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We consider a simple dynamic model of the vibrating screen operating in the parametric
resonance (PR) mode. This model was used in the course of designing and setting of such a
screen in LPMC. The PR-based screen compares favorably with conventional types of such
machines, where the transverse oscillations are excited directly. It is characterized by
larger values of the amplitude and by insensitivity to damping in a rather wide range.
The model represents an initially strained system of two equal masses connected by a
linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses.
Under certain conditions this results in transverse, finite-amplitude oscillations of the
string. The problem is reduced to a system of two ordinary differential equations coupled
by the geometric nonlinearity. Damping in both the transverse and longitudinal oscilla-
tions is taken into account. Free and forced oscillations of this mass-string system are
examined analytically and numerically. The energy exchange between the longitudinal
and transverse modes of free oscillations is demonstrated. An exact analytical solution is
found for the forced oscillations, where the coupling plays the role of a stabilizer. In a
more general case, the harmonic analysis is used with neglect of the higher harmonics.
Explicit expressions for all parameters of the steady nonlinear oscillations are determined.
The domains are found where the analytically obtained steady oscillation regimes are
stable. Over the frequency ranges, where the steady oscillations exist, a perfect corre-
spondence is found between the amplitudes obtained analytically and numerically.
Illustrations based on the analytical and numerical simulations are presented.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, parametric resonance (PR) is considered in a system related to the PR-based vibrating screen, Fig. 1.
The idea to create such a machine came to us in 2007 while discussing drawbacks of the existing types of the screens.

In 2009, the patent was issued on the excitation method of the screen and the corresponding structure of the latter [1].
At that time, the nonlinear dynamics of such a machine had been numerically simulated and the first PR-based screen was
built in Loginov and Partner Mining Company (Kiev, Ukraine). The PR-based screen compares favorably with conventional
types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the
amplitudes and by insensitivity to the dissipation level in a rather wide range of the viscosity.
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Fig. 1. The vibrating screen and its simplest model. In the screen photo: the vibrator (1), the base (2), the beams fastening the sieve (3), the lid of the
vibrating screen (4), the side springs (5) and the sieve (6) (it is mainly under the lid). In the model: the end masses can move synchronously in opposite
horizontal directions, while the string can oscillate laterally. These two modes of oscillations are coupled because the tensile force depends on both the
longitudinal displacements of the masses and the transverse displacements of the string (the latter dependence is nonlinear).
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The model considered here or a similar one can also be found useful in some other PR applications. At the same time, the
stable operation of a PR-based machine assumes the proper design and setup, which can be achieved on the basis of the
mathematical analysis of its dynamics. We now consider the problem analytically and numerically. The numerical
simulations serve for the refinement of the domains, where the parametric oscillations are excited and where the
analytically obtained steady oscillation regimes are stable. Both the analytical and numerical simulations are used for the
illustration and verification of the results.

The problem is described by a system of two coupled nonlinear equations. We find an exact solution of these equations,
which exists in the case of no damping associated with the transverse oscillations. This solution corresponds to an invariable
tensile force. The equations appear uncoupled and linear; however, the solution is bounded and uniquely defined by the fact
that the nonlinearity in this established regime is zero. In a domain of the problem parameters, it is stable due to the
presence of the nonlinearity ‘in the background’. In this case, the coupling plays the role of a stabilizer. It is demonstrated
numerically how the transient regime approaches in time this established one defined analytically.

Next, we consider a more general, truly nonlinear regime. We use the harmonic analysis with the higher harmonics
neglected. In the considered case, the latter simplification has virtually no effect on the results obtained. Explicit expressions
are found for the amplitudes of longitudinal and transverse oscillations as functions of the external force amplitude and
frequency. It is remarkable that in the case of the resonant excitation, where the external force frequency coincide with the
frequency of the free longitudinal oscillations, the amplitudes are independent of the viscosity. In this regime, the
nonlinearity bounds the amplitudes and the damping provides the stability.

