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Abstract

The related questions `how to avoid oscillations under an impact' and `why a crack or
phase-transition wave can/cannot propagate slowly' are discussed. The underlying
phenomenon is the dynamic overshoot which can show itself in deformation of a body

under a load suddenly applied. The manifestation of this phenomenon in a unit cell of the
material structure is shown to trigger a fast crack in fracture as well as a fast wave in phase
transition. Two ways for the elimination of the overshoot, to obtain a static-amplitude
response (SAR), are examined. The ®rst is a proper control of the load in an initial portion

of the loading time. This is illustrated by means of an example of elastic collision. In the
case of fracture, such control can be envisioned as provided by a proper post-peak tensile
softening of the material. Secondly, the SAR can be achieved under the in¯uence of

viscosity. In this connection, the following transient problems are considered: a viscoelastic-
spring oscillator under a step excitation, a square-cell viscoelastic lattice with a crack and a
two-phase viscoelastic chain as the phase-transition waveguide. For each problem, in the

space of viscosity parameters, the SAR domain is separated from the dynamic-overshoot-
response (DOR) domain. In the SAR domain, in contrast to the DOR domain, a slow
crack or a slow phase-transition wave can exist. A structure-associated size e�ect in the

SAR/DOR domains separation is noted. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider a conservative dynamic system suddenly loaded by a force, P, which
then remains invariable: P=P0H(t ), where P0=const and H is the unit step
function. As a rule the maximal dynamic displacement related to this force (the
displacement in the force direction at the point where the force is applied), umax,
exceeds the static value, ustatic, which is assumed here to exist. This is because the
work of the constant force on the static displacement exceeds the potential energy
of the system:

P0ustatic >

�ustatic

0

Pqs�u�du, �1�

where Pqs (u ) is the force corresponding to a quasi-static loading of the system
when the force grows slowly. The excess of the work of the dynamically applied
force causes oscillations relative to the static value with amplitude umaxÿustatic. In
this case, the dynamic ampli®cation factor kd=umax/ustatic > 1. In a linear system,
in the case where under the condition du/dt = 0 the kinetic energy of the body is
zero (that is, the particle velocities vanish over the entire body), kd=2 as follows
directly from the energy consideration as (1). Indeed, in the linear case,

Pqs�u� � P0u=ustatic �2�

and

P02ustatic �
�2ustatic

0

Pqs�u�du: �3�

The dynamic overshoot phenomenon is common for free systems, where ustatic
does not exist, as well. In this case, a rigid-body uniform acceleration and
hydrostatic stress distributions correspond to the quasi-static loading, while
dynamic distributions di�er by oscillations relative to these quasi-static values as
in the case where the static displacement exists.

This dynamic phenomenon can manifest itself in various ®elds, for example, in
a collision of vehicles or in switching on of an electrical system. Another area of
its manifestation is the strong in¯uence of the dynamic factor on the rate of a
process such as phase transformation or fracture.

Indeed, consider a system of interconnected distributed dynamic elements under
a dynamic action. Because the dynamic amplitude of an element approaches its
maximal value in a ®xed time (for an oscillator it is half the period), a
neighboring element is excited in a given time as well, and this dictates the speed
of the propagation of the excitation. For instance, if the dynamic ampli®cation
factor exists for an element of the structure, kd > 1, this can lead to a fast phase-
transition wave or fast crack propagation even in the case where the load (or
another action) does not considerably exceed a critical, phase-transition or
fracture initiation value. The energy exchange between the elements of the
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structure leads to a decreased resistance to the propagation in comparison with
that for the initiation, and slow propagation is prohibited. Concerning fracture, it
means that the material is brittle. Thus, the questions considered below, `how to
avoid oscillations under an impact' and `why a phase-transition wave or a crack
can/cannot propagate slowly', are closely related to the dynamic factor
manifestation.

In this paper, the conditions are examined which lead to elimination of the
dynamic overshoot. First, it is proper control of the dynamic load in an initial
portion of the loading time. The load is assumed to increase monotonically during
a time-period and then remain constant. The minimal period is found which
allows a solution to exist. In particular, a two-step loading is shown to lead to
such a `quasi-static' response to the dynamic action, and this solution is valid for
some inelastic and nonlinear systems as well.

