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Abstract. Influence of layer thickness on the stress distribution in the vicinity of a crack tip is examined, taking into 
account the fact that the conventional stress intensity factor concept becomes invalid if the thickness of the layer is 
not much more than the size of the fracture process zone. An eigen-problem is considered which is characterized by 
two asymptotes. The first is a near one; it is formed in a small vicinity of the crack tip in the layer thickness scale. 
The second asymptote is a far one in the same scale. The regions of validity of these asymptotes are determined and 
shown to depend upon layer thickness, material parameters and crack tip speed. The complete stress distribution 
in front of the crack is obtained, as well. Some conclusions are made concerning the stress distribution and energy 
release rate for the general problem. Mode III crack propagation is considered in detail. 

1. Introduction 

The problem of cracks along and within adhesive layers has been receiving much attention in 
the literature. Two papers (Rice [11]; Hutchinson [5]) have addressed the difficulties involved 
in dealing with interface crack problems; that is, when a crack is along the interface between 
two dissimilar media. In particular, the problem of a crack along the interface between a thin 
layer which is bonded to a substrate is of  engineering importance as, for example, in coating 
or film delamination. This problem has been considered for the case of cracking of  prestressed 
films (see Hutchinson and Suo [6]; Xu et al. [18]). 

For layer decohesion, the problem of scaling requires consideration. This was recognized 
by Xu et al. [ 18]. In classical fracture mechanics theory, for a single finite length crack in an 
infinite, homogeneous, linear elastic body, two length scales, generally, enter into the problem; 
they include the crack length I and a length L associated with the load distribution. The stresses 
are found to be square root singular, corresponding to the eigen-problem for a semi-infinite 
crack in an infinite body. Indeed, only the stress intensity factor is essential for describing the 
stresses and displacements in the neighborhood of  the crack tip. 

An additional length scale arises in the case of a thin layer of thickness h which delaminates 
from a thick substrate (see Fig. 1). The main aim of this investigation is to more carefully 
examine this specific problem. In this case, if h is sufficiently small, the fracture process 
zone size R becomes important. For many fracture phenomena, this latter length scale is 
small compared to other length parameters. Note that the fracture process zone is the region 
in which micro-behavior is actually controlling crack propagation. Different fracture criteria 
have incorporated this parameter into their formulations. It appears for example, as the length 
of the Dugdale-Barenblatt cohesive zone (see Barenblatt [1]; Dugdale [2]; Rice [10]), the 
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Fig. 1. Geometry of layer delamination from a substrate. 
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Fig. 2. Typical stress distribution ahead of a crack in the thin layer delamination problem. 

length of the critical average stress zone of Neuber-Novozilov (see Neuber [8]; Novozilov 
[9]), and the length at which a critical strain is reached in the approach by McClintock [7]. 

In the usual fracture theory, the stress distribution in the process zone is controlled by 
some length parameters which are expected to be much greater than R. The more complicated 
problem of a thin layer, in which the parameter R cannot be neglected, is to be investigated 
here. The ratios h/l, h /L  and h / R  influence the stress behavior. A 'thin' layer is implied by 
h/l  << 1 and h/L  << 1. Hence, the only essential scaling parameter is ,~ = h/R.  Indeed, 
the layer thickness h influences the magnitude of the stress intensity factor. If )~ >> 1, the 
formulation of a crack propagation criterion based upon the stress intensity factor remains the 
same as if h ~ oo. If ,~ is not sufficiently large, however, the value of h influences not only 
the amplitude but also the form of the stress distribution within, as well as outside, the process 
zone. No longer are the stresses necessarily square root singular nor may the stress intensity 
factor be employed as a fracture criterion. 

In this study, the crack is assumed to propagate steadily. Results will also be presented 
for a stationary crack; that is, a crack tip velocity v -- O. Two limiting cases of near and far 
fields are considered. The stress distribution in front of the crack tip and the crack opening 
displacements behind the crack tip may be determined in both cases. Let ~ = z - vt be the 
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crack tip coordinate in the x-direction where t is time. Close to the crack tip, for ~/h ~ O, 
an asymptote for the stresses, for example, directly ahead of the crack in the near field may 
be found as an(~). On the other hand, a far field asymptote, ay(~) for ~/h ~ ~ may be 
determined. Both asymptotes correspond to the usual assumptions that ~/1 --+ 0 and ~/L ~ O. 
Thus, in both regimes square root singular behavior may exist with different stress intensity 
factors. For K-controlled fracture, one must determine which asymptote is responsible for 
crack propagation. When these do not control fracture, the complete stress distribution is 
required. These conditions are determined by the values of the ratios ~n/R and ~]/R where 
(,~ and ~f are (see Fig. 2), respectively, validity limits of the asymptotes, namely 

0 < < 

< 

If R << ~, the conventional stress intensity factor concept is valid and one may use the. cr n 
asymptote. For R >> ~:, again the stress intensity factor is valid but from the far asymptote 
af. Finally, if neither of these inequalities is satisfied, the exact stress distribution a(~) is 
required for predicting crack propagation. 

In this investigation, both static and steadily propagating cracks between dissimilar linear 
elastic materials are considered. In Section 2, a limiting procedure for deriving near and 
far asymptotes is developed. In Section 3, energy methods are employed to determine the 
relationship between the inner and outer distributions of the stresses and crack opening 
displacements in the general problem. In particular, the mode III problem is considered in 
detail. In Section 4, by means of the Wiener-Hopf method, a closed form eigensolution is 
obtained. The asymptotic behavior of this solution is investigated in Section 5. Analysis 
of the full stress distribution for various material parameter combinations is presented in 
Section 6. The validity regions of the asymptotic solutions are determined. 

