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Abstract-A plate with a pre-existent through crack is considered under the action of a remote 
bending moment and a remote in-plane force. The problem statement is reduced to the solution of 
two coupled integral equations with strongly singular kernels. The independent variables in the 
latter equations are the closure displacement and rotation angle. The corresponding closure force 
and moment distributions, and the contact-crack opening boundary (the closure perimeter), are 
found as functions of the remote bending-compression ratio. The validity of previously stated 
analytical asymptotics for the contact boundary is examined. The dependence of the extent of 
closure on the crack length-to-thickness ratio is studied. Comparisons are made with experimental 
results. 0 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Difficulties caused by the closure of a through crack in a thin plate under bending have 
long been recognized (Smith, 1969 ; Wynn and Smith, 1969 ; Smith and Smith, 1970 ; Jones 
and Swedlow, 1975 ; Heming, 1980 ; Alwar and Ramachandran Nambissan, 1983). The 
mechanics of crack closure has received an increased scrutiny in recent years (Joseph and 
Erdogan, 1989; Young and Sun, 1992, 1993; Cordes and Joseph, 1995 ; Kuo et al., 1995; 
Dempsey et al., 1995a ; Slepyan et al., 1995). In particular, Joseph and Erdogan (1989) 
provided a plot of the closure width distribution for the case of a through-cracked plate 
subjected to pure bending. Slepyan et al. (1995) provided an analytical asymptotic solution 
to the latter problem valid for long cracks. The material presented therein can be considered 
to pose an inverse surface crack treatment to that given much earlier by Rice and Levy 
(1972). The present paper examines the dependencies of the shape and extent of closure on 
the remote loading and crack length to plate thickness ratio. The formulation provided by 
Slepyan et al. (1995) is adapted and extended. The title problem reduces to the solution of 
two hypersingular integral equations that yield the averaged crack opening displacement 
and crack face rotation. The latter quantities are coupled through the smooth closure 
condition along the crack front. Given that the shape of the closure region is unknown at 
the outset, the solution procedure is necessarily iterative. At each iteration, the solution of 
the integral equations follows the procedure standardized by Kaya and Erdogan (1987). 

Consider a cracked infinite elastic plate - a3 < X < + co, -cc < Y < + co (Fig. 1) 
of uniform thickness 2h, 121 < h. The through-the-thickness crack of length 21 lies at Y = 0, 
(XI < 1, (21 < h. The plate is subjected to the action of a self-equilibrated system of the 
external forces. All the external loads are sufficiently remote with respect to the crack area 
for their action can be explicitly described by the distribution of the initial extensional 
inplane force So(X) and bending moment M’(X) acting in the intact plate at Y = 0, 1x1 < I. 
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Fig. 1. A through-the-thickness crack in a plate under bending and compression. 

During the imposed deformation, the two sides of the crack come into the contact with the 
local closure force S and bending moment A4 depending on X in the range 1x1 < 1. The 
shear force within the contact region is assumed to be zero. The distribution of the local 
closure forces S(X) and M(X) and the contact area are to be determined. 

The problem can be considered as the superposition of three sub-problems. The first 
is a plane problem (the X, Y-plane) with a through-the-thickness crack (Fig. 2(a)) under 
action of an inplane force, S(X). The second is a bending problem for a Kirchhoff-Poisson 
plate containing the same crack (Fig. 2(b)) with a contact-induced bending moment, M(X). 
The third problem is for an elastic layer containing a part-through surface crack (Fig. 2(c)) 
with a contact induced closure stress distribution X(X, Z) acting on the region under 
closure, -h < Z d h-a, where b(X) = 2/z-a(X) is the closure width. 

The paper by Slepyan et al. (1995) provides a thorough exposition of the integral 
equation formulation to the above superposition scenario. In the following, note that the 
closure-induced crack surface interaction force and moment S(X) and M(X) are defined in 
terms of the stress distribution in the closure strip 

s 

h 

s 

h 

S(X) = 2(X, Z) dZ, M(X) = ZE(X, Z) dZ (1) 
-h ~ h 

and that v(X) and 4(X) are the additional displacement and rotation of one end of the 
strip (Fig. 2(c)) relative to the other due to the crack opening displacements. On the other 
hand, v(X) and 4(X) can be defined in terms of the closure contact problem, 

v(X) = & s h 

-h 

z?(X,O+,Z)dZ, 4(X) = -$ 
s 

” Z&X, 0+ , Z) dZ (2) 
h 

where 26(X, O+, Z) is the crack opening displacement, and X(X, Z) is the stress distribution 
in the closure strip. 

