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Abstract

We investigate the dynamics of a one dimensional mass-spring chain with non-monotone
dependence of the spring force vs. spring elongation. For this strongly nonlinear system we
find a family of exact solutions that represent nonlinear waves. We have found numerically
that this system displays a dynamical phase transition from the stationary phase (when all
masses are at rest) to theinkling phase (when the masses oscillate in a wave motion). This
transition has two fronts which propagate with different speeds. We study this phase transition
analytically and derive relations between its quantitative characterisficR000 Elsevier
Science Ltd. All rights reserved.

Keywords:A. Phase transformations; A. Dynamics; Variational principles; B. Constitutive behaviour

1. Introduction
1.1. The system

We consider the dynamics of a one-dimensional chain of masses m connected by
identical springs (see Fig. 1). This system is described by the following equations

P¥n=F(Xnr1 %) — F(Xa—Xn-1) 1)
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Fig. 1. A mass-spring chain.

wheren=0,+1+2,..., andx, is the coordinate of the mass numberThe function

F(u) characterizes the dependence of the spring force vs. spring elongation. We are
interested in the situation when this functionnisn-monotonenamely we consider

the following basic model of a spring force

fw {ku if u<ug 2
u =

ku-f if u>u,
whereu, is some critical elongation. In the rangetu,, as well as in the range>u,
the forceF depends linearly on the elongationwith the same slopé, but at the
critical valueu,, the spring forceF(u) drops byf units, from the valueu, to the
value ku.—f (see Fig. 2(a)).

1.2. The phenomenon observed in computer experiments

In computer experiments, we have observed the following waves associated with
a phase transition. We have stretched the chain so that the distance between any two
adjacent masses ig—¢ (¢ is a “very small” number), and all masses are at rest; all
spring forces have the same valbéu.—¢). Because of some “small” fluctuations
the elongation of one spring can become greater tharsay u.+e), and then the
masses start moving. Let us outline the numerical results.

In computer experiments, we consider a chain of large nurNbefr masses with
initial conditions

(u—€e)n if n=N/2,
X,(0) = . ,
(ucte)+(uc—e)(n-1) if Nn>N/2; 3)
%,(0) = 0(n=1,2,...N; e.9.e=10).
a) 1 b.)
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Fig. 2. A model non-monotone constitutive relation (a) characterized by some valkgs.aindf. (b)
normalized tok=1, u.=0, andf=1.
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The result of our computer simulation is shown in Fig. 3. This computation reveals
a phase transitionthe system goes over from one steady state, when the elongation
of each spring is constant, to another steady state, when the masses oscillate with
some periop. The later phase can be called tfvgnkling phase

The phase transition propagates symmetrically in opposite directions. This corre-
sponds to the mirror symmetry of the initial conditions Eg. (3).

The phase transition has two fronts. The first one propagates with unit speed (it
takes unit time to propagate from one mass to the next). This is the largest speed
of propagation of linear waves (see below). Between the first front and the second
front, the masses move with “almost” constant speed. After the second front, the
masses start to oscillate in a wave motion. Fig. 3 shows several quantitative charac-
teristics of this dynamics. They are as follows.

1. The time perioc of the oscillations in the second phase. After the second front
the masses start to oscillate in a wave motion with some periodtime.

2. The “swelling” distanceax. Before the phase transition the distance between the
adjacent masses is (almost) As a result of the transition the average distance
between the adjacent masses becomes equalta In other words, as a result
of the phase transition, the chain is “swelling” by a distancéimes the number
of masses transferred to the twinkling phase.

coordinates of masses

0 20 40
time t

Fig. 3. The result of our computer simulation of the chain vNtiL30 masses. Initially, the chain is in
rest, the distance between any pair of adjacent masses, besides the middleupait, end the distance

between the two middle massesuge (=10 °), so that the chain is “almost” in equilibrium, and its
instability “just starts to develop”.
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3. The speed %/of the second front. After this front the masses start to oscillate.
It takes timer for the second front to propagate from one mass to the next.

4. The speed in the intermediate regime. Between the first and the second fronts
the masses move with a certain “almost” constant speed

Our goal is to obtain these characteristics analytically.
1.3. Motivation

This paper continues our previous work (Balk et al., 2000) on the analysis of phase
transition in systems with non-convex elastic energy. In numerical experiments, we
found quite a regular pattern of phase transition (with two fronts, which propagate
with different speeds), and our present goal is to describe this transition.

We note that a similar phenomenon (when a wave of phase transition follows a
forerunning sonic or shock wave that has a larger speed) was investigated by Truski-
novsky (1997) in a continuous model. Notice that our model describes the oscillations
of the twinkling phase, because it possesses internal degrees of freedom (responsible
for the oscillations of individual masses).

Another motivation of the work is more general: The Hamiltonian system Egs.
(1) and (2) is interesting from the view point of the general theory of nonlinear
waves (see e.g. Whitham, 1993; Infeld and Rowlands, 1990). We have observed a
new wave phenomenon (see Fig. 3). Note that the system Eqgs. (1) ana{i@nigly
nonlinear. It does not make sense to consider this system with small force fdrop
since it can be always normalized tel (see below). An analytical description of
this strongly nonlinear system is interesting by itself.