2. Some asymptotes 

Consider propagation of a straight semi-infinite crack in an elastic body. Geometric and 
mechanical parameters of the body are assumed to be constant in the direction of crack 
propagation x; they may be non-uniformly distributed normal to this direction. One may 
consider the eigensolution of a semi-infinite crack as the limit of the solution corresponding to 
the action of an external force. Namely, let the crack be subjected to an external force moving 
together with the crack so that a steady state problem is defined. As a result of the work done 
by the moving force, there is energy flux from the force to the crack tip. In a limiting process, 
the amplitude of the applied load approaches zero in any finite vicinity of the crack tip such 
that the energy release rate remains fixed. For example, for a concentrated force, the distance 
of the force from the crack tip d becomes infinite while its amplitude which is proportional 
to x/-d also increases such that the energy release rate is fixed. In this way, the eigensolution 
corresponding to an energy source at infinity and the energy flux from infinity to the moving 
crack tip are obtained. The eigensolution and its asymptotes are derived in this paper. In this 
section, the exact mathematical concepts are presented. 

First, consider the crack surfaces subjected to a traction vector such that the non-zero 
component of this vector a(~) = -b (~  - r/) where b is the Dirac delta-function, ~ < 0 and 
~7 < 0. This component is assumed to act on the lower surface of the crack y = - 0  with a 
corresponding component of opposite sign acting on the upper surface. Let the length h be 
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a characteristic size of material or geometric parameters of the body in the y-direction. In 
particular, here h is taken to be layer thickness. The corresponding stress component ahead 
of the crack tip and crack face displacements behind the crack tip resulting from the delta 
function are denoted by a(~, r/) where ~ > 0, r /<  0 and y = 0 and u(r)(~, r/) where ~ < 0, 
r /< 0 and r = 1,2 representing the upper and lower materials, respectively, so that, y = +0, 
correspondingly. From dimensional analysis, these functions may be expressed as 

a(( ,  r/) = ~ M , (1) 

and 

It is assumed that the functions M and N(r) are defined so that the stresses and displacements 
in the neighborhood of the crack tip produce a bounded strain energy in any finite region. 
Further, energy flux from infinity under variation of crack tip position is precluded. Thus, the 
solution is unique. 

If the crack is subjected to an arbitrary traction a(r/), these variables may be expressed by 
means of superposition as 

vT~l f° ( ~ ) ,  dr/ tr(~)- j_ooa(r/)M ~ (¢ > 0) (3) 

and 

< 0). (4) 

Note that in the specific case of a homogeneous elastic infinite plane in statics, the functions 
M and N(r) depend only on the first argument (see for example, Slepyan [17]) namely 

= - - ( 5 )  

71" 

and 

N(r) = :t: 4 ~  ~/~ . t¢ + 1 ]-~ In }~_-~ ~ + v/-L--~-v/_ ~ , (6) 

where # is the shear modulus, t~ = 3 - 4u for plane strain in modes I and II, s; = 3 for mode III 
and v, is Poisson's ratio. 

In the general case, for ~ ~ 0, one has 

f ' J  x/-r/dr/ Km M(O,O) (7) 
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where Km is the stress intensity factor and m = 1, 2 and 3 depending upon the fracture mode. 
Thus, 

"('~)~ = M(O,O)vS-~" (8) 

Assuming that this integral exists, a set of tractions 

or(9 ) = - ~ p  , (9) 

is examined where L is a parameter. Substituting r] = aL into (3) and (4), one has 

.(¢) = ~ p ( ~ )  M ' v ' -~  (10) 

and 

4-~" 

The traction a(9)  in (9) extends along the negative half-axis, and its amplitude tends to 
zero as L ~ c~. The force is given by 

f L ~(r]) dv = -x/L p(a) da,  (12) 
o o  

which becomes infinite if the integral on the right hand side is non-zero. Letting L ~ c~ in 
(10) and (11), one may obtain the eigensolution 

M(O,~/h) Km (13) 
a ( ~ ) =  M(0 ,0 )  

and 

u(r) N(T)(O,~/h) ~ 
- M ( 0 , 0 )  K m  • (14) 

It should be noted that the solution in (13) and (14) only differs by Km as the applied traction 
a (9  ) changes. The functional form of the solution remains the same. 

This eigensolution has two asymptotes. The first is the near one in the h-scale. It is valid 
for ( / h ~ O, namely 

Km 
~r ,-~ ~r n _ 2 v / ~  (15) 

and 

- M(0 ,0 )  Km V27r  . (16) 
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The second asymptote, a f ,  u(/), is the far one. It corresponds to the far field in the h-scale, 

where ~ / h  ~ ~ .  In particular, if M(0,  ~ )  and N(r)(0, ~ )  are non-zero and finite, one has 

M(O, c~) Km 
cr~cr]  - M(0,0)  v / ~  (17) 

and 

U(r)~U r) - M ( 0 , 0 )  /g in  • ( 1 8 )  

However, the far asymptotes are not necessarily of the square root type. For example, in the 
case of a layer bonded to a half-plane which is considered in the sequel, - ~  < y < h, the 

is not valid for u~¢ t).- Another example of this kind is shown in the last representation next 
d 

section. 
It may be noted that these results are general. For an interface crack with mixed mode I 

and II deformation, the same considerations may be generalized with more than one stress 
and displacement component resulting. 

Finally, the near and far asymptotes in the h-scale may both be considered as near asymp- 
totes in the load-scale L for the problem with loaded crack surfaces. These asymptotes 
exist if the ratio L / h  is sufficiently large so that the relation h << ~ << L holds for some 
range of ~. 

3. Energy considerations 

In this section, a generalization of known formula for the energy release rate is introduced. This 
formula for the energy released at the crack tip is obtained from the stress and displacement 
distributions in any finite vicinity of the crack tip on the crack propagation line. Both the near, 
as well as far asymptotes of these distributions may be employed in this calculation. 