The governing integral equations, 

Eh ’ - 
s 

v(5) -----dt = -S”(X)+S(X) 
n -,(5-x)* 

Eh2 ’ 
__ 

s 
ad5 = j+‘(X)- ;M(X) 

en -,(5-X)’ 
(3) 

associated contact equations, 
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Fig. 2. Sub-problems: plane with a through crack under the action of a distributed (a) in-plane 
force and (b) bending moment; (c) edge-cracked strip subjected to extension and bending with 

closure. 

G-> = ; %w(~) + ;4wo i 
do-> = - & 

i 
%_mw-)+ ; %?Im(I)M(X) (4) 

and stress intensity factor, 

1 Jz 
@) = & (1 _[)W i 

~s(i)W) + ;mm (5) 

are stated here without derivation. The full details are given in the paper by Slepyan et al. 
(1995). In the above equations, Q = (1 +v)/(3 + v) and E’ = E/(1 -v’), while (Dempsey et 
al., 1995b; Slepyan et al., 1995) 

The coefficients B?’ and MP (i = 0, 1, . ,7) in eqns (7) and (8), respectively, are provided in 
Slepyan et al. (1995). The kernel (5 -A’-’ can be considered as the generalized limit of 
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%Q-2, R = 5 -X+ iY when Y + 0. Every Y, 2 section of the plate has the shape of an 
edge-cracked strip as in Fig. 2(c). Under the assumptions of the line spring model (Rice 
and Levy, 1972), the deformation of each segment, X = A’,,, -h < Z < h, is derived using 
the solution of the plane contact problem. This procedure is acceptable as long as the ratio 
of the length of the crack to the thickness of the plate 1/2h is sufficiently large. 

The normalized extent of closure is defined by 

U(X) = !g = 2h ;y = 1 -((X) (9) 

The shape of the contact area, U(X), or rather the shape of the open portion of the through- 
the-thickness crack, i(X), has yet to be determined. Given that the crack length a(X) 
naturally seeks its own length under the unilateral closure conditions such that the crack 
surfaces end in smooth tangential contact at the crack tip, the transition from closure to 
contact is found by specifying that the crack-tip stress-intensity-factor in eqn (5) be zero. 
That is, 

K(a) = 0 for 1x1 < I (10) 

The condition of unilateral contact is 

S<O 

CLOSURE OF A THROUGH CRACK 

The inversion of the expressions in eqn (4) gives 

(11) 

(12) 

where 

9 = %~nlm - f%d%?ls (13) 

By substituting the expressions in eqn (12) into eqn (5), the condition in eqn (10) becomes 

in which 

9” = FP,, - Fmass, ga, = Fmams - Fsumm 

The latter equation, in turn, simplifies the expressions in eqn (12) as follows : 

E’F, 
S(X) = - ~W)? 

u 

The integral equations in (3) may now be expressed in uncoupled form as 

(14) 

(15) 

(16) 
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Eh ’ 

s 
cOd{+ E’F, - 

7c 
~zl(X) = -S”(X) 

_&-X)’ c 

(17) 

For the cases studied numerically in this paper, the plate is considered under the action of 
a uniform and remote extensional force per unit length So and a bending moment MO (Fig. 
1). It corresponds to the uniform distribution of the initial forces in the intact plane: 
So(X) E So and MO(X) E MO. The latter equations may then be simplified by introducing 
the following normalized variables 

x = X/l, t = t/l, v^(x) = Ev(X)/S”, c(x) = Eh&k-)/3S” (18) 

The equations in (17) now take the form 

1 ’ - 
s 

----ddt+ 1 C(t) FM 
71 -_I (t-x)2 h ~&,(l -v’) 

C(x) = - f 

1 ’ _ 
7c s 

---dt+ @ J(t) 
-, (LX)* 

3h ~ 
$ 

(;_V1,8(x) = -&: 

where 

(19) 

(20) 