1.4. Normalization

The system EQs. (1) and (2) can be rescaled to the system, which is characterized
by the unit masp=1, the unit spring constark=1, zero critical elongatioru.=0,
and the unit force drog=1. In order to see this, first of all, let us note that the
dependenc&(u) can be shifted by an arbitrary vectalf) in the plane ¢,F). Indeed,
if we make the following change of variables

X,=%,+ha(n=0,£1,+2,..),
then Eg. (1) can be written in the same form, but with a different force
F(uy=F(u—a)+b.

Therefore, we can shift the dependefde) so that the discontinuity occurs ai=0
and F(0—)=0.
Further, we can choose the units of mass so pit, the units of time so that

1
k/p=1, and the units of length so thﬁ\[F(O—)—F(0+)]:l (see Fig. 2(b)). Thus we

can re-write our system in the form
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%a=F(Xne1—X0) —F(X,—Xq-1) where F(u)=u—0(u), (4)
where 0 is the Heaviside function.

2. Nonlinear waves
2.1. The formulation

As a first step in the investigation of the system Eqg. (4), we find nonlinear waves
that can propagate in this system. It is a strongly nonlinear system, and perturbation
techniques utilized for finding waves in weakly nonlinear media do not work here.

A somewhat similar system was considered by Slepyan and Troyankina (1984).
They studied a mass-spring chain with partially failing bonds. In their model the
adjacent masses are joined by two linear springs, and at a certain critical stress one
of the springs is torn. In this situation each bond displays nonlinearity only once.
On the contrary, each spring in the model considered in this paper is reversible and
switches from one linear regime to another infinitely many times.

We look for the solutionx,(t) of Eq. (4) that are periodic in time

Xo(t+p)=x,(t), (N=0,=1,%2,...; —co<t<0) 5)
and satisfy the following self-similarity relation
Xnr1()=a+X,(t—17), (n=0,=1,%2,...; —co<t<x) (6)

wherep, o and t are some a priori unknown constants. It is clear that the choice
of parameterr is not unique: the relation Eq. (6) will be satisfied if we replace
with t+jp wherej is an arbitrary integer; so we will assume thgtjp/2. Then ¢
shows how much time it takes for the wave to propagate from one mass to the next,
and sign¢) shows the direction of the wave propagation; in other wordsislthe
Lagrangian velocity of the wave.

By virtue of the self-similarity property Eq. (6), the coordinateft) of all the
masses can be expressed through the coordinate of only one mass=@ith

X()=no+Xy(t—n71), n=0,+1,%£2,..., 7
Then Eq. (4) takes the following form
Xo(t)=F(0r+Xo(t—7) = Xo(t)) — F e +Xo(t) = Xo(t +17)). (8)

We assume that the origin of theaxis is chosen so that the average valuexpf
is zero:

j Xo(t) dt=0. (9)
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2.2. Classes of regimes

The spring force Eq. (4) is piece-wise linear, and the switching from one linear
dependence to the other occurs at the instants when the distance between the adjacent
masses passes through the critical valge0. For instance, the switching of linear
dependence of the first force in Eq. (7) occurs when the function

Z(t)=X1(t) —Xo() = +Xo(t—7) —Xo(1) (10)

passes through zero. The solutiongt) of Eq. (8) can be portioned into several
classes depending on how many times the function Eqg. (10) changes its sign during
the periodp.

2.3. Linear waves

If the function Eq. (10) does not change sign at all (it is either everywhere positive
or everywhere negative), then Eq. (8) takes the form

Xo(t) = Xo(t+7) +Xo(t—17) — 2%o(1); (11)
the mass-spring system behaves as if it were linear. Eg. (11) has solutions
Xo(t) = +Ae™, (12)

that describe harmonic oscillations. Here the constans an arbitrary complex

amplitude, and the frequendy:Zg is connected withr by the dispersion relation

_QZZ eiQ'r+ e—iﬂr_ 21

which is equivalent to
Q
Q==+2 sin?f. (13)

Note that the slowest oscillations, with=0, have the largest propagation speed
1/z=1. For the linear regime to take place, the amplitédshould be sufficiently
small, so that the function Eq. (10) indeed does not change its signAg@x/2.

2.4. A nonlinear regime

Now consider the situation when the function Eq. (10) does change its sign. In
the twinkling phase (Fig. 3), the function Eq. (10) periodically changes its sign from
“—"to “+" and then from %" to “ —" once per periog. In other words, the distance
between any two adjacent masses once per period becomes greater than the critical
distanceu=0, and once per period it becomes smaller tmanWe chose the zero
of the time-axis so that

Z(t)>0 if 0<t<qg and z(t)<0 if g<t<p (14)



A.M. Balk et al. / Journal of the Mechanics and Physics of Solids 49 (2001) 149-171 155

whereq is some instant between 0 apd(see Fig. 4). This means that the distance
between mass #0 and mass #1 is greater thasuring time intervals (@), (xp,
ip+q), (£2p,x2p+q),... and smaller thanu. during time intervals d,p),
(xp+a,£p+p),(£2p+q,£2p+pP),.... The parametergandqg (a prior unknown) determine

the instants of switching between the linear regimes of the spring force (see Fig. 2).
Now Eg. (8) can be written in the form