The static-amplitude response can also be achieved under the in¯uence of
viscosity. In this connection, the following transient problems are considered: a
viscoelastic-spring oscillator under a step excitation, a square-cell viscoelastic
lattice with a crack and a two-phase viscoelastic chain as the phase-transition
waveguide. For each problem, in the space of viscosity parameters, the SAR
domain is separated from the DOR domain. Using these models and a limiting-
strain criterion it is shown that phase-transition waves and cracks can propagate
slowly in the former domain, while only fast waves and cracks can exist in the
latter.

The SAR/DOR domains separation is carried out below based on an analysis of
the Laplace transform of a function of time. In the case of the SAR domain, this
function, the original, remains non-negative, while it changes the sign in the case
of the DOR domain. A dependence for the interface is derived by an asymptotic
analysis of the Laplace transform for large time (logarithmic asymptotes are
considered). Numerical calculations performed for a ®nite range of time show the
su�ciency of this analysis. Thus, the SAR/DOR interface is expressed analytically
as well as the monotonic response (MR) domain boundary.

Lattice models for fracture and phase transition have been used in a number of
works. The dynamic Mode III elastic fracture of a square-cell lattice was
considered by Slepyan (1981a, 1981b, 1982a) for the sub-critical and super-critical
crack speeds. The fracture Modes I and II for an elastic triangular-cell lattice were
studied by Kulakhmetova et al. (1984). In these works, the structure-dependent
total energy dissipation was analytically found for the three fracture modes as
functions of the crack velocity (Fig. 1). Similar relations were obtained by Slepyan
(1986) and Marder and Gross (1995) for elastic lattice strips. Some general
conclusions concerning the resistance to crack propagation in a complex medium
are presented in Slepyan (1982b, 1984). The papers by Slepyan and Troyankina
(1984, 1988) were devoted to phase-transition waves in piece-wise linear and
nonlinear chain structures. Reviews of works devoted to the fracture of elastic
lattices have been provided by Slepyan (1990, 1993, 1998). A number of works
have been devoted to the stability of crack propagation in discrete elastic lattices
(Fineberg et al., 1991, 1992; Marder, 1991; Marder and Xiangmin Liu, 1993;
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Marder and Gross, 1995). Mode III dynamic fracture in the square-cell lattice
made of a standard viscoelastic material was examined by Slepyan et al., 1999.

In the works devoted to the dynamic fracture in elastic lattices, the
phenomenon of crack-speed-dependent dissipation has been discovered and
described. Such dissipation in a purely elastic structure manifests itself on the
macro-level due to the radiation of high-frequency structure-associated waves
excited by the propagating crack. Dissipation, measured by the energy loss per
unit length of the crack propagation, does not vanish when the crack speed tends
to zero; on the contrary, it ®rst decreases with the crack velocity and reaches a
minimum approximately at half the critical speed (it is the shear wave velocity for
the Mode III and the Rayleigh wave velocity for Modes I and II). For the
probable case where the criterion of the bond breakage is a critical force or strain,
these dependences give evidence that a slow crack cannot exist in such an elastic
structure. This question has been examined in detail by Marder and Gross (1995);
they have shown that in a slow-crack regime the strain reaches a maximum long
before the bond breaks as prescribed by the expected solution. As discussed above
and shown below, this is the dynamic overshoot manifestation. However, as has
been found in the paper by Slepyan et al. (1999), slow cracks do exist in a
viscoelastic lattice if the viscosity is high enough.

Similar phenomena are common for the phase-transition wave in an elastic
chain (Slepyan and Troyankina, 1984, 1988). The corresponding SAR domain
(where slow waves can exist) for a two-phase viscoelastic chain is found below as
well.

