
Journal of the Mechanics and Physics of Solids
49 (2001) 149–171

www.elsevier.com/locate/jmps

Dynamics of chains with non-monotone stress–
strain relations. II. Nonlinear waves and waves

of phase transition

Alexander M. Balka, Andrej V. Cherkaeva,*, Leonid I.
Slepyanb

a Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
b Department of Solid Mechanics, Materials and Structures, Tel Aviv University, Tel Aviv, Israel

Received 10 May 1999; received in revised form 28 February 2000

Abstract

We investigate the dynamics of a one dimensional mass-spring chain with non-monotone
dependence of the spring force vs. spring elongation. For this strongly nonlinear system we
find a family of exact solutions that represent nonlinear waves. We have found numerically
that this system displays a dynamical phase transition from the stationary phase (when all
masses are at rest) to thetwinkling phase (when the masses oscillate in a wave motion). This
transitionhas two fronts which propagate with different speeds. We study this phase transition
analytically and derive relations between its quantitative characteristics. 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

1.1. The system

We consider the dynamics of a one-dimensional chain of masses m connected by
identical springs (see Fig. 1). This system is described by the following equations

rẍn5F(xn+12xn)2F(xn2xn−1) (1)
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Fig. 1. A mass-spring chain.

wheren=0,±1,±2,…, andxn is the coordinate of the mass numbern. The function
F(u) characterizes the dependence of the spring force vs. spring elongation. We are
interested in the situation when this function isnon-monotone; namely we consider
the following basic model of a spring force

f(u)5Hku if u,uc

ku−f if u.uc

(2)

whereuc is some critical elongation. In the rangeu,uc, as well as in the rangeu.uc

the forceF depends linearly on the elongationu with the same slopek, but at the
critical valueuc, the spring forceF(u) drops byf units, from the valuekuc to the
valuekuc2f (see Fig. 2(a)).

1.2. The phenomenon observed in computer experiments

In computer experiments, we have observed the following waves associated with
a phase transition. We have stretched the chain so that the distance between any two
adjacent masses isuc2e (e is a “very small” number), and all masses are at rest; all
spring forces have the same valueF(uc2e). Because of some “small” fluctuations
the elongation of one spring can become greater thanuc, say uc+e), and then the
masses start moving. Let us outline the numerical results.

In computer experiments, we consider a chain of large numberN of masses with
initial conditions

xn(0) = H(uc−e)n if n#N/2,

(uc+e)+(uc−e)(n−1) if n.N/2;
,

ẋn(0) = 0 (n=1,2,…,N; e.g.e=10−6).

(3)

Fig. 2. A model non-monotone constitutive relation (a) characterized by some values ofk, uc and f. (b)
normalized tok=1, uc=0, andf=1.
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The result of our computer simulation is shown in Fig. 3. This computation reveals
a phase transition: the system goes over from one steady state, when the elongation
of each spring is constant, to another steady state, when the masses oscillate with
some periodp. The later phase can be called thetwinkling phase.

The phase transition propagates symmetrically in opposite directions. This corre-
sponds to the mirror symmetry of the initial conditions Eq. (3).

The phase transition has two fronts. The first one propagates with unit speed (it
takes unit time to propagate from one mass to the next). This is the largest speed
of propagation of linear waves (see below). Between the first front and the second
front, the masses move with “almost” constant speed. After the second front, the
masses start to oscillate in a wave motion. Fig. 3 shows several quantitative charac-
teristics of this dynamics. They are as follows.

1. The time periodp of the oscillations in the second phase. After the second front
the masses start to oscillate in a wave motion with some periodp in time.

2. The “swelling” distancea. Before the phase transition the distance between the
adjacent masses is (almost)uc; As a result of the transition the average distance
between the adjacent masses becomes equal touc+a. In other words, as a result
of the phase transition, the chain is “swelling” by a distancea, times the number
of masses transferred to the twinkling phase.

Fig. 3. The result of our computer simulation of the chain withN=130 masses. Initially, the chain is in
rest, the distance between any pair of adjacent masses, besides the middle pair, isuc2e, and the distance
between the two middle masses isuc+e (e=1026), so that the chain is “almost” in equilibrium, and its
instability “just starts to develop”.
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3. The speed 1/t of the second front. After this front the masses start to oscillate.
It takes timet for the second front to propagate from one mass to the next.

4. The speedv in the intermediate regime. Between the first and the second fronts
the masses move with a certain “almost” constant speedv.

Our goal is to obtain these characteristics analytically.

1.3. Motivation

This paper continues our previous work (Balk et al., 2000) on the analysis of phase
transition in systems with non-convex elastic energy. In numerical experiments, we
found quite a regular pattern of phase transition (with two fronts, which propagate
with different speeds), and our present goal is to describe this transition.

We note that a similar phenomenon (when a wave of phase transition follows a
forerunning sonic or shock wave that has a larger speed) was investigated by Truski-
novsky (1997) in a continuous model. Notice that our model describes the oscillations
of the twinkling phase, because it possesses internal degrees of freedom (responsible
for the oscillations of individual masses).

Another motivation of the work is more general: The Hamiltonian system Eqs.
(1) and (2) is interesting from the view point of the general theory of nonlinear
waves (see e.g. Whitham, 1993; Infeld and Rowlands, 1990). We have observed a
new wave phenomenon (see Fig. 3). Note that the system Eqs. (1) and (2) isstrongly
nonlinear. It does not make sense to consider this system with small force dropf,
since it can be always normalized tof=1 (see below). An analytical description of
this strongly nonlinear system is interesting by itself.