Let the stress intensity factor be given by Kin. Assume that the crack tip is traveling with 
speed v and that there are no harmonic waves which can propagate in the x-direction with 
phase velocity v. Since these waves are excluded, the energy release rate is equal to the work 
of the force per unit length of crack propagation, including the work of the forces at infinity. 
Two steady state problems are considered (see Fig. 3). The eigensolution of the problem in 
Fig. 3(a) is characterized by an energy release rate G and stress intensity factor given by 
Km = K°m • Internal stresses ahead of the crack act on the lower part of the body y = - 0  
given by ~r(x - v t )  (see Fig. 3(a)). It may be noted that o- represents the stress components 
a~x, cruu or cruz. The solution to the second problem in Fig. 3(b) is described next. The cracks 
in these two problems differ by their crack tip coordinates x = vt  and z = vt  + a for the first 
(Fig. 3(a)) and the second (Fig. 3(b)) cases, respectively. In addition, the traction vector 

5 = T A a ( x  - vt) ,  (19) 

is applied in the second problem as shown in Fig. 3(b) for vt < x < vt ÷ a, y = 4-0 where A 
is a parameter such that 0 ~< A ~< 1. The traction o'(x - vt)  is the same as that which acts on 
the lower part of the body, y = - 0 ,  in front of  the crack in the first problem. 

When A = 1, the first problem is recovered; when A = 0 the second problem becomes 
the same as the first but with crack tip coordinate x = vt  + a. In the second problem there 
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Fig. 3. Two steady state semi-infinite crack problems. (a) The crack tip coordinate is x = vt. There is energy 
flux from infinity. (b) The crack tip coordinate is z = vt + a with the same energy flux from infinity and applied 
traction q: A~r( x - vt ). 

are two singular points: one at x = v t  with a stress intensity factor K ~  and the other at 
x = v t  + a with  a stress intensity factor K +. The stress intensity factors as linear functionals 
of  the traction are represented by 

Km = I (  + = ( l  - A ) I (  ° (20) 

and 

K m  = I ( ~  = A K  ° . (21) 

The crack face opening displacement in the interval v t  < x < v t  + a can be described by 

t~ = (1 - A)UB(x - v t )  = (1 - A ) U A ( x  - v t  - a ) ,  (22) 

where UA = u O) -- u(2 ) is the crack face opening displacement in the first case and 

(1 - A)UB = (1 - A)(u(~ ) - u(~ )) is the jump in the second case; the superscripts (1) and 
(2) represent the upper and lower crack faces, respectively. 
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The above mentioned condition of no waves with phase velocity v implies that there are 
no waves excited by the traction, so that, the influence of the traction is local. It follows from 
energy conservation that all work produced by the traction flows into the singular points. As 
a result, the sum of the energy fluxes radiated by the traction and the singular points x = vt 
and x = vt + a, y = 0 is independent of A. 

The energy release rate is a quadratic function of the stress intensity factor. Corresponding 
to h',~ = K°m, the energy release rate is given by G. It may be observed that the energy 
released through the points x = vt and x = vt + a are, respectively, A2G and (1 - A)2G. In 
addition, the energy release rate per unit time resulting from the traction is given by 

f f + °  A (x- vt) . ( 1 -  A) vt) dx 
t 

= - A ( 1  - A)v[~t+aa(x-avt v t ) .  OUB(Xox- vt) dx 

= A ( 1 -  A)v r ] ~ a ( ~ ) .  OUA(~--a) d~, 
Oa JO 

(23) 

where ~ = x - vt. Since the total energy release rate is independent of A, it is possible to 
express the energy dissipation rate Gv as 

G v = A Z G v + ( 1 - A ) 2 G v + A ( 1 - A ) v  a ( ( ) . U ( ( - a ) d ( ,  (24) 

where U = UA. Note that the limits of integration are assumed to be ( -0 ,  a + 0). Since the 
convolution integral is actually from - o o  to oo, with o-(~) = 0 for ~ < 0 and U(~ - a) = 0 
for ~ - a > 0, so that 

daa f(~,  a) d~ = Oaa f (~ '  a) d~ 

where f (~)  = o-(~). U(~ - a). 
Equation (24) is satisfied only when 

Xdf0° G - 2 da ~ (~ ) .  U(~ - a) d~. (25) 

Since G does not depend upon a, it is possible to rewrite this equality as 

, / o  a 
G = ~aa o'(~) • U(~ c - a) d,~', (26) 

where the integral is proportional to the upper limit. This result is a version of the well known 
formula 

G = l im 1 f0  ~ a--,0 ~aa cr(~). U(~ - a)d~ 

dfo° _ 1 l im ~ r ( ( ) .  U ( (  - a ) d ( ,  (27) 
-- 2 a-+O daa 
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which by the same procedure was extended to dynamics by Slepyan [16]. It is important that 
the last result be valid for general conditions, including non-uniform crack propagation and 
other cases in which harmonic waves exist. Since the traction as a generalized function tends 
to zero with a, it cannot be the source of a wave. In the steady state case, the expression 
without the limit sign in (26) is more interesting to discuss. First, it shows that the result is 
independent of the integration interval and hence, valid for all values of a; second, under 
conditions to be described, this formula allows one to conclude that the energy release rate 
can be determined using the far asymptotes of the stress and crack opening displacement 
distributions, as well as the usual near asymptotes. It is well-known that the J-integral yields 
the energy release representation which is valid for both near and far fields. The discussed 
relation (26) essentially differs from the J-integral which is based on the infinitesimal variation 
whereas the above obtained formula (26) corresponds to the finite variation if a > 0. 

It is useful to represent the first limit in (27) in another form as was done by Slepyan 
[16]. This may be done by applying to the convolution integral in (27) the one-sided Fourier 
transform 

f0 °° 
fF(s)  = f(a)  exp(isa) da (28) 

and the known theorem 

lim f (a)  = lim sfF(is) ,  (29) 
a-+O s---*+co 

which is valid if the left-hand limit exists. As a result, one may write 

G : ½ lim s2o'F(is) . u F ( - i s ) .  (30) 
8--+01-OO 

In the same manner, it is possible to omit 'lim' for the steady state case, so that 

G = (31) 

Note that (26), (27), (30) and (31) are valid not only for the functions tr and U of the square 
root type but also for any other functions which may be employed to model elastic bodies, 
such as discrete systems, beams, etc. 