Fig. 1. The energy release ratios for elastic lattices. I: triangular-cell lattice, fracture Mode I; II:

triangular-cell lattice, fracture Mode II, and III: square-cell lattice, fracture Mode III. Here Re is the

ratio of the energy lost in the breaking bonds to the total energy release corresponding to the

continuous material as a long-wave approximation of the lattice, v is the crack speed and c is the

continuous-material Rayleigh wave speed for Modes I and II and shear wave speed for Mode III.
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2. How to avoid oscillations under an impact

2.1. Collision of di�erent-in-length rods

To illustrate the phenomenon, consider the collision of two elastic rods moving
along a horizontal axis, x, with velocities v2=3 v0 (the subscripts `+' and `ÿ'
correspond to the right and left rods, respectively). Let the right rod be shorter
than the left one: l+< lÿ, where l2 are the rod lengths. In other respects, the rods
are assumed to be the same. The dynamics of each rod is assumed to satisfy the
one-dimensional wave equation

u 00 ÿ 1

c2
�u � 0, �4�

where u(x, t ) is the longitudinal displacement, c is the wave speed, u '=@u/@x,
u
.
=@u/@t and t is time. The solution to this problem shows that the collision

period is de®ned by the shorter rod as 2 l+/c. After the collision the right rod
moves as a rigid body with the velocity u

.
=v0, that is, with the same kinetic energy

as before the collision. Thus, the collision is purely elastic regarding the shorter
rod.

Now, using the momentum and energy conservation laws, the averaged-
velocity-based kinetic energy of the left rod, K, and its total energy, W can be
calculated. The momentum conservation law gives us the equality

lÿhvÿi � l�v0 � lÿv0 ÿ l�v0 �5�
and hence, the left rod averaged velocity, hvÿi, and the corresponding kinetic
energy, K, after the collision are

hvÿi � v0

�
1ÿ 2l�

lÿ

�
, K � 1

2

�
1ÿ 2l�

lÿ

�2

rAlÿv20, �6�

where r is density and A is the cross-section area of the rod. The total energy of
the left rod after the collision is the same as before the collision because the right
rod does not change its energy. (This statement also follows from the fact that
there is no energy ¯ux through the collision cross-section, x = 0, since it is
unmoving during the collision, and the energy of each rod remains invariable with
time.) So, the total energy of the left rod is

W � 1

2
rAlÿv20: �7�

Consequently, the energy of oscillations in the rod is

WÿK � 2v20Al�

�
1ÿ l�

lÿ

�
,

WÿK
W

� 4
l�
lÿ

�
1ÿ l�

lÿ

�
: �8�

Note that if the left rod is twice as large as the right one the former is stopped by
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the collision, and the oscillations only remain without any rigid body motion.
Thus, after the collision, the energy of oscillations can represent any part of the
total energy of the larger rod. We now consider the possibilities to avoid
oscillations under the impact.

2.2. Loading of an elastic oscillator

We begin with an oscillator as the simplest dynamic system. The equation of its
motion is

M �u� ku � P�t�, �9�
where M, k and P are the mass, sti�ness and external force, respectively. Let P be
a suddenly applied constant force, P=P0H(t ), where H(t ) is the unit step
function. Then

u � P0

k
�1ÿ cos ot�, o �

������
k
M

r
: �10�

Thus, in this case, the maximal dynamic amplitude, 2P0/k, is twice as much as the
static one: kd=2.

We can consider two problems. The ®rst is how to avoid oscillations after the
impact which concerns the ®nite duration of the action. The solution is obvious:
the duration, T, of the constant force action should be

T � nT0, T0 � 2p
o
, n � 1, 2, . . . �11�

because the oscillator returns to the initial state with zero displacement and
velocity at t=nT0.

The second problem is how to load the oscillator to obtain an SAR, that is, to
satisfy the requirement kd=1. The force is assumed to be monotonically increasing
during the loading time and invariable after that time.

A solution can be achieved by a force linearly increasing during the same time
(11). Such a force can, in fact, be represented as

P � P0
t

T
H�t� ÿ P0

tÿ T

T
H�tÿ T �: �12�

The displacement of the oscillator under this force is

u � P0

kT

�
tÿ sin ot

o

�
H�t� ÿ P0

kT

�
tÿ Tÿ sin ot

o

�
H�tÿ T � �13�

since sin[o(tÿT )]=sin ot. It can be seen that the displacement increases during
the loading time when the second term in this expression is zero; it follows that
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u � P0

k
� ustatic �TRt�: �14�

Thereafter, at any time t r T, the oscillator can be unloaded in the same way
during the same time-period, T, and this process continues, as well with no
dynamic e�ects.