1.4. Normalization

The system Eqs. (1) and (2) can be rescaled to the system, which is characterized
by the unit massr=1, the unit spring constantk=1, zero critical elongationuc=0,
and the unit force dropf=1. In order to see this, first of all, let us note that the
dependenceF(u) can be shifted by an arbitrary vector (a,b) in the plane (u,F). Indeed,
if we make the following change of variables

xn5x̃n1na (n50,61,62,…),

then Eq. (1) can be written in the same form, but with a different force

F̃(u)5F(u2a)1b.

Therefore, we can shift the dependenceF(u) so that the discontinuity occurs atuc=0
and F(02)=0.

Further, we can choose the units of mass so thatr=1, the units of time so that

k/r=1, and the units of length so that
1
k
[F(02)2F(0+)]=1 (see Fig. 2(b)). Thus we

can re-write our system in the form
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ẍn5F(xn+12xn)2F(xn2xn−1) where F(u)5u2Q(u), (4)

whereQ is the Heaviside function.

2. Nonlinear waves

2.1. The formulation

As a first step in the investigation of the system Eq. (4), we find nonlinear waves
that can propagate in this system. It is a strongly nonlinear system, and perturbation
techniques utilized for finding waves in weakly nonlinear media do not work here.

A somewhat similar system was considered by Slepyan and Troyankina (1984).
They studied a mass-spring chain with partially failing bonds. In their model the
adjacent masses are joined by two linear springs, and at a certain critical stress one
of the springs is torn. In this situation each bond displays nonlinearity only once.
On the contrary, each spring in the model considered in this paper is reversible and
switches from one linear regime to another infinitely many times.

We look for the solutionsxn(t) of Eq. (4) that are periodic in time

xn(t1p)5xn(t), (n50,61,62,…; 2`,t,`) (5)

and satisfy the following self-similarity relation

xn+1(t)5a1xn(t2t), (n50,61,62,…; 2`,t,`) (6)

wherep, a and t are some a priori unknown constants. It is clear that the choice
of parametert is not unique: the relation Eq. (6) will be satisfied if we replacet
with t+jp where j is an arbitrary integer; so we will assume that |t|#p/2. Then |t|
shows how much time it takes for the wave to propagate from one mass to the next,
and sign(t) shows the direction of the wave propagation; in other words 1/t is the
Lagrangian velocity of the wave.

By virtue of the self-similarity property Eq. (6), the coordinatesxn(t) of all the
masses can be expressed through the coordinate of only one mass withn=0:

xn(t)5na1x0(t2nt), n50,61,62,…, (7)

Then Eq. (4) takes the following form

ẍ0(t)5F(a1x0(t2t)2x0(t))2F(a1x0(t)2x0(t1t)). (8)

We assume that the origin of thex-axis is chosen so that the average value ofx0

is zero:

E
p

0

x0(t) dt50. (9)
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2.2. Classes of regimes

The spring force Eq. (4) is piece-wise linear, and the switching from one linear
dependence to the other occurs at the instants when the distance between the adjacent
masses passes through the critical valueuc=0. For instance, the switching of linear
dependence of the first force in Eq. (7) occurs when the function

z(t)5x1(t)2x0(t)5a1x0(t2t)2x0(t) (10)

passes through zero. The solutionsx0(t) of Eq. (8) can be portioned into several
classes depending on how many times the function Eq. (10) changes its sign during
the periodp.

2.3. Linear waves

If the function Eq. (10) does not change sign at all (it is either everywhere positive
or everywhere negative), then Eq. (8) takes the form

ẍ0(t)5x0(t1t)1x0(t2t)22x0(t); (11)

the mass-spring system behaves as if it were linear. Eq. (11) has solutions

x0(t)5a1AeiVt, (12)

that describe harmonic oscillations. Here the constantA is an arbitrary complex

amplitude, and the frequencyV=
2p
p

is connected witht by the dispersion relation

2V25eiVt1e−iVt22,

which is equivalent to

V562 sin
Vt
2

. (13)

Note that the slowest oscillations, withV=0, have the largest propagation speed
1/t=1. For the linear regime to take place, the amplitudeA should be sufficiently
small, so that the function Eq. (10) indeed does not change its sign, e.g. |A|,a/2.

2.4. A nonlinear regime

Now consider the situation when the function Eq. (10) does change its sign. In
the twinkling phase (Fig. 3), the function Eq. (10) periodically changes its sign from
“2” to “ +” and then from “+” to “ 2” once per periodp. In other words, the distance
between any two adjacent masses once per period becomes greater than the critical
distanceuc=0, and once per period it becomes smaller thanuc. We chose the zero
of the time-axis so that

z(t).0 if 0,t,q and z(t),0 if q,t,p (14)
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whereq is some instant between 0 andp. (see Fig. 4). This means that the distance
between mass #0 and mass #1 is greater thanuc during time intervals (0,q), (±p,
±p+q), (±2p,±2p+q),… and smaller than uc during time intervals (q,p),
(±p+q,±p+p),(±2p+q,±2p+p),…. The parametersp andq (a prior unknown) determine
the instants of switching between the linear regimes of the spring force (see Fig. 2).
Now Eq. (8) can be written in the form