Xo(t) = [ +Xo(t—17) —Xo(t) —9(1)] — [ +Xo(t) —Xo(t+7) —g(t+7)]

where

9= > [0(t=jp)—O(t—jp—a)]. (15)

j=—o

The consideration of periodic waves enables us to reduce the nonlinear Eg. (8) to a
linear equation

Ko(t) =Xo(t+17) +Xo(t—7) — 2xo(t) + 9(t+7) —g(t) (16)

with external forcingg(t+7)—g(t). This equation contains two unknown parameters

p andg. We will find solutions of this linear equation that depend on undetermined
parametersr, p, g. Then we will require that the function Eqg. (10) satisfies the
condition Eq. (14), so that the solution is self-consistent: the switching between the
linear branches of the spring force occurs at the “right” instants, i.&=Cat}; +p,

pt+q; £2p, £2p+q; and so on periodically with perigol This will give us a nonlinear
algebraic equation for the four parameteys, g, anda.

distance
llc s
0 q p p+q
g(t)
1
0 q p p+q

Fig. 4. Switching instances.
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2.5. Remark

We wish to emphasize that we are able to reduce the strongly non-linear Eq. (8)
to the linear Eqg. (16) because we have chosen the depenéénceonsisting of
two linear parts with THE SAME slope (see Fig. 2). Then the nonlinearity is reduced
to turning on constant external force at certain instants. If the motion is periodic
(and the switching on and off occurs once per period), then the instants of switching
(and therefore the external force) are completely characterized by two numbers
andq (see Eg. (15)). In this situation the nonlinear difference—differential Eq. (8) is
reduced to the linear difference—differential Eqg. (16) and a system of four nonlinear
algebraic equations for the parametejsqg, ando.

2.6. The solution of Eq. (16)

We solve the linear difference—differential Eq. (16) by means of Fourier transform
similarly to Slepyan and Troyankina (1984). The Fourier series expansion

()= > X&, v=2nlp, (17)

k=—o
reduces the Eq. (16) to the form
(_kzvz_eikvr_e—ikvr+ Z)Xk: (eikvr_l)Gk (18)
whereG,, is the Fourier coefficient of the functiog(t), see Eq. (15):

P
_} —ikvt _i _ aikvg
Gk—pjg(t)e dt_znik(l e kva),
0]

Hence
1_e—ikvq ékVT—l

X=" o
2tk kvt\2
(2 sin‘;) ~(kv)?

, v=2nlp, (19)

(k=t1£2, ...; X,=0 according to Eq. (9)) and the solutigg(t) is given by Eq. (17).
2.7. The nonlinear algebraic equation for the four parametersq, ando

We need to ensure that the solution Egs. (17)—(19) is consistent with the condition
Eq. (14), i.e. the function Eq. (10) indeed vanishe$=8tandt=qg. This means that

+o0

Xo() = Xolt—7)= 2, X(1—eTr)ekn (20)

k=—o0

equalsa whent=0 andt=q. Using the solution Eq. (19), we find that condition Eq.
(20) gives
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. kvt
att=0: § o 2 1_e_.lkvq=a
(o >
2 2
. kvt
att=q: § 2 el
(i
2 2

(in these sum&+0).
The sum of these equations gives us the expressiow fior terms of the para-
meterst,p,g:
k
o Sin? ot .
2 sinkvq
a=>

k=1 Q 2_ Inklr z ﬂ:k
2) 3"

while the difference of these equations is satisfied identically (since the resulting
summand is odd with respect to the index

Thus we have found a three-parameter fafdy nonlinear waves: Given,p,q,
we can finda by Eq. (21) and the corresponding nonlinear wave — by formulas
Egs. (17) and (19). Note that in the linear regime we also have three-parameter
family of waves, but in this case and p are connected by the dispersion relation
Eq. (13), and the independent parameterspgde.

It is instructive to compare the waves of described here with water waves, which
are characterized by the wave lendgtrand wave amplitudé (see e.g. Whitham,
1993). The time periog is similar to the wave length. The parameteq plays the
part of the wave amplitude (it characterizes the nonlinearity). In the present model
we have additionally the third parameter(the average distance between masses),
which has no analog for water waves. This parameter arises because we can pre-
stretch the chain (before exciting the oscillations). We call the relation Eq. (21) the
nonlinear dispersion relatiorior the nonlinear waves in our model.

(v=2xlp), (21)

3. Transition from the stationary phase to the twinkling phase

The wave motion in our computer experiment appears to be a nonlinear wave
defined by the formulas Egs. (7, 17, 19) and (21). However, we have a three-para-
meter family of nonlinear waves, while our computer experiment is well reproduced

1 The phase of the wave is the fourth parameter (related to the choice of an initial ig¥tduatt we
do not count.
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and always leads to anique nonlinear wave of the twinkling phase. It remains
to be determined which wave from this family describes the wave motion in the
computer experiment.