Along with the nonlinear problem, the boundaries of the PR domain in the frequency-amplitude plane are determined
based on the linear formulation. The PR arises in the nonlinear problem practically in the frequency region predicted by the
linear analysis, slightly shifted towards the higher frequencies. It is shown that there is a sub-region in this PR region, where
the analytically obtained steady oscillation regime is stable being reproduced in numerical simulations with a high accuracy.
The steady PR regime can exist in a structure dependent range of the frequency with a moderate nonzero damping level.
The transverse oscillations, regular or irregular, abruptly decaying on the boundaries do not exist outside of the PR region.
Amplitude–frequency characteristics and some PR regimes realizations are presented.

Before the forced PR regime we consider free oscillations of the perfect structure. The periodic energy exchange between the
longitudinal and transverse modes of oscillations is demonstrated. It is shown, in particular, that the period increases as the
energy decreases. Note that this regime is, in a sense, similar to that for the spring pendulum system (Vitt and Gorelik [2], Lai [3],
Gaponov-Grekhov and Rabinovich [4]).

While in the past the parametric resonance has been mainly considered as an undesirable phenomenon, some attempts
were made to employ it to obtain a greater response to excitation. Related problems were studied mainly (but not only) in
the application to micro devices (see, e.g., Baskaran and Turner [5], Roads et al. [6], Krylov [7], Krylov et al. [8–10], Fey et al.
[11], Fossen and Nijmeijer [12], Plat and Busher [13] and the references therein).

2. The model

Recall that the simplest model of the PR-based vibrating screen represents an initially stretched system of two equal
masses connected by an elastic string, Fig. 1. The end masses, which can move horizontally, are also connected with a rigid
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frame by the side springs (as is discussed below their action can be considered as an invariable force). The longitudinal
oscillations are excited by harmonic external forces acting synchronically on the left and the right masses in opposite
horizontal directions. Under certain conditions this results in transverse oscillations of the string. In this study, the treated
granular material action is reflected by linear viscosity.

We use the following notations: 2l; ϱ and k/2 are the string length, mass per unit length and stiffness, respectively, M is
the end mass value, ϰ is the side spring stiffness, T0 is the initial tensile force in the string, u(t) is the displacement of the
right end mass (�uðtÞ corresponds to the left one), vðx; tÞ is the transverse displacement of the string (� loxo l),
wðtÞ ¼ vð0; tÞ, β and α are the viscosity numbers associated with the longitudinal and transverse oscillations, respectively.
The total tensile and external forces are denoted as

TðtÞ ¼ T0þT1ðtÞ; Q ðtÞ ¼ T0þQ cos ωt: ð1Þ

It is assumed that

ϱl⪡M; T0⪡kl; ϰ⪡k; w⪡2l; ωl⪡cL ¼
ffiffiffiffi
kl
ϱ

s
; ð2Þ

where cL is the longitudinal wave speed in the string. No limitation is imposed on the external harmonic forces, whereas the
string is assumed to resist only to the positive tension, TðtÞZ0 (we do not impose this condition in the formulation but
check whether it is satisfied). Only the main mode of oscillation is considered. The assumptions (2) allow us to neglect the
string density in the equation of the longitudinal oscillations, to neglect the variation of the side spring action, to consider
the tensile force to be independent of the coordinate, to consider the action of the string on the end mass as directed
horizontally and to simplify the expression of nonlinearity caused by the string bending.

So, if there is no dissipation the frequencies of the longitudinal and transverse small-amplitude free oscillations are

ΩL ¼
ffiffiffiffiffi
k
M

r
; ΩT ¼

π

2l
cT ; cT ¼

ffiffiffiffiffiffi
T0

ϱ

s
; ð3Þ

where cT is the transverse wave speed in the string.
If the longitudinal excitation frequency, ω, is close enough to 2ΩT and its amplitude, Q, is large enough, the parametric

resonance arises under which the amplitude of the transverse oscillations is bounded by the geometric nonlinearity.
We have the following nonlinear dynamic equations with respect to the longitudinal and transverse oscillations

M
d2uðtÞ
dt2

þβ
duðtÞ
dt

þT1 tð Þ ¼Q cos ωt;

ϱ
∂2vðx; tÞ

∂t2
þα

∂vðx; tÞ
∂t

�T tð Þ∂
2vðx; tÞ
∂x2

¼ 0: ð4Þ

These equations are coupled by the tensile force T1ðtÞ which depends on both the longitudinal displacements of the masses,
uðtÞ ¼ uðt; lÞ ¼ �uðt; � lÞ, and the transverse displacement of the string, vðx; tÞ

T1ðtÞ ¼ k uðtÞþ
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðv′ðx; tÞÞ2

q
dx� l

" #
; ð5Þ

where α and β are the viscosity numbers, v′ðx; tÞ ¼ ∂vðx; tÞ=∂x and expression (5) is valid if it defines a nonnegative tensile
force; otherwise, TðtÞ ¼ 0. In this study, we consider the problem assuming that this condition is satisfied; then we
determine domains where this is so.