ẍ0(t)5[a1x0(t2t)2x0(t)2g(t)]2[a1x0(t)2x0(t1t)2g(t1t)]

where

g(t)5 O`
j52`

[Q(t2jp)2Q(t2jp2q)]. (15)

The consideration of periodic waves enables us to reduce the nonlinear Eq. (8) to a
linear equation

ẍ0(t)5x0(t1t)1x0(t2t)22x0(t)1g(t1t)2g(t) (16)

with external forcingg(t+t)2g(t). This equation contains two unknown parameters
p andq. We will find solutions of this linear equation that depend on undetermined
parameterst, p, q. Then we will require that the function Eq. (10) satisfies the
condition Eq. (14), so that the solution is self-consistent: the switching between the
linear branches of the spring force occurs at the “right” instants, i.e. att=0,q; ±p,
±p+q; ±2p, ±2p+q; and so on periodically with periodp. This will give us a nonlinear
algebraic equation for the four parameterst,p, q, anda.

Fig. 4. Switching instances.
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2.5. Remark

We wish to emphasize that we are able to reduce the strongly non-linear Eq. (8)
to the linear Eq. (16) because we have chosen the dependenceF(u) consisting of
two linear parts with THE SAME slope (see Fig. 2). Then the nonlinearity is reduced
to turning on constant external force at certain instants. If the motion is periodic
(and the switching on and off occurs once per period), then the instants of switching
(and therefore the external force) are completely characterized by two numbersp
andq (see Eq. (15)). In this situation the nonlinear difference–differential Eq. (8) is
reduced to the linear difference–differential Eq. (16) and a system of four nonlinear
algebraic equations for the parameterst,p,q, anda.

2.6. The solution of Eq. (16)

We solve the linear difference–differential Eq. (16) by means of Fourier transform
similarly to Slepyan and Troyankina (1984). The Fourier series expansion

xo(t)5 O1`

k52`

Xkeiknt, n52p/p, (17)

reduces the Eq. (16) to the form

(2k2n22eiknt2e−iknt12)Xk5(eiknt21)Gk (18)

whereGk, is the Fourier coefficient of the functiong(t), see Eq. (15):

Gk5
1
pE

p

0

g(t)e−iknt dt5
1

2pik
(12e−iknq).

Hence

Xk5
1−e−iknq

2pik
eiknt−1

S2 sin
knt
2 D2

−(kn)2

, n52p/p, (19)

(k=±1,±2, …; X0=0 according to Eq. (9)) and the solutionx0(t) is given by Eq. (17).

2.7. The nonlinear algebraic equation for the four parameterst,p,q, anda

We need to ensure that the solution Eqs. (17)–(19) is consistent with the condition
Eq. (14), i.e. the function Eq. (10) indeed vanishes att=0 andt=q. This means that

x0(t)2x0(t2t)5 O1`

k52`

Xk(12e−iknt)eiknt (20)

equalsa when t=0 andt=q. Using the solution Eq. (19), we find that condition Eq.
(20) gives
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at t50: O1`

k52`

sin2
knt
2

Skn
2 D2

−Ssin
knt
2 D2

1−e−iknq

2pik
5a

at t5q: O1`

k52`

sin2
knt
2

Skn
2 D2

−Ssin
knt
2 D2

eiknq−1
2pik

5a

(in these sumskÞ0).
The sum of these equations gives us the expression fora in terms of the para-

meterst,p,q:

a5O`
k51

sin2
knt
2

Skn
2 D2

−Ssin
knt
2 D2

sinknq
pk

(n52p/p), (21)

while the difference of these equations is satisfied identically (since the resulting
summand is odd with respect to the indexk).

Thus we have found a three-parameter family1 of nonlinear waves: Givent,p,q,
we can finda by Eq. (21) and the corresponding nonlinear wave — by formulas
Eqs. (17) and (19). Note that in the linear regime we also have three-parameter
family of waves, but in this caset and p are connected by the dispersion relation
Eq. (13), and the independent parameters arep,A,a.

It is instructive to compare the waves of described here with water waves, which
are characterized by the wave lengthl and wave amplitudeA (see e.g. Whitham,
1993). The time periodp is similar to the wave lengthl. The parameterq plays the
part of the wave amplitude (it characterizes the nonlinearity). In the present model
we have additionally the third parametera (the average distance between masses),
which has no analog for water waves. This parameter arises because we can pre-
stretch the chain (before exciting the oscillations). We call the relation Eq. (21) the
nonlinear dispersion relationfor the nonlinear waves in our model.

3. Transition from the stationary phase to the twinkling phase

The wave motion in our computer experiment appears to be a nonlinear wave
defined by the formulas Eqs. (7, 17, 19) and (21). However, we have a three-para-
meter family of nonlinear waves, while our computer experiment is well reproduced

1 The phase of the wave is the fourth parameter (related to the choice of an initial instantt0) that we
do not count.
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and always leads to aunique nonlinear wave of the twinkling phase. It remains
to be determined which wave from this family describes the wave motion in the
computer experiment.

In this section we will show that the values of the parametersp,q,t are uniquely
determined by the condition that the corresponding nonlinear wave is caused by the
phase transition. In other words, we describe the entire transition pattern, shown in
Fig. 3; the parametersp,q,t are uniquely determined from the condition that the
twinkling phase can be matched with the stationary phase. This assumption corre-
sponds to the wave motion in the twinkling phase and is in agreement with the
“experimental” results, Fig. 3.