In this section we will show that the values of the paramepggg are uniquely
determined by the condition that the corresponding nonlinear wave is caused by the
phase transition. In other words, we describe the entire transition pattern, shown in
Fig. 3; the parameterp,q,z are uniquely determined from the condition that the
twinkling phase can be matched with the stationary phase. This assumption corre-
sponds to the wave motion in the twinkling phase and is in agreement with the
“experimental” results, Fig. 3.

3.1. Reduction to the linear difference—differential equation with undetermined
parameters

The Eq. (4) of the mass spring chain can be written in the form

%0 = (Xas1 = %0 = Gn) = (Xa = %11~ On-1) (22)
where
0n=0OXs1— %) (N=0,+1,+2,..)). (23)

In accordance with our computer experiment, we consider zero initial conditions:
%.(0)=%,(0)=0,n=0,%1,%2,...

and assume that the phase transition propagates symmetrically so that
X1-n=X=0-n=0pn. (24)

Let us choose the zero of the time-akiso that the quantity,(t)—x,(t) is less than
zero whent<t, and it becomes positive for the first time whierr+. Fig. 3 suggests
that behind the second front the masses move periodically with some geriod

Xa(t+p)=X,(t) for t>1n (25)
in a wave motion with some wave speed 1/
Xna(D)=a+x,(t—1) for t<tn (26)

(n=1,2,...). In the previous consideration of nonlinear waves (Section 2) we required
that these relations hold for al& (—0,). This time we take into account the instant
of excitation of the wave and consider the Eqgs. (25) and (26) only>fan.

The differencex,(t)—x,(t) remains negative up to the instart; then it becomes
positive and stays positive for some tig@<q<p), i.e. during time intervald,t+q);
then, at instant+q it becomes negative again and stays negative during time interval
(t+q, T+p). After that it repeats periodically with periogl By virtue of the self-
similarity condition Eq. (26) we have that
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<0 if t<1in|,
Xne1 () =Xa(t)y >0 i 7In[+pj<t<7|n|+pj+q, (27)
<0 if 7|n|+Hpj+g<t<t|n|+p(j+1)

(n=1,2,3,...;j=0,1,2,...). This implies that we know the form of the functiamgt)
(see Eq. (23)) up to three undetermined paramegigys:

gn()= 2 [O(t—nt—jp)—O(t—nT—jp—0q)]. (28)
j=0
This expression is valid for positive integers,2,3,...). By virtue of the symmetry
Eqg. (24), we have a similar expression fp(t) with negativen (n=—1, —2, —3,...).
The casen=0 is special since Oth and 1st masses move symmetrically; the sign
of x,(t)—xo(t) is described by two additional parametegsand gy

<0 if t<r,,
Xa(t) =Xo(t) >0 if 7+pj<t<zg+pj+p, (29)
<0 if 7gtpj+Qo<t<7o+p(j+1),

and therefore

o) =D [O(t—To—jp) —O(t—To—ip—Co)]- (30)

j=0

3.2. Remark

A close look at Fig. 2 reveals that the wave motion is approxinate(t) does
not exactly equabrtx,(t—7) for n=1,2,.... The relation Eq. (26) holds only when
n—oo. Therefore, we should have introduced differeptand g, for all n=0,1,2,...
(not only the casan=0 is special). Moreover, we will see that the periodicity Eq.
(25) is also approximate and seems to hold wienc. However, the numerical
experiment shows that the accuracy of the above anzatz Eqgs. (25) and (26) is “good”,
and we assume it.

Similarly to the case of nonlinear waves considered in the previous section, we
reduce the nonlinear system Eq. (22) to a linear form

5.(n =Xn+1t X1 2Xn+ gn—l(t) - gn(t) (31)
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with the forcing depending on undetermined parameters. This time we need five
parameters,p,q,t,,0o instead of three parameter,q utilized in the case of nonlin-
ear waves, extended frorr—oo to x=+ (see Section 2).

First, we find the solution of the linear system Eq. (31) in terms of the parameters
7,0,0,70,0o- Then we require that the conditions Egs. (27) and (29) are satisfied, so that
the solution is self-consistent. To do this, we have the five undetermined parameters.
However (unlike to the case of nonlinear waves, extended frome to x=+»), it
turns out to be impossible to choose the values of the parameters to satisfy all these
conditions exactly (because the assumptions of periodicity and wave motion are
approximate, see the last remark). Instead, we satisfy these conditions approximately.
In this way we obtain a model Eqg. (31) that captures the essential features of the
phase transition dynamics and agrees with the numerics. This model leads to a unique
choice of the values of parameter®,q,7,,00, and therefore to a unique nonlinear
wave of the twinkling phase. The model represents an anzatz, not an approximation
based on a small parameter. In this respect our model is similar to a variational
approach, when a suboptimal solution is used instead of a “true” minimizer. The
comparison with the computer experiment justifies the model.