Clearly, the left side of the second equation in (4) with the boundary conditions, vð7 l; tÞ ¼ 0, admits the variables
separation as

v x; tð Þ ¼w tð Þ cos πx
2l
: ð6Þ

Using this expression and the condition concerning the amplitude of the transverse oscillations in (2), the expression for the
tensile force (5) can be reduces to

T1 tð Þ ¼ k u tð Þþ π2

16l
w2 tð Þ

� �
: ð7Þ

The system of the dynamic equations becomes

M
d2uðtÞ
dt2

þβ
duðtÞ
dt

þT1 tð Þ ¼Q cos ωt;

ϱ
d2wðtÞ
dt2

þα
dwðtÞ
dt

þ π2

4l2
T tð Þw tð Þ ¼ 0: ð8Þ
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This system is the base of the below considerations. Note that this model and some its generalizations were used in the
numerical simulations while designing and setting of the PR vibrating screen. Being useful for the machine structure and
setting pre-select it is also most suitable for the analytical study.

2.1. Energy relations

The sum of kinetic and potential energies of the system is

E ¼M½ _uðtÞ�2þ1
2
ϱl½ _wðtÞ�2þ1

k
TðtÞ2�2T0u tð Þ: ð9Þ

With accuracy of a constant it is reduced to

E ¼M½ _uðtÞ�2þ1
2
ϱl½ _wðtÞ�2þ1

k
T1ðtÞ2þT0

π2

8l
w2 tð Þ: ð10Þ

We consider the energy consisting of longitudinal and transverse parts as follows:

E ¼ EuþEw;

Eu ¼M _u2 tð Þþ1
k
T2
1 tð Þ longitudinal partð Þ;

Ew ¼ 1
2
ϱl _w2 tð Þþπ2

8l
T0w2 tð Þ transverse partð Þ: ð11Þ

From this and the dynamic Eq. (8) we find the energy rates

_Eu ¼ 2 M €u tð ÞþT1ð Þ _u tð Þþπ2

8l
T1

dw2

dt
¼ 2Q _u tð Þ cos ωt�2β½ _uðtÞ�2þπ2

8l
T1

dw2ðtÞ
dt

;

_Ew ¼ ϱl €w tð Þ _w tð Þþπ2

8l
T0

dw2

dt
¼ �αl½ _wðtÞ�2�π2

8l
T1

dw2ðtÞ
dt

: ð12Þ

Recall that the nonlinear term is responsible for the energy exchange between the oscillation modes.

2.2. Free oscillations

For free oscillations, Q ¼ α¼ β¼ 0, we have

_Eu ¼ � _Ew ¼ π2

8l
T1

dw2ðtÞ
dt

: ð13Þ

An example of the free oscillations and the energy exchange is shown in Figs. 2 and 3. The displacements, w(t) [m],
uðtÞ ½10�1 m� and the energies, Eu;w ½10�3 Nm� are calculated for the system with M¼100 kg, ϱ¼ 10 kg=m, T0¼1 N,
k¼100 N/m, l¼1 m (these units and a second as the time-unit are used here and below), under the initial conditions w
(0)¼0.02 m, uð0Þ ¼ _wð0Þ ¼ _uð0Þ ¼ 0.

Note that, in accordance with (13), the energy exchange period increases to infinity as the energy decreases to zero.
Indeed, for given dynamic parameters of the system the frequency weakly depends on the energy, that is, on the oscillation
amplitude; hence the derivative, dw2ðtÞ=dt is of the same order as w2 and the energy Ew, (11). The variable part of the tensile
force, T1, also decreases to zero as the energy. Thus, the derivative, _Ew, decreases faster than the energy itself, that results in
the increase of the energy exchange period. Numerical simulations support the guess that the period is asymptotically
inversely proportional to the energy.