3.1. Reduction to the linear difference–differential equation with undetermined
parameters

The Eq. (4) of the mass spring chain can be written in the form

ẍn5(xn+12xn2gn)2(xn2xn−12gn−1) (22)

where

gn5Q(xn+12xn) (n50,61,62,…). (23)

In accordance with our computer experiment, we consider zero initial conditions:

xn(0)5ẋn(0)50, n50,61,62,…

and assume that the phase transition propagates symmetrically so that

x1−n5xn⇒g−n5gn. (24)

Let us choose the zero of the time-axist so that the quantityx2(t)2x1(t) is less than
zero whent,t, and it becomes positive for the first time whent=t+. Fig. 3 suggests
that behind the second front the masses move periodically with some periodp

xn(t1p)5xn(t) for t.tn (25)

in a wave motion with some wave speed 1/t

xn+1(t)5a1xn(t2t) for t,tn (26)

(n=1,2,…). In the previous consideration of nonlinear waves (Section 2) we required
that these relations hold for alltP(2`,`). This time we take into account the instant
of excitation of the wave and consider the Eqs. (25) and (26) only fort.tn.

The differencex2(t)2x1(t) remains negative up to the instantt=t; then it becomes
positive and stays positive for some timeq(0,q,p), i.e. during time interval (t,t+q);
then, at instantt+q it becomes negative again and stays negative during time interval
(t+q, t+p). After that it repeats periodically with periodp. By virtue of the self-
similarity condition Eq. (26) we have that
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xn+1(t)2xn(t)5
,0 if t,t|n|,

.0 if t|n|+pj,t,t|n|+pj+q,

,0 if t|n|+pj+q,t,t|n|+p(j+1)

(27)

(n=1,2,3,…; j=0,1,2,…). This implies that we know the form of the functionsgn(t)
(see Eq. (23)) up to three undetermined parametersp,q,t:

gn(t)5O`
j50

[Q(t2nt2jp)2Q(t2nt2jp2q)]. (28)

This expression is valid for positive integers (n=1,2,3,…). By virtue of the symmetry
Eq. (24), we have a similar expression forgn(t) with negativen (n=21, 22, 23,…).

The casen=0 is special since 0th and 1st masses move symmetrically; the sign
of x1(t)2x0(t) is described by two additional parameterst0 andq0:

x1(t)2x0(t)5
,0 if t,t0,

.0 if t0+pj,t,t0+pj+q0,

,0 if t0+pj+q0,t,t0+p(j+1),

(29)

and therefore

g0(t)5O`
j50

[Q(t2t02jp)2Q(t2t02jp2q0)]. (30)

3.2. Remark

A close look at Fig. 2 reveals that the wave motion is approximate:xn+1(t) does
not exactly equala+xn(t2t) for n=1,2,…. The relation Eq. (26) holds only when
n→`. Therefore, we should have introduced differenttn and qn for all n=0,1,2,…
(not only the casen=0 is special). Moreover, we will see that the periodicity Eq.
(25) is also approximate and seems to hold whent→`. However, the numerical
experiment shows that the accuracy of the above anzatz Eqs. (25) and (26) is “good”,
and we assume it.

Similarly to the case of nonlinear waves considered in the previous section, we
reduce the nonlinear system Eq. (22) to a linear form

ẍn5xn+11xn−122xn1gn−1(t)2gn(t) (31)
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with the forcing depending on undetermined parameters. This time we need five
parameterst,p,q,t0,q0 instead of three parameterst,p,q utilized in the case of nonlin-
ear waves, extended fromx=2` to x=+` (see Section 2).

First, we find the solution of the linear system Eq. (31) in terms of the parameters
t,p,q,t0,q0. Then we require that the conditions Eqs. (27) and (29) are satisfied, so that
the solution is self-consistent. To do this, we have the five undetermined parameters.
However (unlike to the case of nonlinear waves, extended fromx=2` to x=+`), it
turns out to be impossible to choose the values of the parameters to satisfy all these
conditions exactly (because the assumptions of periodicity and wave motion are
approximate, see the last remark). Instead, we satisfy these conditions approximately.
In this way we obtain a model Eq. (31) that captures the essential features of the
phase transition dynamics and agrees with the numerics. This model leads to a unique
choice of the values of parameterst,p,q,t0,q0, and therefore to a unique nonlinear
wave of the twinkling phase. The model represents an anzatz, not an approximation
based on a small parameter. In this respect our model is similar to a variational
approach, when a suboptimal solution is used instead of a “true” minimizer. The
comparison with the computer experiment justifies the model.

3.3. Solution of Eq. (31)

To solve the linear Eq. (31), we use the Laplace transform with respect to the
time t and the Fourier transform, orz-transform, with respect to the indexn.

The Laplace transform

Xn(s)5E
`

0

xn(t)e−st dt, Gn(s)5E
`

0

gn(t)e−st dt

leads to the equation

s2Xn5Xn+11Xn−122Xn1Gn−1(s)2Gn(s) (n50,61,62,…) (32)

where

Gn(s)5
1−e−qs

s(1−e−ps)
e−tns, G−n(s)5Gn(s) (n51,2,3,…)

and

G0(s)5
1−e−q0s

s(1−e−ps)
e−t0s

The Fourier transform with respect to the indexn (z-transform)

X(f,s)5 O1`

n52`

Xn(s)einf, G(f,s)5 O1`

n52`

Gn(s)einf
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reduces the Eq. (32) to the form

(s22e−if2eif12)X(f,s)5(eif21)G(f,s) (33)

where

G(f,s)5
1

s(1−e−ps)
3H(12e−qs)F e−ts+if

1−e−ts+if 1
e−ts−if

1−e−ts−ifG1(12e−q0s)e−t0sJ (34)

To complete the solution we need to apply the inverse integral transforms.