3.3. Solution of Eq. (31)

To solve the linear Eq. (31), we use the Laplace transform with respect to the
time t and the Fourier transform, artransform, with respect to the index
The Laplace transform

Xn(9)= f X,(H)estdt, G(s)= f gn(testdt

leads to the equation

Xy =Xnr1+ Xno1— 22X, +G1(9) — G (s) (n=0,=1,+2,..) (32)
where
1-e9
Gn(9) =Me‘ms, G_.(9=G,(9 (n=1,2,3,.)
and
1-e%°
Go(9)= S(1-e9 g0

The Fourier transform with respect to the indexXz-transform)

X(¢.9)= i Xy(s)e™, G(¢.5)= i Gi(s)em

n=-—o n=-—w«=
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reduces the Eq. (32) to the form
(S—e -2+ 2)X(0,9)=(62—1)G(¢,5) (33)
where

—TSHi$ g tsio

G(¢,9)= S( e L _ps) {(1 e qs)[l e—rS+|¢ —— ¢] +(1—e‘qos)e‘fos} (34)

To complete the solution we need to apply the inverse integral transforms.
3.4. Inverse z-transform

From Egs. (33) and (34) we find(¢,s) and then findX,(s) performing the inverse
Fourier transform. Let us considaE1 (the masses with=0 move symmetrically,
see Eg. (24)) and make the substitutzze'?; then

-1 z
(9= S(1-e9) eps) 27i {(1 € 5){2 e‘fS 1- Ze'TS]+(l (35)

(z-1)z*dz
2—(s?+2)+1
where the integration is carried out along the unit circle clockwise. In order to calcu-

late this integral, we find the singularities of the integrand.
The quadratic equation

2—($+2)z+1=0 (36)

has two roots whose product is one. This equation has a root with absolute value
one only wherfi(s)=0 and —2<3(s)<2. Let {(s) denote the root of Eq. (36) whose
absolute value is less than one wHg(s)>0:

sz+2—sv@
(9= 5 37)

_ e—qos) e—ros}

(here we consider the principal value of the square root, with argument between
—n/2 andn/2); 1/(s) is the other root, whose absolute value is greater than one
whens is in the right half-plane. Thus, wheéR(s)>0, the integrand in Eq. (35) has
two poles inside the unit circlez={(s) andz=e~*, and we find

1-e 46 [

X qaemi@ el
i O AOR ()] } 1—e% . (91"
O (1-e7° " {91

(n=1,2,...). These functions are analytic in the right half-pl&i{e)>0. Indeed, when

(e—1)e"= (38)
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R(s)>0, we have{(s)|<1,™>1, so that the denominator in Eq. (38) vanishes only
when({(s)=e~ ™, but then the expression in parentheses also vanishes. This analyticity
implies thatx,(t)=0 whent<0 (n=0,1,2,...).

In the right half-plane)i(s)>0, we have{(s)|<1 and ¢ ™|<1; therefore X,(s)—0
andx,(t)—0 whenn—-cc. This limiting behavior corresponds to the motion of distant
masses that at the instainare not yet reached even by the first front.

3.5. Remark about analytical continuation

The functions Eq. (38) can be analytically continued to the entire complex plane,
besides cuts and poles on the imaginary axis. Indeed, the furi§gpoan be analyti-
cally continued to the entire complex plane with cuts

{sR(9=0, I(9>2} and {SR(=0, I(H<—2}. (39)

Then the functionsX(s) can be meromorphically continued to the complex plane
with cuts Eqg. (39). The formula Eq. (37) with principal value of the square root
actually gives this analytical continuation.

3.6. The asymptotic periodicity of(K as t—o. The choice of parameter q

The asymptotics ok,(t) whent—o are determined by the singularities Xf(s)
on the imaginary axis. These are the poles at the points

s=iv where v=2|:k (k=0,%1,*2,..), (40)

as well as at the points of the imaginary axis where

C(s)=e= (41)

The last equation has solutiossi{2 where Q=()(t) is a real non-zero roots of the
Eqg. (13). Note that as=0 the expression Eqg. (38) has a simple pole included in the
set Eq. (40). Thus,

° 27,
Xo()~ > Ce P H[DE%+D e ] (t—0) (42)
k=—o

whereC,, (k=0+1+2,...; C,=C*) are the residues corresponding to the poles Eq.
(40)), andD, D* are the residues corresponding to the non-zero solusefig(r)
of Eq. (13)2 Besides these poles, the analytic functions Eq. (38) have cuts Eg. (39)
on the imaginary axis and “one over square-root singularities” at the ps#®
(since{(s)+1 vanishes ats=+2 asVs+2). These integrable singularities, as well as
the cuts, contribute to the asymptoticsxpft) at t—oc. However, these contributions

2 We have assumed implicitly that Eq. (13) has exactly one pair of non-zero soldtiefry, which
is true only for some range af The value of parametarin our computer experiment is clearly inside
this range.
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approach zero as—«. Hence the asymptotics of(t) at t— are determined only
by the poles ofX,(s) on the imaginary axis, and we indeed have Eqg. (42). The
asymptotic Eq. (42) shows thaf(t) becomesp-periodic ast—« only if D=0.