This result is still valid in the case of a multi-degree-of-freedom system if the
frequencies of free oscillations, o<o1< � � �<on< � � �, satisfy the condition

on � pno � pn � 2, 3, . . .�: �15�

In this case, the condition (11) is satis®ed with respect to each mode of
oscillations. Also note that the result is applicable to a free body since such a
body, in addition to oscillation modes, has only a rigid-motion mode which is
monotonic under the constant and linearly increasing forces.

The static-amplitude response of the oscillator can also be achieved by a piece-
wise constant force, namely

P � 1

2
P0H�t� � 1

2
P0H

�
tÿ T

2

�
: �16�

In this case, at t=T/2=p/o the dynamic displacement corresponding to the force
P0/2 reaches the static value which corresponds to the total force, P0. At this
moment, when the velocity is zero, there is a jump in the force which becomes
equal to P0, and the oscillator is then in equilibrium:

u � P0

2k
�1ÿ cos ot�H�t� � P0

2k
�1� cos ot�H�tÿ p=o�: �17�

2.3. Oscillation-free collision of the di�erent-in-length rods

We can now return to the collision problem for the elastic rods of di�erent
lengths. Consider the case lÿ=2 l+. Let us introduce a nonlinear elastic shock
absorber between the rods, such that its resistance to compression is invariable.
Based on the above condition (11) we take the collision time to be equal to the
main period of oscillations for the left rod: T = 2 lÿ/c. In this case, in the
condition (11), n=1 for the left rod and n=2 for the right one.

The contact force can be found using the momentum and energy conservation
laws. Since there are no oscillations after the collision and the shock absorber is
elastic, it follows from these laws that the velocities of the right (v+) and the left
(vÿ) rods and the contact force, P0 are as follows:

v� � 3lÿ ÿ l�
lÿ � l�

v0 � 5

3
v0, vÿ � ÿ lÿ ÿ 3l�

lÿ � l�
v0 � ÿ1

3
v0,
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P0 � rv0cA
2l�

lÿ � l�
� 2

3
rv0cA: �18�

It can be seen that the contact force is less than that for the collision without the
shock absorber. Four waves propagate along the right rod during the collision
period, and each adds 2/3v0 to the initial particle velocity, ÿv0. At the same time,
only two waves with the same but opposite particle velocities propagate in the left
rod (because it is twice as long) adding, in total, ÿ4/3v0 to the initial particle
velocity, v0.

Clearly, such an oscillation-free solution is valid for any rational l+/lÿ-ratio: the
collision time should be a common multiple of 2 l+/c and 2 lÿ/c.

2.4. Acceleration of a free rod

Consider a free rod under an axial compressive force, P0, suddenly applied at
its left end at t=0. The solution which satis®es the boundary conditions at x=0
(u '=ÿP0/EA, where E is the elastic modulus) and x=l (u '=0) can be found using
the Laplace transformation

uL�x, s� � uL0 �
P0c

AEs2
e�lÿx�s=c � eÿ�lÿx�s=c

els=c ÿ eÿls=c
� P0c

AEs2
�eÿxs=c � eÿ�2lÿx�s=c�

X1
n�0

eÿ2nls=c

�
uL0 �s� �

�1
0

u0�t�eÿst dt

�
�19�

with

_u0�x, t� � P0l

Mc

X1
n�0

H�ctÿ xÿ 2nl � �H�ct� xÿ 2�n� 1�l �: �20�

This expression represents a piece-wise constant particle velocity oscillating
relative to the rigid-body velocity, v=P0t/M.

Thus, the particle velocity oscillates. The question is how to apply the force
(which should be constant after the loading time) to exclude these oscillations. We
have already found the solution: the force must be linearly increasing during a
period of free oscillations of the rod. Let it be the main (the minimal) period,
2 l/c. In this case, the force can be represented as

P � P0
ct

2l
H�t� ÿ P0

ctÿ 2l

2l
H�ctÿ 2l�: �21�

Consequently, the Laplace transform (19) becomes

uL�x, s� � c

2ls
uL0 �1ÿ eÿ2ls=c�: �22�

The exponent-series expansion of this expression contains only two terms:
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uL�x, s� � P0c
2