3.4. Inverse z-transform

From Eqs. (33) and (34) we findX(f,s) and then findXn(s) performing the inverse
Fourier transform. Let us considern$1 (the masses withn#0 move symmetrically,
see Eq. (24)) and make the substitutionz=e2if; then

Xn(s)5
−1

s(1−e−ps)
3

1
2pi

rH(12e−qs)F 1
z−e−ts1

z
1−ze−tsG1(1 (35)

2e−q0s)e−t0sJ(z−1)zn−1 dz
z2−(s2+2)+1

where the integration is carried out along the unit circle clockwise. In order to calcu-
late this integral, we find the singularities of the integrand.

The quadratic equation

z22(s212)z1150 (36)

has two roots whose product is one. This equation has a root with absolute value
one only whenR(s)=0 and22,I(s),2. Let z(s) denote the root of Eq. (36) whose
absolute value is less than one whenR(s).0:

z(s)5
s2+2−sÎs2+4

2
(37)

(here we consider the principal value of the square root, with argument between
2p/2 andp/2); 1/z(s) is the other root, whose absolute value is greater than one
whens is in the right half-plane. Thus, whenR(s).0, the integrand in Eq. (35) has
two poles inside the unit circle:z=z(s) andz=e2ts, and we find

Xn(s)5
1−e−qs

s(1−e−ps)
z(s)

[z(s)−e−ts][z(s)−ets]H(ets21)e−nts (38)

1
2e−ts−z(s)−1/z(s)

z(s)+1
[z(s)]nJ1

1−e−q0s

s(1−e−ps)
e−t0s

[z(s)]n

z(s)+1

(n=1,2,…). These functions are analytic in the right half-planeR(s).0. Indeed, when
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R(s).0, we have |z(s)|,1,|ets|.1, so that the denominator in Eq. (38) vanishes only
whenz(s)=e2ts, but then the expression in parentheses also vanishes. This analyticity
implies thatxn(t)=0 whent,0 (n=0,1,2,…).

In the right half-plane,R(s).0, we have |z(s)|,1 and |e−ts|,1; therefore,Xn(s)→0
andxn(t)→0 whenn→`. This limiting behavior corresponds to the motion of distant
masses that at the instantt are not yet reached even by the first front.

3.5. Remark about analytical continuation

The functions Eq. (38) can be analytically continued to the entire complex plane,
besides cuts and poles on the imaginary axis. Indeed, the functionz(s) can be analyti-
cally continued to the entire complex plane with cuts

{ s:R(s)50, I(s).2} and {s:R(s)50, I(S),22}. (39)

Then the functionsXn(s) can be meromorphically continued to the complex plane
with cuts Eq. (39). The formula Eq. (37) with principal value of the square root
actually gives this analytical continuation.

3.6. The asymptotic periodicity of xn(t) as t→`. The choice of parameter q

The asymptotics ofxn(t) when t→` are determined by the singularities ofXn(s)
on the imaginary axis. These are the poles at the points

s5in where n5
2p
p

k (k50,61,62,…), (40)

as well as at the points of the imaginary axis where

z(s)5ets. (41)

The last equation has solutionss=iV whereV=V(t) is a real non-zero roots of the
Eq. (13). Note that ats=0 the expression Eq. (38) has a simple pole included in the
set Eq. (40). Thus,

xn(t)| O`
k52`

Cke
i
2p
p

kt
1[DeiVt1D∗e−iVt] (t→`) (42)

whereCk, (k=0,±1,±2,…; Ck=C∗
−k) are the residues corresponding to the poles Eq.

(40)), andD, D* are the residues corresponding to the non-zero solutionss=±iV(t)
of Eq. (13).2 Besides these poles, the analytic functions Eq. (38) have cuts Eq. (39)
on the imaginary axis and “one over square-root singularities” at the pointss=±2i
(sincez(s)+1 vanishes ats=±2 as√s72). These integrable singularities, as well as
the cuts, contribute to the asymptotics ofxn(t) at t→`. However, these contributions

2 We have assumed implicitly that Eq. (13) has exactly one pair of non-zero solutions±V(t), which
is true only for some range oft. The value of parametert in our computer experiment is clearly inside
this range.
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approach zero ast→`. Hence the asymptotics ofxn(t) at t→` are determined only
by the poles ofXn(s) on the imaginary axis, and we indeed have Eq. (42). The
asymptotic Eq. (42) shows thatxn(t) becomesp-periodic ast→` only if D=0.

In turn this is realized ifq takes some special value so that the factor 12e2qs in
the numerator of Eq. (38) vanishes at all zeros of the factor [z(s)2ets] in the denomi-
nator. This condition, which could be called thepole cancellation condition, gives
a relation between the parameterq and t:

qV(t)52p where V(t) is the positive solution of the equation (13). (43)

In our computer experiment we findt=2.2⇒V=1.8 andq=3.4, which are in agree-
ment with Eq. (43).