3. An exact solution

It is interesting that there is an elementary exact solution of the system (8). It exists in the case of the resonance
excitation, ω¼ 2ΩT , of the model with no damping associated with the lateral oscillations, α¼ 0. In this solution, the tensile
Fig. 2. The transverse and longitudinal free oscillations, w(t) [m] and uðtÞ ½10�1 m�.



Fig. 3. The energy exchange between the longitudinal and transverse free oscillations, Eu;w [10�3 Nm]. The ‘roughness’ of the curves is a consequence of
numerous zeros of _E u;w .
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force is invariable

TðtÞ � T0 that is; T1 � 0: ð14Þ
The corresponding equations are

M €u tð Þþβ _u tð Þ ¼Q cos ωt;

ϱ €w tð Þþ π2

4l2
T0w tð Þ ¼ 0: ð15Þ

We substitute the general solutions of these linear equations into the identity (14) and obtain the oscillating displacements
with a constant (negative) shift of u(t)

u tð Þ ¼ � Q

ωðM2ω2þβ2Þ
Mω cos ωt�β sin ωtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ω2þβ2

q� �
;

w tð Þ ¼ A cos
ωt
2
þB sin

ωt
2
; T1 tð Þ ¼ 0;

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2ω2þβ2
q

þMω

� �
ψ

s
; B¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ω2þβ2

q
�Mω

� �
ψ

s
;

ψ ¼ 16lQ

π2ωðM2ω2þβ2Þ
; ð�uÞmax ¼

2Q

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ω2þβ2

q ;

wmax ¼
4
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lQ

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ω2þβ2

q
vuut ¼ 4

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð�uÞmax

q
; ω¼ 2ωT : ð16Þ

At least in a certain domain of the initial conditions, the transient solutions based on Eq. (8) with α¼ 0 approach in time
the above presented one based on Eqs. (14) and (15). This is justified by numerical simulations of the transient problemwith
initial conditions inconsistent with the identity (14). The numerically obtained oscillations and the oscillation amplitude
found analytically from (14) and (15) are presented in Figs. 4–6. Remarkable, that the convergence to the establish regime
occurs in spite of the fact that there is no dissipation directly associated with the lateral oscillations. The calculations were
conducted assuming l¼1 m, M¼400 kg, ϱ¼ 10 kg=m, T0 ¼ 1 N, Q¼0.5 N, k¼400 N/m, α¼ 0, β¼ 400 Ns=m, ω¼ 1 1/s, with
the initial conditions u (0)¼�0.0025 m, w (0)¼0.06 m, _uð0Þ ¼ _wð0Þ ¼ 0. The horizontal lines correspond to the amplitudes
found analytically (16).

4. A more general analysis

We now consider the dynamic equations (8) with β¼ 0

M €u tð ÞþT1 tð Þ ¼Q cos ωt;

ϱ €w tð Þþα _w tð Þþ π2

4l2
T tð Þw tð Þ ¼ 0: ð17Þ

We derive an approximate solution to these equations using harmonic analysis, where only main harmonics are preserved.
So, for the steady oscillations we assume, neglecting higher harmonics, that the string oscillates transversally with
frequency ω=2

w tð Þ ¼ A cos
ωt
2
þB sin

ωt
2

ð18Þ

After substituting this in the expression for T1ðtÞ in (7), we substitute T1ðtÞ in the first equation of (17). In doing so, we obtain
and solve the equation with respect to u(t). Finally, having expressions for w(t) and u(t) we can express T1ðtÞ explicitly.
The latter two functions are found in the form

u tð Þ ¼ � π2

32l
A2þB2
� �

þ 1
1�ω2

L

Q
k
� π2

32l
A2�B2
� �� �

cos ωt� π2

16l
AB sin ωt

� �
;



Fig. 4. Forced oscillations. The transverse displacement w(t).

Fig. 5. Forced oscillations. The longitudinal displacement u(t).