In turn this is realized ifg takes some special value so that the factere1 in
the numerator of Eq. (38) vanishes at all zeros of the fac{®){€™] in the denomi-
nator. This condition, which could be called thele cancellation conditiongives
a relation between the parametgandz:

0Q(7)=2r where Q(7) is the positive solution of the equation (13). (43)
In our computer experiment we find2.2=()=1.8 andg=3.4, which are in agree-
ment with Eq. (43).
3.7. The “swelling” distancex

The average value of,(t) ast—o is determined by the residue &f(s) at s=0.
Thus

Xn(t) oscillates aroundx(n—%)ﬂ} as t—x, (44)
Here
_ Qqr _9%
“oar P (49)

According to Eq. (44), the constamt is the average distance between adjacent
masses, i.ex is “the swelling distance”. In our computer experiment we fip3.4,
1=2.2, p=5.3 anda=0.44, which fits the theoretical result Eq. (45).

3.8. Solution near the front of the phase transition

In order to obtain the characteristics of the phase transition (in particular the inter-
mediate velocityv between the first and the second fronts), we go over to the frame
of reference moving with the front of the phase transition (the second front). In other
words, we describe the system using “local” timet—nt (around the instant when
the second front reaches mass numier

We introduce the function

o+iw

yn(n)=xn(nr+n)=% f X,(5)enm+ms ds=

o (46)

o+io

1
=i J Y. (s)e™ ds

(o is an arbitrary positive number, ar¥j,(s) is defined in Eq. (38)). According to
Eq. (38) we have
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Ya(8)=Y(9) +Z(9[{(g)e™]", (47)
where
B (1-e799)(1-€%) 1 (1-€799)(s?+2-2e7™)
YO qeme=re—s2) O g1em| emerg2 ¢ 8
e e pp

Here we have taken into account tii@s) and 1£(s) are the roots of the Eq. (36),
so that their sum is?+2, and therefore,

g9 1
[CO-eL9-eT e=re(s+2)

In the new frame the self-similarity property Eq. (26) takes the form

Yara(M=0ct+y,(n) for n>n. (49)

3.9. The transformation of the integration contour in the inverse Laplace
transform

Our idea now is to transform an integration line in Eq. (46) to some @atn
which E(s)e™<1, so that the second term in the right hand side of Eqg. (47) goes
away asn—». In the vicinity of the imaginary axis, whesro+iw (o being small),
we have

2
1+0| 7 +0(0?) if |w]<2(c—0),
K= VA-e?

2
\ %—'%'VMHO(G)Q if |o]>2(c—+0).
Here in the first asymptotics the parametercan approach zero from both sides
(positive and negative, while in the second asymptatiocsan approach zero only
from the positive side. Thug(s)e™|<1 on the pathC shown in the Fig. 5. This path
goes along the imaginary axis fromiw to +ic. Whether the path goes to the left
or to the right of the imaginary axis is determined by the constant

1
h=2 \/ 1 (50)
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Im(s)
A A
h
C J—
Reﬁ)
-h
A

Fig. 5. The line3(s)=c of integration in Eq. (46) is transformed to the p&hThis path lies near the
imaginary axis, in the right half-plane ifo]|>h and in the left half-plane ifd|<h. The poles Eq. (40)
are denoted by crosses. Three of these pee®, s=iv, s=—iv, lie to the right ofC, and the rest lies to
the left of C.

If |w|<h, the pathC goes on the left of the axis; ito]>h, it goes on the right of

the axis. Denoted by crosses in the Fig. 5 are the poles Eq. (40) of the functions
Y.(S) (or X,()). According to our computer experiment (Fig. 3x2.2=h=1.8 and
p=5.3=v=2r/p=1.2; therefore three of the poles Eq. (40) lie to the right of the path
C, and the rest lies to the left d. The path of integration in Eq. (46) can be
transformed: instead of the straight line fram-ie to oc+ieo(c>0) we can integrate
over the pattC, plus the integrals along the small circles (counterclockwise) around
the three poles that lie to the right & (see Fig. 5); the latter are given by the
corresponding residues:

Ya(1) =% f Yo(s)e™" dstres o[ Vo] +€Vres, [ Yo +e7Vres_ [ Y. (51)

When n—o, the functionY,(s) on the pathC approaches®(/(s) and becomes inde-
pendent of the index. The second term in Eq. (51) is

reso[Yn(9)] =a(n—%) +P (52)

(cf. Eq. (44)).

In order for the self-similarity property Eq. (49) to take place, the last two terms
in Eqg. (51) should be independent of the indexit means that the factaZ(s) in
Eq. (47) should vanish at==iv:
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(1_e—i vq) (2_v2_2e—i VT) - e
e—i v1+ei v1+v2_2 == (l_e qu)e 0. (53)

We can satisfy this complex-valued equation by choosing the appropriate values of
the two real parameters, and d,. Thus, asymptotically ag—« the formula Eg.
(51) takes the form

)= j Y(9e dst[a(n- ) +Bl +€¥res., [Y] +e M res_, [Vl

Combining together the integral term and the last two residual terms, we rewrite this
formula in the form

1 1
y(m=5+ J Y(g)e™" dsta(n—2)+p (54)

where I' is the path shown in Fig. 6 it goes fromic to +icc near the imaginary
axis passing all the poles Eq. (40) of the function Eq. (48) on the right, besides one
pole at the origin, which is passed on the left. Eq. (54) describes a self-similar
behavior of the chain near the front of phase transition, for laxge

3.10. Remark about the self-similar solution near the front of the phase transition

We could look for the solution near the front of the phase transition directly,
assuming the self-similarity of this solution:

Im(s) |

A

L~
< -
\\ Re(s)

|

Fig. 6. The pathl. It lies near the imaginary axis; all the poles Eq. (40) lie to the leff pbesides
one pole ats=0 that lies to the right of .
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X,(t) =y(t—n7),

wheret is an undetermined parameter, ay(@) is a p-periodic function. For this
function we would derive the following equation

y(m=ym+1)+y(n—1)—2y(m)+[g(n+1)—9(n)]
where

g(m=2[0(1-ip)—O(n—jp—a)]
j=0

(cf. Egs. (15, 16, 28) and (31)). For the Laplace transform of the fungi{ighwe
would find the expression Eq. (48). However, it would be unclear what contour we
should take in the inverse Laplace transform. Our approach enabled us to derive the
formula Eq. (54) with the integration over contollf shown in Fig. 6). We also
showed the necessity of two extra parametgi@ndq,, which describe the dynamics
of the middle spring.

3.11. The speed v in the intermediate regime

In order to find the speed between the first and second fronts (see Fig. 3), we
consider the asymptotics of the solution Eq. (54)mas—c. It is defined by the
pole of Y(s) at s=0:

Yszslzp(ff_l)[1+s(p+r—q)]+0(1) (s—0).

Therefore
Ya(m)~vn+no+y as n——w
where the speed is

_ 9
V(-1 9
y=Vv(p+r—q)+B and the constanta and 3 are defined in Eqg. (45). Comparing the
expression Eq. (55) for the intermediate speed and the expression Eq. (45) for the
“swelling” distancec, we obtain thekinematic relation

vr—1)=a, (56)

which has the following simple kinematic interpretation. It takes unit time for the
first front to propagate from mass numhbeito the mass numbemn+<l); after this
front the masses start moving with the speedt takes timer>1 for the second
front to propagate from mass numbeito the mass numben+{l); after this front
each mass oscillates around a fixed coordimatef. Thus the mass numben+1)

is moving with the speed by time t—1 longer than the mass numberwhich is
expressed by the relation Eq. (56).




168 A.M. Balk et al. / Journal of the Mechanics and Physics of Solids 49 (2001) 149-171

It also follows from the formula Eq. (54) that the masses “almost” do not oscillate
between the fronts, which is consistent with Fig. 3. Indeed, the asympigtitas
n——oo is defined by the singularities of(s) that lie on the imaginary axis and are
located to the right of the path; there is only one such singularity <=0 (and there
are no singularities with non-zero imaginary part, which would lead to oscillations).

3.12. Parameters p and The nonlinear dispersion relation

Up to now we did not fix the values of the two parameterandz. We need to
choose these values to make our solution self-consistent: We require that the distance
between masses numbeand numberr{+1) vanishes (and switching between linear
regimes of the spring force indeed occurs) at the “right” instants. Namely

Xne1(D) —X%,()=0 whent=nt+pj and t=nt+pj+q (57)

(n=1,2,3,...;j=0,1,2,...; cf. Eq. (27)). The Laplace transforky(s), given by the
formula Eq. (35); is not a meromorphic function, and therefore, the solxi@h
cannot be periodic. It is impossible to satisfy Eq. (57) exactly. However, the com-
puter experiment suggests thatt) is periodic with sufficiently high accuracy. We
satisfy the condition Eq. (57) approximately, and moreover consider this condition
for largen, when we can use the asymptotic formula Eq. (54). Sint@=x.(nt+n),

we have

Xne1(NT+1) =X (NT+1N) =2;JY(S) (e™—-1)e" dsta.

r

Therefore, the condition Eq. (57) takes the form

1 —TS__ —
o J Y(s)(e™=—1)e”" ds+a=0 (58)

r

for instants

n=pj, n=pj+q (=0,1,2,.). (59)

We satisfy this condition asymptotically for instants Eq. (59)-asc. Asymptotics

of y,(n) asn—+ are determined by the poles Eq. (40), and we find thaj-aso,

the chain performs the wave motion described by the formulas Egs. (17) and (19).
Hence we arrive at the nonlinear dispersion relation Eq. (21) (see Section 2). Since
the parameter: is given now by the formula Eq. (45), the dispersion relation rep-
resents an equation connecting the wave pepidtie wave speed 4/and the para-
meterq (the latter plays the part of the wave amplitude).

The asymptotic considerations of this section give us three equations for the four
parameter,q,7, anda. We also need to require that the condition Eq. (57) holds
at t=n, i.e. the wave of phase transition indeed reaches the mass nunatehe
instantt=nr (see Eq. (27)). This condition is the Eq. (58) witkO:
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2| (o™ (e rens2) 5T O (60)

r

1 j (1-e99)(1-e%)(e™-1)
It represents the fourth equation for the four paramepeyg and .

4. Conclusion

In computer experiments we found a new regular pattern of dynamical phase tran-
sition in the mass-spring chain (see Fig. 3). The phase transition has two fronts
propagating with different speeds. Due to this transition the mass-spring chain trans-
fers from the stationary state, when all the masses are at rest, to the twinkling state,
when the masses perform a wave motion. The pattern is well reproduced and is
characterized by several quantitative characteristics, e.g. (1) the time peonbdd
waves, (2) the “swelling” distance, (3) the speed %/of the second wave front,

(4) the intermediate speed(see the end of Section 1).