With this as a basis, a relation between the near and far asymptotes is determined. The 
energy release rate in (26) may be rewritten as 

l f01 G = -~ a ( a ( ) .  U[a(( - 1)] d¢ (32) 

where ( = ~/a. As a --* 0, the value of the energy release rate G is attained. Then, it is 
possible to replace the stress and jump in the crack face displacements by their near field 
asymptotes o'n and Us provided their convolution is independent of a. Thus, the equality in 
(32) may be replaced by 

l f01 G = 1)] de (33) 
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Next, consider the far asymptotes crf and Uy which are assumed to be extrapolated to ( = 0 
provided that the convolution of the type in (32) is independent of a and thus 

Gy = ~ cry(a~). U][a(~ - 1)] d~, (34) 

is constant. Assume the integrands in (32) and (34) are integrable uniformly with respect to 
a, so that these relations may be represented as 

~ l - ~  

G = 1 lim lim cr(a(,). U[a(~ - 1)] dff (35) 
~"-'+ 0 a - -4oo  

and 

Jimf  Gy = ½ lim a](a~).Uy[a(ff-  1)]dff. (36) 
~---+0 

In this case, one can see that G] --+ G when a ~ c~, but these values are independent of a. 
Hence, G] = G and the energy release rate can be expressed by the far asymptote, namely 

G = ~aa cry(().  U](( - a )d ( .  (37) 

Thus, under the above mentioned condition of integrability, a relation exists between the 
near and far asymptotes given by 

cry( ( ) .  - a) d (  = crS(()" - a) d( .  (38) 

Assume the functions cr,~((), U~,((), cr.¢(() and U.f(~) are of the square root type, so that they 
are characterized by stress intensity factors; the far field factors may differ from the near field 
factors as was seen in Section 2. In this case, the validity of the equality in (38) is assured 
provided the integrands are integrable and both sides of the relation are independent of a. This 
equality yields the relation between these factors as was previously noted in [6] for interfacial 
or sub-interface cracks. 

However, the relation in (38) is valid in a more general case, as well. Consider, for example, 
the static problem of a centrally located semi-infinite crack in a non-uniform elastic plane 
under mode n I  deformation. The distribution of the shear modulus is assumed to be of the 
power type in the ?/-direction, namely 

# = # 0  , - l < a <  1, (39) 

where #0 is a constant with dimensions of stress and h is a length parameter. Note that for 
modes I and III, the stress distribution for a constant load applied to the faces of a finite length 
crack with a > 0 was determined by Sih and Chen [15]. Here, the governing equation for the 
displacement w is given by 

~,02w 0 ( ~ O w )  
lyl b-7 2 + I ,l = o. (40) 
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Fig. 4. Possible shear moduli distributions with a < 0. 

Applying the Fourier integral transform in x, one has the solution 

wF(s, y) = sgn(y) A(s)IyVK~(I~Yl), (41) 

where s is assumed to be real, A(s) is an unknown function, v = (1 - a)/2 and K.  is the 
modified Bessel function of the third kind. The Fourier transform of the stress is seen to be 

~uz = #o dy 

For y ~ +0  

_ - p 0 A ( s )  (Ih---~) "+~ 

F ayz(S, O) = -#oh-~A(s)r(u + a) 

and 

wF(8, +o)=  +½A(s)r(u) 

h"l,IK~+~(IsYl). (42) 

(43) 

(44) 
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where F is the Gamma-function. Thus, along the x-axis, the transforms of the stress and 
displacement are related by 

o 
%~ = ~=~o P ( u )  " (45) 

Next, by employing a technique presented by Slepyan [16] for development of eigensolutions 
to such problems, it is possible to show that the transforms of the stress in front of the crack 
and the crack opening displacement can be expressed as 

F = B ( 0 -  is) -(u+~) (46) o'y z 

and 

{%)(o #o r + is)-O+~'), (47) 

where B is a constant. Using the expression for the energy release rate in (31), one can 
obtain 

B 2 r ( . )  
G - (48) 

~o r(u + a) '  

where it may be recalled that u = (1 - a)/2. 
This result may be considered as an example of use of the expressions for the energy release 

rate in (26) or (31) for stresses and crack opening displacements, which are not of the square 
root type. On the other hand, the above solution may be employed as the far asymptote for 
more realistic problems. Let the dependence (39) be valid only at a distance along the x-axis, 
say, for lyl > y0 > 0, and the layer lyl < y0 be of a finite, non-zero modulus (see Fig. 4(a)). 
Another possibility for the shear modulus distribution is shown in Fig. 4(b). In these cases if 
a ~ 0, the derived solution is the far asymptote. For the energy release rate calculation, the 
near asymptote of the square root type is not required. 

Now consider the mode III eigenproblem that is being investigated below in which v = 0, 
i.e., a standing crack. Let #1 and #2 be the shear moduli of the layer and half-space, respectively 
(see Fig. 1). The near asymptotes are characterized by the stress intensity factor K3 = k, so 
that 

k 2k 
u (1) ~ u (2) ~ i / ~ g  (49) 

GYZ ~ V / ~ - ~  ' # I  V 7r # 2  V 7r ' 

as ( ---, 0. From (26), the energy release rate is found to be 

G=~ + (50) 

At the same time, the influence of the layer on the far asymptotes crf and u(y 2) is negligible and 

the displacement u~ 1) is bounded as a result of the fixed displacement condition on the layer 
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boundary; these do not contribute to the energy release rate. As a result, the energy release 
rate may be expressed as 

/(2 
G = (51) 

4#2' 

where K is the far field stress intensity factor. Equating (50) and (51) leads to 

K - -  ~ / 1 + # 2  k. (52) 
Y #l 

Similarly, employing known relationships (see, for example Freund [3]) one may write for 
steady state propagation 

1 (  1 + 1 ) k  2 K 2 (53) 
G = ~ # l a l  ~2a2 - 4#2a2' 

2 #T/PT, PT is the density and r 1 2 where a T2 _____ 1 - v2/c 2, the shear wave speed c r = = , 
represents the upper and lower materials, respectively. Consequently, 

K = ~/1 + #2a2 k, (54) 
V #lal 

fo rv  < min ( C l , C 2 ) .  