The above normalization with respect to the inplane force eqn (18), containing So in the 
denominator, does not cover the case of pure bending (So = 0) and also becomes difficult 
to handle numerically when So --) 0 ; in this case, it is preferable to choose 

ti(x) = Ehu(X)/M’, J(x) = Eh2c$(X)/3Mo (21) 

whereupon the equations in (17) take the form 

1 ’ 
- 

71 s -1 (t-x)2 

1 ’ _ 
s 

(l)&+ 
n -1 (t-x)2 

+1 F, 
h sgl -v’) 

w 

el F, 
%,(1-v*) 

J(x) 

where 

hS” 
m,O=-- 

MO 

= bm; 

I 
= “; (22) 

(23) 

Note here that the case of both So and MO tending to zero at the same time is not defined 
for this problem formulation unless either the ratio ffo(mT) is specified. An important 
additional feature, characteristic of receding contact problems, is that the extent of closure 
is influenced by the ratio of the initial in-plane vs out-of-plane loads, not by the individual 
intensities. For either normalization, the expression in (14) is now given by 
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Clearly, the solution of the equations in (19) or (22), subject to the condition in eqn (24), 
requires the specification of three quantities : the crack length to plate thickness ratio l/h, 
the initial in-plane versus out-of-plane load ratio l,O, and Poisson’s ratio v. The extent of 
closure is uniquely defined by the specification of the above three quantities. 

The strongly singular integral equations in (19) and (22) are readily solved following 
the procedure established by Kaya and Erdogan (1987). The unknown in-plane dis- 
placement O(x) and rotation J(x) are represented in the form of a truncated Chebyshev 
polynomials of the second kind with undetermined coefficients as follows 

i?(X) = f VjU*j(X)&? 

j=O 

J(X) = fj ~jU*j(X),li-xz 
,=o 

(25) 

The representation in eqn (25), in recognition of the symmetrical deformations about x = 0, 
excludes U,,(x) for n odd. The unknown coefficients vjand qj (j = 0, 1, . . . , IV) are determined 
separately from the equations in (19) by selecting the set of collocation points given by the 
zeros of TZN+ 1, 

2i+l n 
x; = cos ___- ( 1 2IV+12 (26) 

Following from eqns (3), (18) and (25), the closure forces along the crack line may be 
calculated via 

(27) 

The functions S(X) and M(X) are accurately determined in the vicinity of the crack-tips 
since the collocation points eqn (26) are clustered near the crack-tips. The expressions in 
eqn (27) quickly give S( f I) and M( + r) on noting that U,i( 1) = 2j+ 1. 

The solution procedure must proceed in a semi-inverse manner. At each iteration, a 
particular perimeter is chosen ; the equations in (19) [or (22)] are solved, then the difference 

64 6(x> _____ E(X) = 9,(X) 9&J 
(28) 

is examined. The shape c(X) is readjusted at each iteration until K(u) N 0 (to the desired 
accuracy) for all 1x1 < I, as required by eqn (10). 
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Fig. 3. Contact variable distribution versus i = x/l; If” = 2/3, I/h = 10, v = 0.3 : (a) normalized in- 
plane displacement 6(X) and rotation q,(X) ; (b) the local contact induced-in-plane force S(X)/S” 
and bending moment M(X)/M’ ; (c) local load ratio /, and relative through-the-thickness length of 

the crack [. 

Results obtained by solving the integral equations in (19) by the iteration procedure 
for the case of Z/h = 10, I, = 2/3 are presented in Fig. 3. The shapes of various plots shown 
of the displacements (Fig. 3(a)), forces (Fig. 3(b)) and closure parameters I/ [see eqns (29), 
and (30),] and [ vs the normalized coordinate x = X/Z are more or less typical for the whole 
range of possible remote loading combinations. 

LIMITING CASES AND NUMERICAL COMPARISONS 

The paper by Slepyan et al. (1995) discussed limiting cases and asymptotic solutions 
for the long cracks (relative to the plate depth). Three possible scenarios have been outlined 
identifying the influence of the remote load ratio lfo. 

The first case relates to the case of the load in the range 0 < If” d l/3. In this case there 
is no crack opening, the sides of the crack stay in full contact, and the behavior of the plate 
is identical to the behavior of an intact one. 