Fig. 6. Forced oscillations. The function T1ðtÞ. It tends to zero in accordance with the analytical result for the established regime (16).
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T1 tð Þ ¼ 1
1�ω2

L

Q�π2kω2
L

32l
A2�B2
� �� �

cos ωt�π2kω2
L

16l
AB sin ωt

� �
; ωL ¼

ω

ΩL
: ð19Þ

Next, we substitute these expressions in the last equation in (17), which is satisfied on average with cos ωt and sin ωt as the
weights. We obtain the following equations with respect to the coefficients:

π2

4l2
A

1
1�ω2

L

Q
2T0

�π2kω2
L

64lT0
A2þB2
� �� �

þ 1�ω2
T

4

� �" #
þ αω

2T0
B¼ 0;

π2

4l2
B

1
1�ω2

L

Q
2T0

þπ2kω2
L

64lT0
A2þB2
� �� �

� 1�ω2
T

4

� �" #
þ αω

2T0
A¼ 0;

ωL ¼ω=ΩL; ωT ¼ω=ΩT : ð20Þ

From this the following solution is found:

B¼ γA; γ ¼ �ϰ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ϰ2

r !
; ϰ¼ π2Q

4αωl2ð1�ω2
L Þ

ð21Þ
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and

A¼ 7
8l

πωL

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q
2kl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ϰ2

r
þT0

kl
1�ω2

T

4

� �
1�ω2

L

	 
s
: ð22Þ

It can be seen, in particular, that under the resonant excitation, ωL ¼ 1, the amplitude is independent of both the transverse
oscillation frequency, ΩT , and the viscosity level. Indeed, ϰ-1; γ-0 ðωL-1Þ, and in the limit

A¼ 7
4l
π

ffiffiffiffiffiffiffi
2Q
kl

r
; B¼ 0 ωL ¼ 1ð Þ: ð23Þ

The solution (21)–(23) is valid in a domain, where the considered stationary oscillation regime really exists, that is, where it
is stable. Below this issue is discussed in more detail.

Functions u(t) and T1ðtÞ for ωLa1 are defined in (19). The limits at ωL ¼ 1 are

u tð Þ ¼ �Q
k
þ 2T0

k
1�ω2

T

4

� �
�Q

k

� �
cos ωtþ4αωl2

π2k
sin ωt;

T1 tð Þ ¼ �2T0 1�ω2
T

4

� �
cos ωtþ4αωl2

π2
sin ωt: ð24Þ

If, in addition, α¼ 0 and ωT ¼ 2ðΩT ¼ΩL=2Þ then T1 ¼ 0, and we come back to the above-considered exact solution (16) (with
β¼ 0).

4.1. Energy flux

In the above-considered general case with β¼ 0, the energy dissipation rate averaged over the period of oscillations is

D¼ 2α
Z l

0
〈 _vðx; tÞ2〉dx¼ αω2l

8
A2þB2
� �

¼ αω2lð1þγ2Þ
8

A2 ¼ �αω2lϰγ
4

A2: ð25Þ

On the other hand, it follows from (19) that the energy flux produced by the external force is

N¼ 2Q〈 _u tð Þ cos ωt〉¼ � π2ωγ

16lð1�ω2
L Þ
A2Q : ð26Þ

Referring to (21) we see that these quantities coincide as it should be.

5. Parametric resonance domains

Neglecting nonlinear terms in Eq. (20) we obtain an approximate expression for the main resonance domain boundary
on the (ω;QL) plane

Q ¼QL ¼ 72T0 1�ω2
L

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αωl2

π2T0

 !2

þ 1�ω2
T

4

� �2
vuut : ð27Þ

Note that here ϰ2Z1. In addition to this bound, the nonlinear analytical solution itself is bounded by the condition TðtÞZ0,
which is not satisfied if ϰ2o1.