4. Determination of the eigensolution 

In this section, a general approach is employed for a semi-infinite crack propagating steadily 
along the interface of an elastic layer of thickness h and a dissimilar elastic half-space (Fig. 1). 
Only mode HI deformation is considered. In the fixed coordinate system (x, y, z) with y = 0 
being the interface, the governing equations for the antiplane problem include the equilibrium 
equations 

O0"(Sz ) O0"~rz ) 02W (T) 
+ o--7 - pT (55) 

the constitutive equations 

a(~ = 2,t~Te (T)xz , a(~z ) = 2"WTe(T)yz, (56) 

and the strain-displacement relations 

10w(T) 10w(T) 
2 0 x  ' - 2 0 y  

(57) 

Here, the only non-zero displacement is w(T)(x, y, t) = u(T)(x, y, t). Recall that the index 
r = 1,2, denotes the materials of the layer and half-space, respectively; #T are their elastic 
moduli and PT are their densities. The upper boundary of the layer y = h is assumed to be 
clamped, so that 

wO)(x, h, t) = O. (58) 
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Stresses and displacements on the uncracked interface x - vt  > 0 satisfy the continuity 
conditions 

o "(t)r'' O, t )  = a(Z)rx a t ) ,  y z  k ~  y z  k I "-'1 

W(1)(X10 i t )  = W(2)(x,O It) .  
(59) 

In order to obtain an eigensolution, the first step is to construct a solution for some non- 
zero loading. Then, a limiting procedure is employed in which the loading is applied along an 
infinitely long boundary with its amplitude approaching zero. To this end, it is convenient to 
take a load applied to the crack faces in the form 

= -, oexp[(x- v t ) / L ] ,  x - v t  < o ,  (60) 

where L is a decay length. 
The stress intensity factor for the viscoelastic analog of the formulated boundary value 

problem (55) through (60) was calculated by Ryvkin and Banks-Sills [13]). Since several 
steps in the solution here are the same as in that paper, they are only summarized. After 
introducing the moving coordinate 

~ =  x - vt ,  (61) 

the Fourier transform 

f F ( s ,  g) = f(~,  y) exp(is~) d~, 
OO 

(62) 

is employed. In (62), s is a complex variable. The inverse transform may be carried out along 
the contour £ located on the real axis Re(s) = 0. The problem is reduced to the Wiener-Hopf 
equation 

H+(s )  = P ( s ) W - ( s ) -  H - ( s ) ,  s e f-,, (63) 

where ' + '  and ' - '  functions represent, as usual, one-sided transforms analytic in the upper 
(Im(s) >/0) and lower (Im(s) ~< 0) half-planes, correspondingly. Namely, 

~0 °° H+(s )  = a(~) exp(is~) d~, (64) 

a0 ) t ¢  m is the transformed unknown interface stress in front of the crack and a(~) = y~ ~,,, ,,) = 
a (2)(~: 0) 

9 6r 0 
H - ( s )  = a(~) exp(is~) d~ - - b' 

oo is + 
(65) 

is the transformed applied stress of (60) and b = I / L ;  and 

f W - ( s )  = W(~) exp(is~) d~, 
o o  

(66) 
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is the transformed crack opening displacement with W(~) = w(1)(~,0) - W(2)(~,0). The 
coefficient P(8) in (63) is given by 

/9(8) = - # 2 7 2 Q  -1(8)  (67) 

where 

Q(~) = 1 + #272 tanh(71h), (68) 
#171 

71 = a l s ,  72 = a 2 ~ V ~ -  i0. (69) 

Recall that a 2 = 1 - v2/c 2 and c 2 = #T/Pr. The expressions s + i0 and s - i0 in (69) are 
to be interpreted as that branch cut for the function V'~ which is taken along the negative and 
positive imaginary axes, respectively. Consequently, the real part of the function 72(8) will 
always be positive. 

The form of the function P(s) in (67) permits the Wiener-Hopf equation (63) to be factored 
more simply than that in [13]. The solution of the homogeneous problem 

P+(8) = P(s )P- ( s ) ,  s E £, (70) 

is given by 

P~:(8) = P~(s)P2+(8), (71) 

where 

Q(oc) 5+(8/= eT+ io, PC(s)- -ma2vq-:76' (72) 

[ I f_"  lnP2(r) d r ] ,  
P2+(8)=exp ~ 0o ~_--~ (73) 

P2(8) = Q(~)Q- I (8 )  (74) 

and 

Q(oc) = lim Q(8) = 1 + #2a___~2. (75) 
Re(s)--*oo ~ la l  

Following Ryvkin and Banks-Sills [12], it is easy to verify that the function P2(s) which 
was chosen satisfies the necessary conditions of continuity on the real axis, has an index equal 
to zero and that In/)2(8) tends to zero as I~1 -- '  ¢¢. T h e r e f o r e ,  as defined by the Cauchy type 
integral, the functions P2 a: (s) will be analytic in their corresponding half-planes. Employing 
this result, one can easily factor the inhomogeneous equation (63) by rewriting it in the form 

P+(8) 
w-(8) H+(8-----~) + R+(8)- P-(s) R-(8)  , (76) 

where 
i¢o[ 1 1 ]  