2lAEs3
�eÿxs=c � eÿ�2lÿx�s=c�: �23�

The original and its derivatives are

u�x, t� � P0

4Mc2
��ct-x�2H�ctÿ x� � �ct� xÿ 2l�2H�ct� xÿ 2l��,

_u�x, t� � P0

2Mc
��ctÿ x�H�ctÿ x� � �ct� xÿ 2l �H�ct� xÿ 2l��,

�u�x, t� � P0

2M
�H�ctÿ x� �H�ct� xÿ 2l��r0, �24�

which give an x-independent particle velocity for post-collision time, t>2 l/c:

_u�x, t� � P0

M

�
tÿ l

c

�
�25�

with the hydrostatic type of the time-dependent stress distribution

sxx � ÿP0

A

�
1ÿ x

l

�
: �26�

Thus, the hydrostatically stressed rod moves as a rigid body as it should. Note
that such a non-oscillatory motion can be obtained by a quasi-static, very slowly
growing load as well. However, as shown, a dynamic loading properly controlled
in an initial portion of the loading time leads to the same result.

2.5. Nonlinear oscillator

Let the displacement amplitude, umax, corresponding to a suddenly applied load,
P, be an increasing function of P and let umax(P ) > ustatic(P ), where ustatic is the
corresponding static value. For the total load, Ptotal, we choose the ®rst step of
the loading to be P=P1, such that

umax �P1� � ustatic�Ptotal�, 0 < P1 < Ptotal: �27�
Under this suddenly applied force the displacement reaches its maximal value,
umax(P1), at a moment, t=t�. At this time, the velocity u

.
(t�)=0 and the second

step of the loading, P2=PtotalÿP1, leads to the static state, u=ustatic(Ptotal) (trt�).
Consider the following example where we let

ustatic�P � � u0

�
P

P0

�n

, n > 0: �28�

The dynamic amplitude, umax(P ), can be easily found by equating the work of the
force and the potential energy of the oscillator. The equalities
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Pumax �
�umax

0

P�ustatic�dustatic � n
1� n

P0umax

�
umax

u0

�1=n
�29�

lead to the relations

umax � u0

�
1� n

n
P

P0

�n

�30�

and

kd � umax

ustatic

�
�
1� 1

n

�n

, kd41 �n40�, kd4e12:72 �n41�: �31�

Thus, in this speci®c case, the dynamic factor is P-independent. The ®rst-step
force can now be found from the equality (27) as

P1 � n
1� n

Ptotal: �32�

To ®nd the loading time, Tload, that is, the time at which the second step is turned
on, we consider the oscillator equation

M �u� P0

�
u

u0

�1=n
� P1, �33�

or

M

2

d _u2

du
� P0

�
u

u0

�1=n
� P1: �34�

From this it can be found that the loading time is

Tload �
���������������������������
M

2P0

�
1� 1

n

�s �ustatic

0

"�
ustatic

u0

�1=n
ÿ
�
u

u0

�1=n
#ÿ1=2

du���
u
p : �35�

2.6. Damped oscillator

Consider a generalization of this solution for an oscillator with dissipation:

M �u� ak _u� ku � P�t�: �36�
Nondimensional time t 0 � to �o � ����������

k=M
p �, the creep time a '=ao and the force

P '=P/k are used below, but the primes are dropped. This concerns the relaxation
time, b, as well (the latter is introduced in the next section). In these terms, Eq.
(36) becomes

�u� a _u� u � P�t�: �37�
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The Green function which corresponds to a unit pulse, P=d(t ), is

u � u0 � sin Ot
O

eÿat=2, uL0 �
1

�s� a=2�2 � O2
, �38�

where

O �
������������������
1ÿ a2=4

p
: �39�

This expression for u0 is valid for the case of sub-critical damping, 0 R a < 2.
Note that u0> 0 during the ®rst half-period, 0< t< p/O. We take the force as

P � P0�1� exp�ÿpa=�2O���ÿ1�H�t� � exp�ÿpa=�2O��H�tÿ p=O��,

PL � P0

s
�1� exp�ÿpa=�2O���ÿ1�1� exp�ÿ�pa=�2O� � sp=O���, �40�

where the two-step force is invariable after the loading period: P=P0 (tr p/O).
We thus obtain a displacement increasing monotonically during the loading
period, 0 < t < p/O, which thereafter remains constant. It is easier to see this by
considering the Laplace transform

uL � PLuL
0 : �41�

In the region t< p/O, the second term in the expression for PL does not in¯uence
the original, u(t ), which is a monotonically increasing function since the derivative
is positive (it is proportional to u0). The Laplace transform, uL

0 (s ), has the
complex poles, s=ÿa/2 2 iO which suggests an oscillating original as it is.
However, for t > p/O the complete transform must be considered where the
multiplier PL has zeros at the same points. The only remaining pole is s = 0 and
this yields the static displacement, u=P0, for t> p/O.