3.7. The “swelling” distancea

The average value ofxn(t) as t→` is determined by the residue ofXn(s) at s=0.
Thus

xn(t) oscillates arounda(n2
1
2
)1b as t→`. (44)

Here

a5
qt

p(1+t)
, b5

q−q0

2p
. (45)

According to Eq. (44), the constanta is the average distance between adjacent
masses, i.e.a is “the swelling distance”. In our computer experiment we findq=3.4,
t=2.2, p=5.3 anda=0.44, which fits the theoretical result Eq. (45).

3.8. Solution near the front of the phase transition

In order to obtain the characteristics of the phase transition (in particular the inter-
mediate velocityv between the first and the second fronts), we go over to the frame
of reference moving with the front of the phase transition (the second front). In other
words, we describe the system using “local” timeh=t2nt (around the instant when
the second front reaches mass numbern).

We introduce the function

yn(h)=xn(nt+h)=
1

2pi E
σ1i`

σ2i`

Xn(s)e(nt+h)s ds=

=
1

2pi E
σ1i`

σ2i`

Yn(s)ehs ds

(46)

(s is an arbitrary positive number, andXn(s) is defined in Eq. (38)). According to
Eq. (38) we have
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Yn(s)5Y(s)1Z(s)[z(s)ets]n, (47)

where

Y(s)5
(1−e−qs)(1−ets)

s(1−e−ps)(e−ts+ets−s2−2))
, Z(s)5

1
s(1−e−ps)F(1−e−qs)(s2+2−2e−ts)

e−ts+ets−s2−2
1(1 (48)

2e−q0s)e−t0sG 1
z(s)+1

.

Here we have taken into account thatz(s) and 1/z(s) are the roots of the Eq. (36),
so that their sum iss2+2, and therefore,

z(s)
[z(s)−e−ts][z(s)−ets]

5
1

e−ts+ets−(s2+2)
.

In the new frame the self-similarity property Eq. (26) takes the form

yn+1(h)5a1yn(h) for h.tn. (49)

3.9. The transformation of the integration contour in the inverse Laplace
transform

Our idea now is to transform an integration line in Eq. (46) to some pathC on
which |x(s)ets|,1, so that the second term in the right hand side of Eq. (47) goes
away asn→`. In the vicinity of the imaginary axis, whens=s+iw (s being small),
we have

|z(s)ets|55 1+s1t− 2

Î4−w22+O(s2) if |w|,2(s→0),

w2

2
−
|w|
2

Îw2−4+O(s),1 if |w|.2(s→+0).

Here in the first asymptotics the parameters can approach zero from both sides
(positive and negative, while in the second asymptoticss can approach zero only
from the positive side. Thus |z(s)ets|,1 on the pathC shown in the Fig. 5. This path
goes along the imaginary axis from2i` to +i`. Whether the path goes to the left
or to the right of the imaginary axis is determined by the constant

h52!1−
1
t2

. (50)
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Fig. 5. The lineI(s)=s of integration in Eq. (46) is transformed to the pathC. This path lies near the
imaginary axis, in the right half-plane if |w|.h and in the left half-plane if |w|,h. The poles Eq. (40)
are denoted by crosses. Three of these poles,s=0, s=in, s=2in, lie to the right ofC, and the rest lies to
the left of C.

If |w|,h, the pathC goes on the left of the axis; if |w|.h, it goes on the right of
the axis. Denoted by crosses in the Fig. 5 are the poles Eq. (40) of the functions
Yn(s) (or Xn(s)). According to our computer experiment (Fig. 3),t=2.2⇒h=1.8 and
p=5.3⇒n=2p/p=1.2; therefore three of the poles Eq. (40) lie to the right of the path
C, and the rest lies to the left ofC. The path of integration in Eq. (46) can be
transformed: instead of the straight line froms2i` to s+i`(s.0) we can integrate
over the pathC, plus the integrals along the small circles (counterclockwise) around
the three poles that lie to the right ofC (see Fig. 5); the latter are given by the
corresponding residues:

yn(h)5
1

2piE
C

Yn(s)esh ds1ress=0[Yn]1einhress=in[Yn]1e−inhress=−in[Yn]. (51)

When n→`, the functionYn(s) on the pathC approachesY(s) and becomes inde-
pendent of the indexn. The second term in Eq. (51) is

ress=0[Yn(s)]5a(n2
1
2
)1b (52)

(cf. Eq. (44)).
In order for the self-similarity property Eq. (49) to take place, the last two terms

in Eq. (51) should be independent of the indexn: It means that the factorZ(s) in
Eq. (47) should vanish ats=±in:
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(1−e−inq)(2−n2−2e−int)
e−int+eint+n2−2

52(12e−inq0)e−int0. (53)

We can satisfy this complex-valued equation by choosing the appropriate values of
the two real parameterst0 and q0. Thus, asymptotically asn→` the formula Eq.
(51) takes the form

yn(h)5
1

2piE
C

Y(s)esh ds1[a(n2
1
2
)1b]1einhress=in[Y]1e−inhress=−in[Y].

Combining together the integral term and the last two residual terms, we rewrite this
formula in the form

yn(h)5
1

2piE
G

Y(s)esh ds1a(n2
1
2
)1b (54)

whereG is the path shown in Fig. 6 it goes from2i` to +i` near the imaginary
axis passing all the poles Eq. (40) of the function Eq. (48) on the right, besides one
pole at the origin, which is passed on the left. Eq. (54) describes a self-similar
behavior of the chain near the front of phase transition, for largen.