In order to approach this strongly nonlinear system analytically, we have found
the special form of the force vs. elongation dependence (see Fig. 2); the dependence
consists of two linear parts with theameslope.

We have found analytically a three-parameter family of exact solutions, which
represent the nonlinear waves (extending frem to +»). The wave motion of the
twinkling phase, which we observed in the computer experiment, represents such a
nonlinear wave. (One would observe this nonlinear wave if he is in “the middle” of
the twinkling phase and knows nothing about the boundaries, as well as about the
“pre-history”.)

A natural question arises: “What particular wave out of that three-parameter family
of nonlinear waves is realized in computer experiment?” In order to answer this
question, we have considered the entire transition dynamics. This has lead us to the
system of algebraic equations for the paramepersx and a certain parameter
The latter is similar to the wave amplitude in the general theory of nonlinear waves;
it indicates the instants of switching between the linear parts of the force dependence.

We summarize here the main steps in the derivation of this nonlinear system.

1. We require that the solution that we construct is asymptotically time-periodic as
t—+o0, This is possible only if a certain cancellation of poles of the image Eq.
(38) occurs. This requirement (the pole cancellation condition, see Section 3) gives
us the Eqg. (43), which determinegsin terms of parameters.

q€)(7)=2x, (61)
where()(7) is defined by the linear dispersion relation Eq. (13}z) is the posi-
tive root of the equation

Q7
0=2 sm7.
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2. We consider the asymptotics of our solutiontas+e and find “the swelling
distance”«a in terms of the parametersq,t (EqQ. (45)):

_ o
a_p(l+r)' (62)

3. We consider the solution near the second front, propagating with the speed 1/
Moreover, we consider the asymptotic regime whep+o and t—+o, but
n=t—nr stays finite. The requirement that our solution asymptotically represents
a self-similar wave defines the parameteysindq, (characterizing the dynamics
of the “middle” spring, see Egs. (29) and (53)) and leads to the asymptotic formula
Eq. (54):

xn(nr+n)=271rifY(s)eS" ds+a(n—%)+ﬁ. (63)

Here the functionY(s) is given by Eq. (48):

_ (1-e9)(1-€e™)
Ye)= S(1-eP9) (e S+e-s2-2)’

the pathI” is shown in Fig. 6, the “swelling distance! and the constant are
defined in Eq. (45). The singularities of the functi¥(s) on the imaginary axis

and the form of the patl” (see Fig. 6) define the asymptotic behavior of the
integral Eq. (63) agj—+~. The behavior ah—— is defined by the only pole

to the right ofI'— the double pole a$=0. We find that whem— —o, the function

Eq. (63) grows linearly withy, and there are no oscillations in the intermediate
region, between the fronts. This leads to a simple kinematic expression for the
intermediate velocity

(64)

o
V—T_ 1 (65)

(see Eg. (56) and the physical interpretation after that equation).

The simple poles o¥(s), located on the imaginary axis to the left of the p&th

determine the asymptotic behavior of Eq. (63)jat+: asymptotically solutions

x,(nt+n) becomep-periodic functions and take the form of a nonlinear wave found

in Section 2. Thus we have the nonlinear dispersion relation Eq. (21):

. kvt
o S|n27

klQz—sinkLT2
2 2

sinkvq
ry (v=2xlp). (66)

o=
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4. The last equation for the parameters comes from the requirement:
Xn+1(NT) —X,(NT)=0. It states that the masses indeed transfer to the twinkling phase
when the second front reaches them. Using the asymptotic formula Eq. (63) we
arrive at Eq. (60):

1 J (1I-e 9 (1-e9)(e™1)
2ri | S(1-€7P%)(e7"Ss+e-52-2))

T

ds+a=0. (67)

The four Egs. (61, 62, 66) and (67) define the values of the parangtgrsand
o. Once these parameters are determined, the formulas Egs. (63) and (64) determine
the self-similar wave of phase transition.

4.1. Comparison with numerics

Our analysis is based on the hypothesis that the solution represents wave motion
whent>n (i.e. after the front of phase transition has passed the mass). We would
like to check this hypothesis not only qualitatively, but also quantitatively. In order
to do this, we check that the values of the paramepega,c, found in computer
simulation, satisfy the four Egs. (61, 62, 66) and (67). In our computer experiments
we found p=5.3, g=3.4, 7=2.2, a=0.44. These values indeed agree (within the
measurement accuracy) with the four equations.

4.2. Turbulence

We should note that the regular pattern shown in the Fig. 3 starts to disintegrate
after about ten periods of oscillations. If we continue to compute further (beyond
the time interval oft=50 presented in the Fig. 3), the oscillations become irregular
and chaotic. At present we are not sure whether this disintegration is due to the
numerics or is inherent to the real nonlinear dynamics. Probably, this disintegration
takes place because of the instability of the nonlinear wave (in the oscillating phase).
In following papers we intend to describe the developed turbulence of random non-
linear waves in this system.
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