5.1. Dimensionless formulation

We now introduce the dimensionless amplitude of w(t), A, and the other quantities

Â ¼A
l
¼ A

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

p
l

; û; ŵ
	 
¼ ðu;wÞ

l
; t̂ ¼ t

ffiffiffiffiffi
k
M

r
; ω̂ ¼ω

ffiffiffiffiffi
M
k

r
;

α̂ ¼ α

ϱ

ffiffiffiffiffi
M
k

r
; β̂ ¼ βffiffiffiffiffiffiffi

kM
p ; T̂ tð Þ; Q̂

� �
¼ ðTðtÞ;Q Þ

kl
; λ¼ kl

T0
; μ¼ ϱl

M
: ð28Þ

In these terms,

Ω̂L ¼ 1; ω̂L ¼ ω̂; Ω̂T ¼
π

2
ffiffiffiffiffi
λμ

p ; ϰ̂ ¼ π2Q̂

4μð1�ω̂2Þα̂ω̂
: ð29Þ

The dynamic Eq. (8) take the form (in the below relations, the hat symbol is omitted)

€u tð Þþβ _u tð Þþu tð Þþ π2

16
w2 tð Þ ¼ Q cos ωt;

€w tð Þþα _w tð ÞþΩ2
T 1þλ u tð Þþ π2

16
w2 tð Þ

� �� �
w tð Þ ¼ 0 ð30Þ
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and

A¼ 7
8

πω
ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ϰ2

r
þ1
λ

1�ω2
T

4

� �
1�ω2
	 
s

: ð31Þ

The ω�QL relation (27) becomes

QL ¼ 7
2
λ
j1�ω2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ 2
π2
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s

: ð32Þ

Some plots corresponding to this expression are presented in Fig. 7.

5.2. Refinement of the bounds

Now the following dimensionless parameters are fixed: α̂ ¼ 2=15, β̂ ¼ 1=150, μ¼ 0:025. Also the expression for Q is fixed:
Q̂ ¼ 1=ð3λÞ that corresponds to a third of the initial tensile force. The parameter λ and frequency ω̂ are variable. We
determine three regions. The first is the L-region of ω̂, where QLoQ , that is, where the PR exists in the linearized model in
accordance with (32). Next is the T-region, where the T1 amplitude found in (19) is below the initial tensile force, T0, that is,
where the tensile force remains nonnegative and the above-obtained results can be acceptable. At last, the R-region is
considered, where the steady oscillations arising under the variable non-negative tensile force are obtained numerically
based on Eq. (30). The regions are as follows
Fig. 7. The PR domain based on the linear form
curves correspond to ν¼ 0:5 ð1Þ;1 ð2Þ;1:5 ð3Þ. A
ulation. At the left: Q̂ Lðω̂Þ for μ¼ 0:025; α̂ ¼
t the right: Q̂ Lðω̂�2Þ for μ¼ 0:025; λ¼ 395

Fig. 8. Transient transverse oscillatio
2=15 and λ¼ λ0ν, where λ0 ¼ 395 correspon
and α̂ ¼ ð2=15Þp. The curves correspond to

ns: ŵðt̂ Þ.
The case ffiffiffiffiffiffiffiffip
 L-region
 T-region
 R-region

λ¼ 263:3 (ΩT ¼ 3=8)
 0:8362oω̂o1:2883
 0:8880oω̂o1:4631
 0:99oω̂o1:3
λ¼ 394:8 (ΩT ¼ 1=2)
 0:7860oω̂o1:1636
 0:7348oω̂o1:1785
 0:85oω̂o1:19
λ¼ 526:4 (ΩT ¼
ffiffiffi
3

p
=4)
 0:7436oω̂o1:1063
 0:6456oω̂o1:0060
 0:77oω̂o0:93
It is remarkable that there is no dramatic difference between these regions. In addition, the regions, where the lateral
oscillations exist, PR-regions, appear to be close to the corresponding L-regions with minor shifts towards higher
frequencies. However, in each case, the R-region is only a part of the PR-region. The latter also includes the irregular-
oscillation regions adjacent to the R-region. In the R-regions, the steady oscillation amplitudes found numerically coincide
with the analytical values with a good accuracy. Only the constant shift of the mass (see (19)) can differ markedly in some
cases (this could happen as a result of the neglect of the higher harmonics).

Some illustrations are presented in the below figures. Transient transversal and longitudinal oscillations and the
dynamic-to-static transient tensile force ratio for μ¼ 0:025; α̂ ¼ 2=15;ΩT ¼ 1=2; ω̂ ¼ 1 (in the R-region) are shown in Figs. 8–10,
respectively. Transient transversal oscillations for the border values of the frequency in the R-region, ω̂ ¼ 1:19 and ω̂ ¼ 0:85,
under the same other conditions are presented in Figs. 11 and 12, respectively. In all these figures, the horizontal lines
correspond to the amplitudes obtained analytically. In Fig. 13, the amplitude of T1ðt̂ Þ=T0-ratio is plotted as a function of ω̂
ds to ΩT ¼ 1=2. The
p¼ 10ð4Þ;5ð5Þ;1ð6Þ.