Thus, in the case of a damped oscillator, the two-step, piece-wise constant,
dynamically applied force (40) leads to the non-oscillatory SAR response. The
loading period, p/O, increases beginning from p (a=0) and tends to in®nity when
a4 2, while the second-step force tends to zero as exp[ÿ(pa/(2O))] (O4 0).

For a>2 the Laplace transform, u L
0 (s ), has two real poles

s � ÿ1
2
a2L0, L0 �

����������������
1

4
a2 ÿ 1

r
, �42�

the original is

u0 � 1

L0
exp�ÿat=2� sinh L0t > 0 �0 < t <1� �43�

and hence, u(t ), corresponding to a one-step suddenly applied force, as an integral
of u0, increases monotonically and tends to the static value. For a large a, the
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displacement

u0P0

k
�1ÿ eÿt=a� �44�

increases more slowly as damping increases.

2.7. Spring of a standard viscoelastic material

Consider now an oscillator with the spring made of a standard viscoelastic
material. In terms of the Laplace transform, its dynamic equation is

SuL � �1� bs�PL, S � �bs� 1�s2 � as� 1, �45�
where a and b are nondimensional creep and relaxation times, respectively, and 0
R b R a as follows from energy considerations. (This inequality corresponds to
the case where only dissipation exists with no energy release from the material.)
The function 1/S has three poles, at least one of which, s=s0, is real. It can be
seen that

S < 0 �sRÿ 1=b�, S > 0 �srÿ 1=a�, ÿ 1=b < s0 < ÿ1=a: �46�
There is a critical-damping boundary at the a, b-plane which separates an
`oscillatory domain' (the two-complex-poles domain) and a `monotonic-response'
(MR) domain, or the three-negative-poles domain. The one-step loading does not
excite oscillation if the viscosity parameters belong to the latter and does excite
otherwise.

In crossing this boundary, two roots of the function S (45) merge with each
other, and the roots satisfy two equations

S�s� � �bs� 1�s2 � as� 1 � 0,

S 0�s� � 3bs2 � 2s� a � 0: �47�
Substituting the roots of the latter,

s � ÿ 1

3b
�12

����������������
1ÿ 3ab

p
�, �48�

into the former we obtain the following equation with respect to the viscosity
parameters:

b2 � 2

27
�2�1ÿ 3ab�3=2 � 9

2
abÿ 1�: �49�

This equation de®nes the above-mentioned boundary consisting of two branches.
In particular, for b=0 it yields a=2 as it should. A point belonging to both
branches is a � amin �

���
3
p

, b � bmax � 1=�3 ���
3
p �: The MR domain is bounded by
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the lower branch [the positive radical in (49) and the half-axis ar2] from below,
and by the upper branch [the negative radical in (49)] from above.

The MR domain is a part of the SAR domain where oscillations can exist while
the dynamic ampli®cation factor is equal to unity. To ®nd the SAR domain
boundary consider the di�erence between the static and dynamic displacements as

U L�s� � �u�1� ÿ u�t��L � P0

s
ÿ P0�1� bs�

sS�s� � P0�bs2 � s� aÿ b�
S�s� : �50�

Note that this relation can also be expressed as

U L�s� � P0�s2 � Eÿ 1�
s�s2 � E � , E � 1� as

1� bs
: �51�

The SAR domain corresponds to the condition

U�t�r0: �52�
We represent the function S as

S � �bs� s1��s� s2 � iO��s� s2 ÿ iO�, �53�
where s1=ÿs0b and s2 are positive values, and consider the oscillatory case, O >
0. Comparing this with the expression (45) we obtain the following equations:

s1 � 2bs2 � 1,

2 s1s2 � b�s22 � O2� � a,

s1�s22 � O2� � 1: �54�
From this is follows that

s1 � 1ÿ 2bs2,

O2 � 1

1ÿ 2bs2
ÿ s2,

a � b
1ÿ 2bs2

� 2s2�1ÿ 2bs2�: �55�

The original, U(t ), can then be represented as

U�t� � C1 eÿs1t=b � C2 eÿs2t sin�Ot� j�, �56�
where C1 and C2 are nonzero constants and j is an initial phase.