R + ( 8 ) -  s--'ib P-'7(s) P+-(ib) ' 
iGo 

R-(8)  = ( s -  ib)P+(ib)" 

(77) 

(78) 
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The asymptotic behavior of the unknown transforms of the stress H+(8) and displacement 
jump W-(8)  for 181 --, oo is defined by the usual assumption that the local strain energy is 
bounded. Employing, finally, the generalized Liouville theorem yields the solution 

H+(s) = -R+(s)P+(8), (79) 

W-(8) = R-(8)P-(8) .  (80) 

Now that this particular solution to the inhomogeneous problem has been determined, to 
obtain the eigensolution, a general limiting procedure described in Section 2 is employed. In 
accordance with (9), it is assumed that 

P 
a0 = x/~ (81) 

where p may be viewed as an arbitrary constant having dimensions of the stress intensity 
factor and the decay length parameter L tends to infinity; so that, the amplitude of the stress 
approaches zero. On the other hand, it follows from (60) that the load is applied along 
an infinitely long boundary, i.e. along the crack faces. Thus, this limit corresponds to the 
eigensolution. Substitution of (81) into (77) through (80) with L ~ oo produces, after some 
manipulations, the desired result (recall that b = 1/L). The expressions for the stress and 
displacement jump transforms are found to be 

H + ( s ) -  P exp(i¼r) P+(s) (82) 
01/2(oo) x/s + i0 

and 

We(8 ) pQl/2(oo) exJ i l r r ,  P~(s) 
- - -  #2a2 Pk 4 )(8U/--~)3/2, (83) 

where the functions P~(s) are given in (73) and (74). Note that the subscript e denotes 
eigensolution. 

The stress distribution along the interface in front of the crack tip and the displacement 
jump behind it are given by the inverse Fourier transforms, namely 

1 oo H + ( s )  
{a(~)  } 2-~rf-oo{ }exp(- is~)ds .  (84) = w : ( 8 )  

It is important to emphasize that the thickness of the layer h is the only length parameter in 
the obtained eigensolution. 

In the next section, the near and far field solutions are determined. 

5. Limiting cases 

The near (~/h --+ 0) and the far (~/h --. oo) asymptotes for the stress and displacement 
jump are defined by the asymptotic behavior of their transforms for 181 oo and 8 --+ 0, 
respectively. For the near asymptotes, (82) and (83) yield 

~ P ( - / 8 )  -1/2 (85) 
q l /2 (oo)  
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and 

W~-(s)~ pQl/2(~)  (is) -3/2, 
f12a2 

where I sl ~ oo in respective half-planes. Consequently, 

- P 

and 

W(~)~-,-0- 2p ~UQ(7) ~ _ _  - -  , 

~2a2 

(86) 

(87) 

(88) 

The expression in (87) for the near asymptote of the stress is in agreement with the results 
in [13]. The non-dimensional stress intensity factor is given in their Eqn. (58) for the case 
of a crack propagating between an elastic strip bonded to an elastic substrate of a dissimilar 
media which is subjected to the same boundary conditions given in (58) and (60). Note that a 
factor 1/a- is missing in their (58) before the integral. In the terminology of this investigation, 
this is, of course, the near field stress intensity factor. Taking the limit in their expression as 
l ~ ~ yields the same distribution as given in (87). It should be pointed out that in [13], l 
was the decay length parameter of the load instead of L here. 

On the other hand, for the far asymptote, in the vicinity of the point s = 0, the transforms 
are found to be 

H+(s) ,.~ p (- is)  -1/2, Im(s) ~ +0  (89) 

and 

W~-(s),'., p (is) -3/z, I m ( s ) ~ - 0 ;  
f12a2 

(90) 

so that, the far asymptotes are given by 

P (91) 

and 

~ ° W(~)5~-oo ~2a2 (92) 

From the results in (87) and (91), the relationship between the near and far field stress intensity 
factors is found to be 

K = ~/1 + #2a2 k. 
V #lal  

(93) 

As expected, this expression coincides with that determined by energy considerations in 
(54). 
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It may be noted that the stress in the far field in (91) does not depend upon material 
properties. This point was mentioned in [6]. Intuitively, since the layer is considered to be 
vanishingly thin, this problem becomes that of a semi-infinite crack in a homogeneous, elastic 
body. Alternately, since the layer is negligible, in accordance with Saint-Venant's principle, the 
interface may be viewed as clamped. On the other hand, the expression for the near asymptote, 
depends upon the ratio of elastic moduli and shear wave speeds. Finally, employing the near 
and far asymptotes, the results may be corroborated by calculating the energy release rates. In 
this way, one may show that 

Gn = G f ,  (94) 

where Gr~ and Gj are the energy release rates defined by the near and far fields coinciding 
with (53). 

Using the asymptotic results obtained in this section, it is worthwhile to rewrite the 
eigensolution for the stresses in the form of the general expression in (13). Setting s equal to 
s/~ in (84), one can find 

K 1 /_~ P2+(s) exp[i(¼7r - s ) ]ds ,  (95) 
gr(~) -- ~ - ~ 2 7 r  eo (~1/2((x3)~/8 q- iO 

where the function P~+(s) is given in (73) with 

[ ( P2(~') = Q ( ~ )  1 + sgn(r) #2a2 tanh air 
#lal  

(96) 

6. Stress distr ibution 

As pointed out previously, in some cases, knowledge of asymptotic behavior is insufficient to 
predict catastrophic behavior. Instead, the complete stress distribution along the interface in 
front of the crack tip is required. 

