positive root of r = 0: k = r1(v) + i0.
Just this range of v is considered [the lower speeds
are usually unrealizable (Marder and Gross 1995)].
These functions also contain infinite sets of com-
plex zeros placed symmetrically relative to the real
and imaginary axes, and the function r, in addition,
has two purely imaginary zeros: k = ±ir2(v). For
the following it is useful to represent (similarly to
Slepyan 2002, p399)

r
h

= R1R2

H1
S2(k)

(

S(k) =
√

rH1

hR1R2

)

,

H1(k) = H1−(k) = 1 +
(

h1

0 + ik

)2

,

R1(k) = R1−(k) = 1 +
(

r1

0 + ik

)2

, (10)

R2(k) = R2+(k)R2−(k) ,

R2+(k) = 1 + r2

0 − ik
, R2−(k) = 1 + r2

0 + ik
.

The function S(k) = S(−k) is positive and finite for
any real k, and S(k) → 1 for k → ∞.

The required factorization is now given as

L(k) = L+(k)L−(k) ,

L+(k) = √
R2+(k) S+(k) ,

L−(k) =
√

R1(k)R2−(k)

H1(k)
S−(k) ,

S±(k) = exp

[
± 1

2π i

∫ ∞

−∞
ln S(ξ)

ξ − k
dξ

]
,

(±�k > 0) . (11)

For real k

S± =
√

S(k) exp[∓iγ (k)],

γ (k) = 1
π

V.p.
∫ ∞

0

ln S(ξk)

ξ2 − 1
dξ . (12)

Note that

γ (0) = γ (±∞) = 0 . (13)

Using the above factorization we can present
the governing equation in the form

L+(k)q+ + q−
L−

= Q(k) ,

(14)

Q(k) = P∗
ik

[
L+(k) − 1

L−(k)

]
[
exp(ikl) − 1

]
.

The problem is now to divide the right-hand side
of this equation into two terms, one marked by +
and the other by −, that is, the terms analytical in
the upper and the lower half-planes of k (including
the real axis), respectively.

3.3 Simplification

In fact, in the considered range of the crack speed,
the factorization of the function S(k), Eq. 11, can
be avoided. A simplified presentation appears if
we put in Eq. 10

r2 = α = 2h1/r1√
1 − v2

. (15)

It results in S(0) = 1 and in a small difference
S(k) − 1 and small derivative dS(k)/ dk (at least
for v ≥ 0.5 – see Fig. 3). So, in the determination
of functions for real k we keep equality (15) below
and put (for real k): S+ = S− = S ≡ 1.

3.4 Division of the right-hand side

Note that multiplication of a Fourier transformed
function by eikl corresponds to the shift of the

Fig. 3 Functions S(k) (curve 1) and γ (k) (curve 2) for r2 = α

and v = 0.5
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original function to the right by l. So, the product

L+(k)

ik

[
exp(ikl) − 1

] = L+(k)

0 − ik

[
1 − exp(ikl)

]

can be marked by the subscript + since the support
of the original function is 0 < l < η < ∞. As to
the term

1
ikL−(k)

[
exp(ikl) − 1

]

= 1
(0 + ik)L−(k)

[
exp(ikl) − 1

]

the corresponding support is −∞ < η < l, and
hence it contains both the ‘minus’ and the ‘plus’
functions. The latter (with the support of its origi-
nal 0 < η < l) can be determined as

B+(k) =
∫ l

0

[
1

2π

∫ ∞

−∞
1

(0 + iξ)L−(ξ)

× exp[iξ(l − η) dξ
]
eikη dη

= 1
2π

∫ ∞

−∞
1

(ξ − i0)(ξ − k)L−(ξ)

×
[
eikl − eiξ l

]
dξ . (16)

This is the Cauchy type integral modified for the
separation of a function having a compact support
(here—for the support 0, l). Note that the point
ξ = k (this equality is realized for real k) is regu-
lar, while the integrant at point ξ = i0 is integrable.

In general, if the support of function g(x) is x1 <

x < x2, where x1,2 are finite, and f (x) = g(x) for
x1 < x < x2, then

gF(k) = 1
2π i

∫ ∞

−∞
f F(ξ)

×exp[ix1(k − ξ)] − exp[ix2(k − ξ)]
ξ − k

dξ .

(17)

Note that the integral in (16) by means of the
deformation of the integration path [we make three
branch cuts (−r1 + i0, −h1 + i0), (h1 + i0, r1 + i0),
and (+i0, iα)] can be presented as a sum of two

finite integrals:

B+(k) = 1
π

∫ α

0

√√√√ h2
1 + x2

x(α − x)(r2
1 + x2)

× [
exp(ikl) − exp(−lx)

] dx
x + ik

+ i
π

∫ r1

h1

√√√√ x2 − h2
1

x(r2
1 − x2)

�(x, k) dx ,

�(x, k) = exp(ikl) − exp(ixl)

(x − k)
√

x − iα

− exp(ikl) − exp(−ixl)

(x + k)
√

x + iα
. (18)

We also note that for real k the symmetry is held
as B+(−k) = B+(k), �B+(−k) = −�B+(k).

From the above considerations we get

Q+(k) = P∗L+(k)

ik

(
eikl − 1

)
− P∗B+(k) ,

(19)
Q−(k) = − P∗

ikL−(k)

(
eikl − 1

)
+ P∗B+(k) .