Fig. 10. The T1ðtÞ=T0-ratio.

Fig. 11. Transient transverse oscillations on the upper bound of R-region: ŵðt̂ Þ for μ¼ 0:025; α̂ ¼ 2=15;ΩT ¼ 1=2; ω̂ ¼ 1:19. In this case, the oscillation
amplitudes quickly approach the values found analytically.

Fig. 12. Transient transverse oscillations on the lower bound of R-region: ŵðt̂ Þ for μ¼ 0:025; α̂ ¼ 2=15;ΩT ¼ 1=2; ω̂ ¼ 0:85. In this case, the oscillation
amplitudes slowly approach the values found analytically.

Fig. 13. The amplitude of T1ðt̂ Þ=T0-ratio as a function of ω̂ found analytically for μ¼ 0:025; α̂ ¼ 2=15;ΩT ¼ 1=2. Recall that the range of ω̂ is acceptable,
where it is less than unity.

Fig. 9. Transient longitudinal oscillations: ûðt̂ Þ.
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Fig. 14. The analytically obtained amplitude of ŵðt̂ Þ: ÂðωÞ for μ¼ 0:025; α̂ ¼ 2=15. The curves correspond to ΩT ¼
ffiffiffi
3

p
=4, ω̂ ¼ ϕ (1); ΩT ¼ 1=2, ω̂ ¼ ϕ�0:08

(2) and ΩT ¼
ffiffiffiffiffiffiffiffi
3=8

p
, ω̂ ¼ ϕ�0:28 (3).
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found analytically also under the same other conditions. Recall that the range of ω̂ is acceptable, in which this ratio does not
exceed unity. Lastly, we show the amplitude–frequency characteristics, Âðω̂Þ, with respect to the lateral oscillations for all
three cases, Fig. 14.

The right limiting point in Fig. 14, where Â ¼ 0ðω̂ � 1:31Þ, limits the region where regular PR oscillations can be excited
(ϰ̂2o1 for greater ω̂, and the solution (22) failed).

6. Conclusion

The solutions obtained in this paper allow seeing how the system parameters affect the vibration level. For example, let
the excitation frequency be resonant with respect to the lateral oscillations, ωT ¼ 2, and ϰ̂241. It can be seen from (22) (also
see (3), (19) and (21)) that the amplitude, A, increases unboundedly as the end mass, M, decreases. Indeed, ΩL � 1=

ffiffiffiffiffi
M

p
and

A� 1=ωL � 1=
ffiffiffiffiffi
M

p
. Note, however, that “proportional” (� ) remains asymptotically valid only for small amplitudes. In

addition, the results allow to estimate the PR domains with steady oscillations and to determine the corresponding
amplitude–frequency characteristics as was demonstrated in the paper.

In designing and setting a PR-based machine, a simple model used in this paper may be not sufficient, mainly because
the interaction with the treated granular material is not included in the dynamic equations explicitly (only damping reflects
this interaction). A properly developed model appears difficult for the analytical study. In this case, numerical simulations
can be effective (as in designing of PR-based vibrating screen in LPMC), whereas the above-obtained results based on a
simple model may be useful for preliminary estimations.
Acknowledgments

This paper has been written while V.I. Slepyan held a short-term visiting research position at Tel Aviv University in the
framework of the project “VIBRO-IMPACT MACHINES BASED ON PARAMETRIC RESONANCE: Concepts, mathematical
modelling, experimental verification and implementation”, 01/01/2012-31/12/2015. We thankful for the support provided
by FP7-People-2011-IAPP, Marie Curie Actions, Grant no. 284544, http://www.openaire.eu/fr/component/openaire/projec
t_info/default/530?grant=284544.

References

[1] V.I. Slepyan, I.G. Loginov, L.I. Slepyan, The method of resonance excitation of a vibrating sieve and the vibrating screen for its implementation.
Ukrainian patent on invention no. 87369, 2009.