3.10. Remark about the self-similar solution near the front of the phase transition

We could look for the solution near the front of the phase transition directly,
assuming the self-similarity of this solution:

Fig. 6. The pathG. It lies near the imaginary axis; all the poles Eq. (40) lie to the left ofG, besides
one pole ats=0 that lies to the right ofG.
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xn(t)5y(t2nt),

wheret is an undetermined parameter, andy(h) is a p-periodic function. For this
function we would derive the following equation

ÿ(h)5y(h1t)1y(h2t)22y(h)1[g(h1t)2g(h)]

where

g(h)5O`
j50

[Q(h2jp)2Q(h2jp2q)]

(cf. Eqs. (15, 16, 28) and (31)). For the Laplace transform of the functiony(h) we
would find the expression Eq. (48). However, it would be unclear what contour we
should take in the inverse Laplace transform. Our approach enabled us to derive the
formula Eq. (54) with the integration over contourG, shown in Fig. 6). We also
showed the necessity of two extra parameterst0 andq0, which describe the dynamics
of the middle spring.

3.11. The speed v in the intermediate regime

In order to find the speedv between the first and second fronts (see Fig. 3), we
consider the asymptotics of the solution Eq. (54) ash→2`. It is defined by the
pole of Y(s) at s=0:

Ys5
1
s2

qt
p(t2−1)

[11s(p1t2q)]1O(1) (s→0).

Therefore

yn(h)|vh1na1g as h→2`

where the speedv is

v5
qt

p(t2−1)
, (55)

g=v(p+t2q)+b and the constantsa and b are defined in Eq. (45). Comparing the
expression Eq. (55) for the intermediate speed and the expression Eq. (45) for the
“swelling” distancea, we obtain thekinematic relation

v(t21)5a, (56)

which has the following simple kinematic interpretation. It takes unit time for the
first front to propagate from mass numbern to the mass number (n+1); after this
front the masses start moving with the speedv. It takes timet.1 for the second
front to propagate from mass numbern to the mass number (n+1); after this front
each mass oscillates around a fixed coordinatena+b. Thus the mass number (n+1)
is moving with the speedv by time t21 longer than the mass numbern, which is
expressed by the relation Eq. (56).
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It also follows from the formula Eq. (54) that the masses “almost” do not oscillate
between the fronts, which is consistent with Fig. 3. Indeed, the asymptoticsy(h) as
h→2` is defined by the singularities ofY(s) that lie on the imaginary axis and are
located to the right of the pathG; there is only one such singularity —s=0 (and there
are no singularities with non-zero imaginary part, which would lead to oscillations).

3.12. Parameters p andt. The nonlinear dispersion relation

Up to now we did not fix the values of the two parametersp andt. We need to
choose these values to make our solution self-consistent: We require that the distance
between masses numbern and number (n+1) vanishes (and switching between linear
regimes of the spring force indeed occurs) at the “right” instants. Namely

xn+1(t)2xn(t)50 whent5nt1pj and t5nt1pj1q (57)

(n=1,2,3,…; j=0,1,2,…; cf. Eq. (27)). The Laplace transformXn(s), given by the
formula Eq. (35); is not a meromorphic function, and therefore, the solutionxn(t)
cannot be periodic. It is impossible to satisfy Eq. (57) exactly. However, the com-
puter experiment suggests thatxn(t) is periodic with sufficiently high accuracy. We
satisfy the condition Eq. (57) approximately, and moreover consider this condition
for largen, when we can use the asymptotic formula Eq. (54). Sinceyn(h)=xn(nt+h),
we have

xn+1(nt1h)2xn(nt1h)5
1

2piE
G

Y(s)(e−ts21)esh ds1a.

Therefore, the condition Eq. (57) takes the form

1
2piE

G

Y(s)(e−ts21)esh ds1a50 (58)

for instants

h5pj, h5pj1q (j50,1,2,…). (59)

We satisfy this condition asymptotically for instants Eq. (59) asj→`. Asymptotics
of yn(h) ash→+` are determined by the poles Eq. (40), and we find that ash→+`,
the chain performs the wave motion described by the formulas Eqs. (17) and (19).
Hence we arrive at the nonlinear dispersion relation Eq. (21) (see Section 2). Since
the parametera is given now by the formula Eq. (45), the dispersion relation rep-
resents an equation connecting the wave periodp, the wave speed 1/t, and the para-
meterq (the latter plays the part of the wave amplitude).

The asymptotic considerations of this section give us three equations for the four
parametersp,q,t, anda. We also need to require that the condition Eq. (57) holds
at t=tn, i.e. the wave of phase transition indeed reaches the mass numbern at the
instant t=nt (see Eq. (27)). This condition is the Eq. (58) withh=0:
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1
2piE

G

(1−e−qs)(1−ets)(e−ts−1)
(1−e−ps)(e−ts+ets−s2−2))

ds1a50. (60)

It represents the fourth equation for the four parametersp,q,t anda.

4. Conclusion

In computer experiments we found a new regular pattern of dynamical phase tran-
sition in the mass-spring chain (see Fig. 3). The phase transition has two fronts
propagating with different speeds. Due to this transition the mass-spring chain trans-
fers from the stationary state, when all the masses are at rest, to the twinkling state,
when the masses perform a wave motion. The pattern is well reproduced and is
characterized by several quantitative characteristics, e.g. (1) the time periodp of
waves, (2) the “swelling” distancea, (3) the speed 1/t of the second wave front,
(4) the intermediate speedv (see the end of Section 1).