In particular, it follows that

lim
p→∞ p Q+(ip)

= P∗(1 − M) , M = 1
2π i

∫ ∞

−∞
exp(iξ l)
L−(ξ)

dξ

ξ

= 1
π

∫ ∞

0

[
sin ξ l

ξ
 1

L−(ξ)
(20)

+cos ξ l
ξ

� 1
L−(ξ)

]
dξ .

Note that for �k < 0 the first-term integral in
(16) is given by the residue at ξ = k

1
2π

∫ ∞

−∞
1

(ξ − i0)(ξ − k)L−(ξ)
dξ eikl

= 1
(0 + ik)L−(k)

eikl (21)

and the exponentially growing terms in the expres-
sion (19) for Q−(k) [in the first term and in the
expression for B+(k)] cancel each other. As a result

lim
p→∞ p Q−(−ip) = lim

p→∞ p Q+(ip) = P∗(1 − M) .

(22)
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3.5 Final relations

From (14) and (19) it follows that

q+ = C
(0 − ik)L+(k)

+ Q+(k)

L+(k)
,

q− = CL−(k)

0 + ik
+ Q−(k)L−(k) , (23)

where C is an arbitrary real constant [the corre-
sponding terms represent the homogeneous solu-
tion of (14) which reflects a remote loading]. For
k = ±ip, p → ∞ (for q±, respectively)

q± ∼ C+P∗(1−M)
p [L±(±ip) → 1 (p → ∞)] . (24)

It follows

q(0) = q(±0) = C + P∗(1 − M) . (25)

Next we need the value of q(l); it is

q(l) = 1
2π

∫ ∞

−∞
q+(k)e−ikl dk

= P∗
2

+ 1
2π

∫ ∞

−∞
C

(0 − ik)L+(k)
e−ikl dk

− P∗
2π

∫ ∞

−∞
B+(k)

L+(k)
e−ikl dk

= P∗
2

+ C
π

∫ ∞

0

[


√
k2 − ikα sin kl

−�
√

k2 − ikα cos kl
]

dk√
k4 + k2α2

−P∗
π

∫ ∞

0

[
B+(k)

L+(k)
cos kl

+�B+(k)

L+(k)
sin kl

]
dk . (26)

Lastly, for k → 0

q+(k) ∼ Q0+(k) = C

√
r1

√
1 − v2

2h1(0 − ik)
,

q−(k) ∼ Q0−(k) = C

√
2r1

h1
√

1 − v2
(0 + ik)−3/2

(27)

and the far-field energy release rate is

G = p2Q0+(ip)Q0−(−ip) = C2 r1

h1
. (28)

For the determination of two unknowns, C and l,
we have two equalities

q(0) = q∗∗, q(l) = q∗ . (29)

The first one and (25) give us

C = q∗∗ − P∗(1 − M) , (30)

Fig. 4 Energy release ratio for P∗ = q∗. The considered
diagram for the crack with a damage zone, q∗∗ = 2q∗
(1), and the diagram for the crack without such a zone,
q∗∗ = q∗ (2)

where M depends on v and l. The other serves for
the determination of l = l(v). So, if the critical elon-
gations, q∗, q∗∗, and the constant P∗ are given, the
far-field energy release, G, can be determined as a
function of the crack speed. The energy required
for a bond to be broken is

G0 = 1
2

q2∗∗ − P∗(q∗∗ − q∗) . (31)

The difference, G − G0, is radiated by high-fre-
quency waves excited by the moving crack; it is the
dissipation. The energy release ratio G0/G calcu-
lated for P∗ = q∗, q∗∗ = 2q∗ as a function of the
crack speed, v, is presented in Fig. 4 (curve 1). The
ratio for a ‘regular’ lattice (q∗∗ = q∗) is also shown
(curve 2). It can be seen that the two-humped dia-
gram leads to an increase of the dissipation.

4 Conclusion

In this paper, an idealized formulation for a dy-
namic crack in a nonlinear discrete lattice is con-
sidered. It is assumed that fracture takes place on
the crack line as a two-step event. The first step is
an instantaneous decrease of the interparticle ten-
sile force, while the tangent modulus is still invari-
able. The other step is the final fracture when the
interparticle interaction disappears. In contrast to
the one-step fracture in a lattice considered earlier,
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there exist two critical values of the strain, q∗ and
q∗∗ (these values are assumed to be given), while
the time-interval between the two steps of fracture
is unknown. This creates an additional difficulty in
the application of analytical methods; however, the
Wiener–Hopf technique is still applicable.

The calculations are conducted for the case
where the tensile force drops from a critical value
to zero in the first step of fracture further increas-
ing till the same critical value. Mathematically, any
other case can be considered using the same tech-
nique. Two evident asymptotes can be noted.
Clearly, the case q∗∗ = q∗ corresponds to the one-
step fracture, that is, when q∗∗ → q∗ + 0 the solu-
tion must approach that for the crack without any
damage zone. In the other case, q∗∗ � q∗, the two
steps of fracture are separated: the first step corre-
sponds to the transition considered in Slepyan and
Ayzenberg-Stepanenko (2004), while the second
one corresponds to the one-step fracture.

For a more general fracture process, in the case
where it develops on a line, the two-dimensional
lattice problem can be reduced to an integral equa-
tion based on the fundamental solution considered
in Slepyan and Ayzenberg-Stepanenko (2004). In
reality, the fracture process is much more compli-
cated (see, e.g. Marder and Gross 1995, Broberg
1999), and not only one lattice line is involved in
it. In this respect, analytical solutions can serve
for better understanding of some important phe-
nomena in fracture (as it is discussed in Sect. 1);
they also can serve as the analytical framework for
numerical simulations.
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