[2] A.A. Vitt, G.S. Gorelik, Oscillations of an elastic pendulum as an example of the oscillations of two parametrically coupled linear systems, Journal of
Technical Physics 3 (1933) 294–307. (originally published in the Russian journal Zhurnal Tekhnicheskoy Fiziki, 3 (1933) 294–307)..

[3] H.M. Lai, On the recurrence phenomenon of a resonant spring pendulum, American Journal of Physics 52 (1984) 219–223.
[4] A.V. Gaponov-Grekhov, M.I. Rabinovich, Nonlinearities in Action, Springer-Verlag, Berlin, London, 1992.
[5] R. Baskaran, K.L. Turner, Mechanical domain coupled mode parametric resonance and amplification in a torsional mode micro electro mechanical

oscillator, Journal of Micromechanics and Microengineering 13 (2003) 701–707.
[6] J.F. Rhoads, S.W. Shaw, K.L. Turner, R. Baskaran, Tunable microelectromechanical filters that exploit parametric resonance, Journal of Vibration and

Acoustics 127 (2005) 423–430.
[7] S. Krylov, Parametric excitation and stabilization of electrostatically actuated microstructures, International Journal of Microscale Computational

Engineering 6 (2008) 563–584.
[8] S. Krylov, I. Harari, Y. Cohen, Stabilization of electrostatically actuated microstructures using parametric excitation, Journal of Micromechanics and

Microengineering 15 (2005) 1188–1204.
[9] S. Krylov, Y. Gerson, T. Nachmias, U. Keren, Excitation of large-amplitude parametric resonance by the mechanical stiffness modulation of a

microstructure, Journal of Micromechanics and Microengineering 20 (2010) 1–12, http://dx.doi.org/10.1088/0960-1317/20/1/015041. 015041.
[10] S. Krylov, N. Molinazzib, T. Shmilovicha, U. Pomerantza, S. Lulinskya, Parametric excitation of flexible vibrations of micro beams by fringing

electrostatic fields, in: Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in
Engineering Conference IDETC/CIE 2010. Montreal, Quebec, Canada, 2010, pp. 601–611.

[11] R.H.B. Fey, N.J. Mallon, C.S. Kraaij, H. Nijmeijer, Nonlinear resonances in an axially excited beam carrying a top mass: simulations and experiments,
Nonlinear Dynamics 66 (3) (2011) 285–302.

[12] T.I. Fossen, H. Nijmeijer, Parametric Resonance in Dynamical Systems, Springer, New York, 2012.
[13] H. Plat, I. Bucher, Optimizing parametric oscillators with tunable boundary conditions, Journal of Sound and Vibration 332 (2013) 487–493.

http://www.openaire.eu/fr/component/openaire/project_info/default/530?grant=284544
http://www.openaire.eu/fr/component/openaire/project_info/default/530?grant=284544
http://refhub.elsevier.com/S0888-3270(13)00504-9/othref0005
http://refhub.elsevier.com/S0888-3270(13)00504-9/othref0005
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref2
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref2
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref3
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref4
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref5
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref5
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref6
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref6
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref7
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref7
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref8
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref8
http://dx.doi.org/10.1088/0960-1317/20/1/015041
http://dx.doi.org/10.1088/0960-1317/20/1/015041
http://dx.doi.org/10.1088/0960-1317/20/1/015041
http://refhub.elsevier.com/S0888-3270(13)00504-9/othref0010
http://refhub.elsevier.com/S0888-3270(13)00504-9/othref0010
http://refhub.elsevier.com/S0888-3270(13)00504-9/othref0010
http://refhub.elsevier.com/S0888-3270(13)00504-9/othref0010
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref11
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref11
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref12
http://refhub.elsevier.com/S0888-3270(13)00504-9/sbref13

	Coupled mode parametric resonance in a vibrating screen model
	Introduction
	The model
	Energy relations
	Free oscillations

	An exact solution
	A more general analysis
	Energy flux

	Parametric resonance domains
	Dimensionless formulation
	Refinement of the bounds

	Conclusion
	Acknowledgments
	References