The second case concerns the range l/3 < IT d 1 and is associated with the solution of 
the plane problem for the through cracked strip (Fig 2(c)). It means that, in the central 
area of a sufficiently long crack sufficiently remote with respect to the crack ends, the 
distribution of the contact forces and displacements is uniform, and the corresponding 
quantities can be found from the solution of the plane problem. These quantities do not 
depend on the length of the crack, the only requirement is that the crack should be 
“sufficiently long”. 

The third case 1, > 1 does not have a plane problem analogue. In the plane problem 
for the through-the-thickness crack in the strip (Slepyan et al., 1995), no equilibrium is 
possible under such a load. The plate with the through-the-thickness crack of a fixed length 
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will stay in equilibrium because of the tensile stresses on the continuation of the crack Y = 0, 
1x1 > 1, 121 < h. The asymptotics of the closure forces and displacements are dependent on 
the length of the crack in this case. Analytical expressions for the latter asymptotics has 
been given by Slepyan et al. (1995). The validity of the latter asymptotics requires the crack 
to be “sufficiently long”. 

The definition of “sufficiently long” in the sense of the latter asymptotics has yet to be 
ascertained. Similarly, the behavior of the contact-closure characteristics in the general case 
of arbitrary length-to-the thickness ratio l/h has yet to be determined. These unknowns are 
to be answered in the present work by comparing the asymptotics in Slepyan et al. (1995) 
with the results of the exact numerical analysis. 

The paper by Slepyan et al. (1995) introduced the following closure parameters : 

wm 
!#) = - /3&(X) ) 

VW> 
“ = - /$(X) (29) 

The quantities I, and 1, may be defined from eqns (5), (lo), (14), (15) and (6), in terms of 
the contact-closure perimeter i(X) as 

(30) 

Remembering that c = a(X)/2h, it is important to note that 0 < { < 1 corresponds to 
l/3 < b, 1, Q 1. Under the remote load ratio Z,O, as the crack length increases, crack face 
closure occurs over a vanishingly small closure strip equal to 2h(l -i), in which i + 1, i 
being a measure of the through-the-thickness open region. The global closure parameters 
I, and 1, both uniformly asymptote to unity in this situation. For the case of a uniform 
initial in-plane force So and bending moment MO, the closure width looks as (see Sections 
8 and 11 of Slepyan et al., 1995) 

b(X) 1+3~1; b”(X) b”(X) 7t (1 -v2)Aokf2h -= -=- 
2h 3@(Z;-l) 2h ’ 2h 2 J_ T (31) 

where k, = 0.7361, A0 = 0.6289. In the latter equation, since If” is infinite for pure bending, 
the general closure width b(X) is expressed in terms of the expression for pure bending, 
viz., bm(X)/2h. Because of the initial assumption of a vanishingly small closure width, the 
expression in eqn (31) is valid only for lf” > 1 and long cracks ; the definition of how large 
(for specific l/h values) is now investigated numerically. 

Consider a through-the-thickness crack of length 21 in a plate of thickness 2h that is 
subjected to a remote uniform in-plane compressive force So that stays constant. Assume 
that the uniform remote bending moment MO, and hence Z,O, increase monotonically from 
zero. The crack must be long : let l/h = 10 ; v = 0.3. The corresponding numerically deter- 
mined opening-closure borderlines for If” = 0.34, 0.4, 0.5, 2/3, 0.8, 1, 2, 5, 10 and 20, 
respectively, are shown in Fig. 4. The borderline for I,0 < l/3 is not shown, because in this 
case there is no crack opening. The upper curve for l/” = 0.34 > l/3 reveals that the through- 
the-thickness crack has just started to open, with essentially a uniform extent of almost 
full closure. As the remote bending-compression ratio increases, the extent of closure 
progressively decreases. For If” > 10, the extent of closure is essentially unchanging: the 
associated closure perimeter tends then to the asymptote that corresponds to the pure 
bending If” + co case for the given crack length-plate thickness ratio. 