To obtain this distribution, it is necessary to evaluate the double integral with infinite limits 
in the general expression (84). Since for large r ,  the function Pz(r) is found to be 

P2(r)l,l__.~=l+2Q(e~)-lexp(-2alr~) + 0 [exp ( - 4 a l r ~ ) ] ,  (97) 

where 0 represents order of magnitude; so that, the inner integral in (73) for P~+(s) con- 
verges exponentially. However, the integrand in the outer integral behaves for large s as 
O[s -~/2 exp(-is~)] making it very inconvenient for numerical calculations. To overcome 
this obstacle, the integration path £ in the outer integral is deformed from the real axis to the 
lower half-plane by employing the Cauchy theorem. By analytical continuation of the func- 
tion He + (s) into the lower half-plane through the Wiener-Hopf equation (76) and symmetric 
properties of the integrand, it is possible to write 

1 Re [//2 P(s)W~-(s)exp(-~s~)ds], S~.~I. - -  

= , 
(98) 
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Fig. 5. Integration path Z~ for the stress given in (98). 
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Figl 6. The non-dimensional stress directly in front of the crack tip for a standing crack a distance h from the fixed 
boundary in a homogeneous body. 

Here ~l is some contour in the lower half-plane defined by the equality s = p exp( - iw) ,  
where 0 <~ p ~< oo and the angle ~ is chosen so that the integral in (98) converges rapidly (see 
Fig. 5). The expression in (98) may be written only if the function P(8)  has no singularities in 
the domain between contours £ and/~1. Existence of w may be verified from the properties of 
P ( s )  on the real axis; the optimal value of this parameter is determined during the numerical 
calculations. As a result of this procedure, the integrand in the outer integral also decays 
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Fig. 7. For various values of the elastic moduli ratio/~t/t~2, the non-dimensional stress along the interface in front 
of the crack tip for a crack tip speed v/c2 = 0.5. The shear wave speeds of the two materials are equal, namely 
cl/c~ = 1. 

exponentially as O [exp(-Isl~ sin w)] for large I sl. Hence, the stress distribution in front of the 
crack given by (98) may easily be obtained numerically. 

Next, a non-dimensional stress is defined as 

= -~ -a (~ ) ,  (99) 

which may be viewed as a function of four non-dimensional parameters, namely 

5 = O(¢/h, cl/c2, v/c2). (]oo) 

For several choices of these non-dimensional parameters, specific cases are solved com- 
pletely to illustrate the results. It is reasonable to begin the numerical analysis with the 
important specific case of a standing crack (v/c2 - 0) in a homogeneous material (#1//~2 = 
el [e2 = 1). A plot of  the stress 5 which corresponds to the fundamental eigensolution is 
shown as the solid line in Fig. 6. The near and far square root asymptotes are indicated by 
different dashed lines. From (93), it follows that the outer stress intensity factor K - v/2k. It 
may be noted that the near asymptote defining the k-controlled zone is valid to within 10 per- 
cent accuracy for distances from the crack tip which are less than half the layer thickness. 
Consequently, if the distance h between the crack and the fixed boundary is sufficiently small, 
usual fracture criteria for some materials based on a k-concept will be invalid. 

To examine the influence of  the non-dimensional parameters on the stress distribution, it 
is convenient to define another non-dimensional quantity as 

fa - ~ a(~). (101) 
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Fig. 8. For various values of the relative crack tip speed v/c2, the non-dimensional stress along the interface in 
front of the crack tip for the elastic moduli ratio #1/#2 = 0.5. The shear wave speeds of the two materials are 
equal, namely cl/c2 = 1. 

Maintaining the ratio of the shear wave speeds equal, namely C 1 / ¢ 2  = 1, the influence of 
the elastic moduli ratio on this non-dimensional stress distribution is illustrated in Fig. 7. The 
non-dimensional crack tip speed is chosen to be v/c2 = 0.5 and #1/#2 = 0.1, 0.5, 1.0, 10. 
As mentioned previously, the stress in the far field does not depend upon the properties of the 
layer. Consequently, 

lim f .  = 1, (102) 
~lh~o~ 

for all curves. The behavior of the stress for ~/h ~ 0 as defined by the near asymptote in 
accordance with (93) and (101) yields 

l im  f,, (1 + #2a2)  -1/2 = (103) 
~/h.--+O #]a] 

As the ratio #1/~2 increases with other parameters held constant, the value of f~ for ~/h ~ 0 
also increases. For the limiting case #1/~2 '"+ OO, this value approaches unity since the 
near and far asymptotes coincide. As the ratio #1/#2 decreases, the layer becomes less stiff. 
Consequently, the stress approaches the far asymptote more slowly and the value f~ for 
( /h  = 0 defined by the near asymptote decreases. For the degenerate case of p l / ~ 2  = 0 ,  f~ 
is zero; that is, the layer has disappeared and the amplitude of the singularity tends to zero. 

Influence of the relative crack tip speed on the non-dimensional stress distribution is 
depicted in Fig. 8. The crack tip speeds are chosen to be v/c2 = 0, 0.5, 0.8 and 0.99, the 
elastic moduli  ratio #1/#2 = 0.5 and the ratio of the shear wave speeds Cl/C2 = 1. Since 
the shear wave speeds are equal, the near asymptote in (103) is independent of the relative 
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Fig. 9. Plot of nondimensional validity region X ahead of the crack tip as a function ot the nondimensional modulus 
ratio ~b for the near and far field asymptotic solutions. 

crack tip speed 73/C 2 and depends only upon the shear moduli ratio; so that, f~ = 1 /V~  for 
all curves for ~/h = 0 as may be observed in Fig. 8. If the abscissa in Fig. 8 is chosen to 
be ~/(alh) with Cl = c2, it may be observed from (95), (96) and (101) that the curves will 
coincide. 