In order to approach this strongly nonlinear system analytically, we have found
the special form of the force vs. elongation dependence (see Fig. 2); the dependence
consists of two linear parts with thesameslope.

We have found analytically a three-parameter family of exact solutions, which
represent the nonlinear waves (extending from2` to +`). The wave motion of the
twinkling phase, which we observed in the computer experiment, represents such a
nonlinear wave. (One would observe this nonlinear wave if he is in “the middle” of
the twinkling phase and knows nothing about the boundaries, as well as about the
“pre-history”.)

A natural question arises: “What particular wave out of that three-parameter family
of nonlinear waves is realized in computer experiment?” In order to answer this
question, we have considered the entire transition dynamics. This has lead us to the
system of algebraic equations for the parametersp,t,a and a certain parameterq.
The latter is similar to the wave amplitude in the general theory of nonlinear waves;
it indicates the instants of switching between the linear parts of the force dependence.

We summarize here the main steps in the derivation of this nonlinear system.

1. We require that the solution that we construct is asymptotically time-periodic as
t→+`. This is possible only if a certain cancellation of poles of the image Eq.
(38) occurs. This requirement (the pole cancellation condition, see Section 3) gives
us the Eq. (43), which determinesq in terms of parameterst:

qV(t)52p, (61)

whereV(t) is defined by the linear dispersion relation Eq. (13):V(t) is the posi-
tive root of the equation

V52 sin
Vt
2

.
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2. We consider the asymptotics of our solution ast→+` and find “the swelling
distance”a in terms of the parametersp,q,t (Eq. (45)):

a5
qt

p(1+t)
. (62)

3. We consider the solution near the second front, propagating with the speed 1/t.
Moreover, we consider the asymptotic regime whenn→+` and t→+`, but
h=t2nt stays finite. The requirement that our solution asymptotically represents
a self-similar wave defines the parameterst0 andq0 (characterizing the dynamics
of the “middle” spring, see Eqs. (29) and (53)) and leads to the asymptotic formula
Eq. (54):

xn(nt1h)5
1

2piE
G

Y(s)esh ds1a(n2
1
2
)1b. (63)

Here the functionY(s) is given by Eq. (48):

Y(s)5
(1−e−qs)(1−ets)

s(1−e−ps)(e−ts+ets−s2−2)
, (64)

the pathG is shown in Fig. 6, the “swelling distance”a and the constantb are
defined in Eq. (45). The singularities of the functionY(s) on the imaginary axis
and the form of the pathG (see Fig. 6) define the asymptotic behavior of the
integral Eq. (63) ash→±`. The behavior ath→2` is defined by the only pole
to the right ofG2 the double pole ats=0. We find that whenh→2`, the function
Eq. (63) grows linearly withh, and there are no oscillations in the intermediate
region, between the fronts. This leads to a simple kinematic expression for the
intermediate velocityv

v5
a
t−1

(65)

(see Eq. (56) and the physical interpretation after that equation).
The simple poles ofY(s), located on the imaginary axis to the left of the pathG,
determine the asymptotic behavior of Eq. (63) ath→+`: asymptotically solutions
xn(nt+h) becomep-periodic functions and take the form of a nonlinear wave found
in Section 2. Thus we have the nonlinear dispersion relation Eq. (21):

a5O`
k51

sin2
knt
2

Skn
2 D2

−Ssin
knt
2 D2

sinknq
pk

(n52p/p). (66)



171A.M. Balk et al. / Journal of the Mechanics and Physics of Solids 49 (2001) 149–171

4. The last equation for the parameters comes from the requirement:
xn+1(nt)2xn(nt)=0. It states that the masses indeed transfer to the twinkling phase
when the second front reaches them. Using the asymptotic formula Eq. (63) we
arrive at Eq. (60):

1
2piE

G

(1−e−qs)(1−ets)(e−ts−1)
s(1−e−ps)(e−ts+ets−s2−2))

ds1a50. (67)

The four Eqs. (61, 62, 66) and (67) define the values of the parametersp,q,t, and
a. Once these parameters are determined, the formulas Eqs. (63) and (64) determine
the self-similar wave of phase transition.

4.1. Comparison with numerics

Our analysis is based on the hypothesis that the solution represents wave motion
when t.n (i.e. after the front of phase transition has passed the mass). We would
like to check this hypothesis not only qualitatively, but also quantitatively. In order
to do this, we check that the values of the parametersp,q,t,a, found in computer
simulation, satisfy the four Eqs. (61, 62, 66) and (67). In our computer experiments
we found p=5.3, q=3.4, t=2.2, a=0.44. These values indeed agree (within the
measurement accuracy) with the four equations.

4.2. Turbulence

We should note that the regular pattern shown in the Fig. 3 starts to disintegrate
after about ten periods of oscillations. If we continue to compute further (beyond
the time interval oft<50 presented in the Fig. 3), the oscillations become irregular
and chaotic. At present we are not sure whether this disintegration is due to the
numerics or is inherent to the real nonlinear dynamics. Probably, this disintegration
takes place because of the instability of the nonlinear wave (in the oscillating phase).
In following papers we intend to describe the developed turbulence of random non-
linear waves in this system.
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