The validity of the closure width asymptotic expressions presented in eqn (31)2 is 
examined via the numerical comparisons shown in Fig. 5. Evidently, good agreement is 
observed away from the crack-tip vicinity for l/h 2 16; the agreement deteriorates as the 
relative crack length decreases (Table 1). The agreement near the crack tips is not good, as 
was anticipated in Slepyan et al. (1995). 
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Fig. 4. Progression of the opening-closure borderline with an increasing remote load ratio ; v = 0.3, 
I/h = 10; from top to the bottom 1: = 0.34, 0.4, 0.5, 2/3. 0.8, 1, 2, 5, 10, and 20. 

Variation in the extent of closure with relative crack length l/h, given an unchanging 
remote load ratio 1; = 2/3, is studied in Fig. 6(a). In connection with the discussion by 
Slepyan et al. (1995) and at the beginning of this section, 13 = 2/3 belongs in the transitional 
range l/3 < I,0 < 1. If the crack is “long”, in the central area the contact characteristics 
should coincide with those of the plane problem : 1,~ If” = 213, [ N [*, where i* is a solution 
of the eqn (30), with respect to [ for I,0 = 2/3. In particular, the latter relations should be 
true at the center of the crack, the point X = 0, which is simply the most remote with 
respect to the crack ends. Figure 6(a) indicates that with respect to that criterion the cracks 
can be considered “long” for l/h > 8. 

Fig. 5. 

0.41 I_._ 

Validity of the asymptotic expression in eqn (31)2 for pure bending 1: N 
results - thick solid lines ; asymptotic expression - thin solid lines. 

co. Numerical 

Table 1. Validity of the asymptotic expression in eqn (3 l)* for pure bending If” Y CC : closure widths at the crack 
center for various I/h ratios 

llh 8 10 12 16 20 

b(0)/2h : numerical analysis 0.117 0.101 0.0893 0.0730 0.0620 
b(0)/2h : asymptotics eqn (31), 0.160 0.128 0.107 0.0800 0.0640 
% difference 37 27 19 10 3 
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Fig. 6. Contact boundary versus the relative crack length: (a) 1; = 2/3, various crack length to plate 
thickness ratio I/h ; (b) influence of the Poisson ratio, pure bending I,” = co. 

CRACK-TIP CLOSURE CHARACTERISTICS 

The shape of the opening-closure borderline in the vicinity of the crack-tip is important, 
especially with regard to comparisons with available experimental results (photographs of 
actual closures) and numerical analysis, as well the nature of crack extension. At first, one 
may well anticipate that b(X) + 2h as 1x1 + 1. Indeed, ahead of the crack-tip, the material 
is fully joined. Note that both the actual crack-line displacements and the averaged dis- 
placements v(X), 4(X) are not discontinuous at the crack tip. A discontinuity in the closure 
perimeter b(X) does not imply a discontinuous solution. 

Is there a logical argument supporting a jump in the b(X) as 1x1 + ZkO? 
Consider briefly the ramifications if the extent of closure is not discontinuous at the 

crack-tip. First, this implies that each crack front experiences purely compressive stresses 
in the vicinity of the crack tip. However, recall that the shape of the closure perimeter is 
governed solely by the remote load ratio Z,O = M”/h(So 1, and is not affected by the individual 
magnitudes. By this argument, there would be no load magnitude that could induce tensile 
stresses at the crack tip ; the crack would never propagate, not for any level of the applied 
load. Thus, the initial assumption leads to a physical contradiction. 

However, the calculations show that, under the conditions imposed by the formulation 
in this paper, the crack closure width b(X) does not tend to the plate thickness 2h at the 
crack tip and tends to some finite value, defined here by /IO = lim,,,,,_ b(X)/2h, 0 < PO < 1. 
The PO values associated with the closure perimeters presented in Fig. 4 are listed in 
Table 2. 
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Table 2. Opening-contact ratio at 
the crack tip (v = 0.3 ; I/h = 10) 

4087 

0.34 0.98419 
0.4 0.92212 
0.5 0.86410 
213 0.79644 
0.8 0.75335 

1 0.69795 
2 0.51165 
5 0.35100 

10 0.30011 
20 0.27650 

The observed discontinuity in the crack closure shape apparently follows directly from 
two assumptions, viz., the stress intensity factor is assumed to be zero in the through-the- 
thickness direction as Z --+ a(X), while the crack length --I< X < I is assumed to be 
invariable under increasing load ratios. This profile discontinuity should disappear if the 
entire contact borderline were to be subject to the same fracture criterion. 