Knowledge of validity limits of the near and far asymptotes for different material parameter 
combinations is of great importance for implementation of different fracture criteria. Before 
carrying out corresponding numerical analysis, it is worthwhile to note from (75), (95), (96) 
and (101) that the function f~ may be considered to be a function of two non-dimensional 
parameters; that is 

f~ = f~(x,  ~b), (104) 

where X = ( / (a lh)  is a normalized distance from the crack tip and ~b = (#1al)/(#2a2) is 
a normalized elastic moduli ratio. Employing the limiting values of the function f~ given in 
(102) and (103), one can write the conditions defining validity regions of the near and far 
asymptotes in the following form 

- I <  ~ for 0 < X < X , ~ ,  (105) 
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I f ~ - l l < g  for x y < x < ~ .  (106) 

Here ~ is the desired accuracy and values Xn = ~n/(alh) and XY = ~f/(alh) denote the 
limits of validity to be determined. Recall the meaning of the values ~n and ~y illustrated in 
Fig. 2. 

The relations in (105) and (106) may be considered as definitions of the implicit functions 
Xn(~b) and Xy(~b). Graphs of these functions for the accuracy 6 = 0.05 are presented in Fig. 9. 
For small ~b, when the layer is less stiff than the substrate, the regions of validity of near and 
far asymptotes degenerate, so that X,~ --+ 0 and X.f ~ ~ .  As the layer becomes stiffer, the 
problem tends to the limiting case of the clamped half-plane for which near and far asymptotes 
coincide. This explains the fact that both regions extend and consequently Xn increases and 
Xy decreases. The value of the parameter ~b --- ~b0 corresponding to the case when the near 
and far asymptote approach each other with 5 percent accuracy can be derived from 

, - = 0.05, (107) 

and is found to be ~b0 = 9.25. For all values of q~ >/9.25, the two asymptotes agree to within 
5 percent of each other. For the value ~b ~ 4.5, the upper limit of the region of validity 
of the near asymptote is equal to the lower limit of that of the far asymptote; for larger ~b, 
overlapping takes place. It should be emphasized that the curves in Fig. 9 are derived from 
universal relations and may be employed for determining validity limits of the near and far 
asymptotes for an arbitrary set of material parameters, namely, #1, #2, Pl, P2 and h. Note that 
a study of the influence of the problem parameters on the region of near asymptote validity 
was presented in a recent paper by Huang and Gross [4]. They considered a finite crack in a 
homogeneous plane under a stress wave loading. 

7. Discussion and conclusions 

In this investigation, the stress distribution in front of the crack tip and the crack opening 
displacement were determined for a mode III crack along the interface of a layer bonded to a 
substrate. The eigensolution was obtained when both materials were linear elastic. In addition, 
near and far field asymptotes for these quantities were derived. The regions of asymptotic 
solution validity were determined. 

The considerations concerning the eigensolution corresponds to a load applied to a large 
portion of the crack faces such that, the applied load is negligible in a substantial (in the h- 
scale) vicinity of the crack tip. For a load concentrated near the crack tip, the problem is not an 
eigenproblem. In this case, the near asymptotes of the stress and crack opening displacement 
exist since any distributed load appears 'long'. However, the concept of the far asymptote may 
become invalid. As a result, the solution of such problems lose their universality by which the 
derived eigensolution is characterized. The energy release rate determined by Schovanec and 
Walton [14] for two loaded cracks located at z < 0, V = -t-h in a homogeneous viscoelastic 
media may be considered as an example of such a situation. In that case, the energy release 
rate turns out to be a function of h/L. It tends to the result obtained in (51) when h/L --+ O. 
Note that from symmetry, this problem corresponds to that treated in this investigation for 
linear elastic material. 
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The solution derived in this investigation differs from the known eigensolution for an 
unbounded body only by a multiplying function of the non-dimensional distance from the 
crack tip ~/h. For mode III, this relation may be expressed as 

- F3  , ( l O 8 )  

where 

F3(O) = 1, (109) 

and 

/7'3(0o ) = ~ 1  + tz2a------~2. (110) 
#lal 

The parameters al = a2 = 1 when v = O. For the important specific case of a crack 
propagatin _parallel to the boundary of a homogeneous half-plane, it was found that 
F3(0o) = x/2. 

One may see that the far field stress intensity factor exceeds the near one. It is a result of 
the fact that, in contrast to the near field, in the far field, there is energy flux only from the 
half-plane. Consequently, routine fracture analysis based on the near stress intensity factor 
may lead to an overestimation of the allowed loading. 

For modes I and II, the considerations become somewhat more complicated. Namely, let 
the far asymptote correspond to mode I. Since h is finite, the stress state near the crack tip 
will correspond to a situation where both modes I and II are present. In accordance with the 
expression in (13) 

(111) 

where 

f i l l ( 0 )  = F21(0)  = 1 (112) 

and 

Fl l (0o)  = x/2 1 + \~11] J '  F21(0o) = ° "  (113) 

The functions/~11, -~21 and F3 are universal in the sense that they are the same for any ' long' 
loading and are independent of layer thickness. Derivation of these functions seems to be the 
next step in this topic. 

A fracture criterion is of importance when the usual concept of the near asymptote fails 
(i.e., R > ~n). As a matter of fact, this question cannot be resolved in the framework of the 
continuous elastic body model. Nevertheless, some remarks may be made concerning use of 
the result obtained here for formulation of a fracture criterion. The energy flux is the same 
whether it is defined by the near or the far field asymptotes. Hence, the double asymptotic 
solution has no influence on this criterion formulation. However, application of the energy 
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criterion is doubtful in the case R > ~n. The K-concept is applicable for R << ~n or R >> ~y. 
In the first case, one may employ the near field stress intensity factor k; whereas in the second 
case, K may be employed. 

One possibility in a more complicated situation when R assumes a moderate value in 
which R > ~n is to employ the full field stress distribution in the Neuber-Novozilov (Neuber 
[8]; Novozilov [9]) criterion. This criterion is based on averaged stresses in front of the crack 
tip. Nevertheless, the results obtained in the form of the stress distribution in the region 
between the limits of validity of the near and far field asymptotes ~,~ / h and ~] / h and values of 
these limits, themselves, appear to be essential data for estimation of applicability of different 
fracture criteria and for formulation of new ones. 
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