COMPARISONS WITH EXPERIMENTAL RESULTS 

More than two decades ago, a number of interesting photoelastic investigations of the 
influences of crack closure on the local bending stresses in cracked plates were completed 
(Smith, 1969 ; Wynn and Smith, 1969 ; Smith and Smith, 1970). The test geometry studied 
by Smith and coworkers is shown in Fig. 1, with the obvious exception that a finite 
rectangular plate was used. The material of the plate selected for the experiments was Hysol 
CP5-4290 ; for this rubber-like material (especially at higher temperatures), Poisson’s ratio 
is well approximated by v = 0.5 (Smith and Smith, 1970). In this context, note that the 
extent of closure does not vary significantly with Poisson’s ratio (see Fig. 6(b)). 

The remote load condition in the experiment (Smith and Smith, 1970) was pure 
bending, If” N 00. Figure 7 presents closure-opening curves b(X) plotted for the values of 
parameters that were used in the experiment (Smith and Smith, 1970). In Smith and Smith 
(1970), a photograph (see Fig. 8 therein) of one experiment shows the closure configuration 
and closure-opening border for the case Z/h = 3.58. The highlighted curve in Fig. 7 cor- 
responding to the latter case compares well with the closure borderline in the photograph 
in Smith and Smith (1970). 

I 1 I ’ I - 1 ’ 

b/2h_ v = 0.5 
0.8 - 

Fig. 7. Numerical closure width distributions for the tests numbered l-4 in Smith and Smith (1970). 
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Table 3. Crack center closure widths 

Test number 1 2 3 4 

Uh 1 .oo 2.44 3.58 5.54 
b(0)/2h : experiment 0.41 0.33 0.30 0.17 
b(0)/2h : this paper 0.30 0.20 0.16 0.12 
% difference 28 39 41 29 

The study by Smith and Smith (1970) presents experimental measurements for the 
location of the minimum point b(0) of the crack-closure border (see below Table 1 in the 
latter paper). That data is listed in this paper in Table 3 and compared with the numerical 
results obtained in the present work. The disagreement between the experimental vs numeri- 
cal crack center closure widths is substantial and not obviously dependent on the l/h ratio. 
Moreover, one does not expect a higher order plate theory to alter the b(0)/2h values at the 
crack center significantly. More plausible reasons for the noted differences in Table 3 would 
be a varying and non-zero in-plane compression as well as the finite size of the test specimens. 
The measured crack sizes should be rather reliable, as the photoelastic experiments quoted 
in Table 3 were not characterized by precatastrophic surficial crack extensions (D. G. 
Smith, 1997). 

D. G. Smith (1997) noted that the contact boundary could have been determined 
during his thesis (not just the closure depth), as well as the distribution of the contact stress 
along the closed region. He also noted that the main experimental difficulty resided in 
making the cracks used to form the surfacecraekinthe brittle material. The surface crack 
was actually created by tapping in two straight, non-?&&de&e cracks into two separate 
plates and then joining these two edges at the edge-crack-mouths. In the frozen stress 
technique used, the custom was to stay away (if possible) from this glued interface (C. W. 
Smith, 1997). The glue on this interface contracts upon curing, and even if the residual 
stress caused thereby is released upon heating above the critical temperature, local residual 
deformations may have occurred. The b(0) measurements reported in Table 3 of this paper 
were made precisely at the right-angled symmetrical intersection of the surface crack and 
the glued plane. Clearly, more experimental research on this topic is warranted. 

CONCLUSIONS 

The shape of the closure region and its dependence on the remote loading and crack 
length to plate thickness ratio has been determined for the case of a pre-existing through 
crack in a plate. The evolution of both the shape and extent of closure has been determined 
in detail for the case of an increasing applied far-field moment to in-plane force ratio given 
a particular crack length to plate thickness ratio. The evolution of both the shape and 
extent of closure has also been determined for the case of an increasing crack length to 
plate thickness ratio given a specific applied far-field moment to in-plane force ratio. 
Previously stated analytical asymptotes for the latter two cases were examined quan- 
titatively. Comparisons were made also with experiments completed nearly three decades 
ago, although the experimental setup and material used to not provide the idealized com- 
parisons desired. 
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