Clearly, U(t ) cannot be non-negative if s2 < s1/b (O > 0). This asymptotic-
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behavior-based consideration represents a necessary condition for the SAR. Using
expressions (55) the limiting dependence, corresponding to the equality s2=s1/b,
can be obtained in the form

a � 3b� 2

9b
: �57�

The domain with the left boundary (57) should be united with the MR domain
with the left boundary (49). The dependence (57) for br1=�3 ���

3
p � represents an

upper part of the boundary of the united domain, while the lower part of its
boundary, bR1=�3 ���

3
p �, coincides with the lower boundary of the MR domain [see

(49) and the conclusions following this equation]. An analysis shows that this two-
branch boundary does separate the DOR and SAR domains with the latter lying
to the right. The domains considered, MR, SAR and DOR, are shown in Fig. 2.
The normalized response for a set of a, b-values is presented in Fig. 3 where
u=u(t )/u(1).

Note that the point in time when U(t ) ®rst becomes negative tends to in®nity
when the corresponding point in the DOR domain approaches the SAR/DOR
interface. Thus, the DOR-to-SAR transition is continuous. This and other results
obtained here, such as the shape of the SAR/DOR interface and the validity of
the asymptotic analysis for its determination, are similar to that for the fracture
and phase transition problems examined below.

3. Crack growth in a viscoelastic square-cell lattice

Consider a square-cell lattice, Fig. 4, consisting of point particles of mass M

Fig. 2. The DOR, SAR and MR domains for the standard-material-spring viscoelastic oscillator (a and

b are nondimensional creep and relaxation times, respectively).
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Fig. 3. The normalized response of the standard-material viscoelastic oscillator. (a) The DOR domain:

1. a=1, b=0; 2. a=1.5, b=0.25; 3. a=2, b=0.6. (b) The SAR domain: 1. a=1.75, b=0.25; 2. a=2,

b=0.5; 3. a=2, b=0.1. (c) The SAR domain: a=100, b=0.



connected by massless standard-viscoelastic-material bonds of the length a. The
particles are numbered by two integers, m and n (x=ma, y=na ). The crack
propagation is a consequence of breakage of bonds between particles with n = 0
and n=ÿ1. The fracture Mode III where displacements, um,n (t ), are perpendicular
to the lattice plane is considered.

The dynamic equation of the lattice is

M

�
1� b

d

dt

�
d2um, n

dt2

�
�
1� a

d

dt

�
k�um�1, n � umÿ1, n � um, n�1 � um, nÿ1 ÿ 4um, n�: �58�

This equation is valid for the intact lattice, that is, for particles with n > 0 and n
<ÿ1 which are not connected by the breaking bonds.

Via a long-wave (low-frequency) approximation for the anti-plane deformation,
the lattice corresponds to a homogeneous body of density M/a 2 and shear
modulus k. Accordingly, the shear wave velocity is given by c � a

����������
k=M
p

: Note
that a steady-state problem for the same lattice was considered in the paper by
Slepyan et al. (1999).

In the following, a slowly growing crack is considered, such that the lattice
approaches a static state before the next bond breaks. This leads to a transient
problem described below. In the determination of conditions which permit a slow
crack, the limiting strain criterion of the bond breakage is used, and ®nally the
problem is reduced to the corresponding SAR/DOR domains separation.

Note that the same equations are valid in the case where only vertical
displacements in the lattice plane are allowed instead of the normal ones. For
convenience this mode of the lattice dynamics will be referred as well.

Fig. 4. The square-cell lattice consisting of point particles connected by standard-viscoelastic-material

massless bonds.
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3.1. Superposition

We now consider two problems: the ®rst is that of a homogeneous static state
of a stressed lattice with a crack at m=ÿ2, ÿ3, . . . . The crack surfaces are
assumed to be free. We denote internal forces in bonds in front of the crack by
sÿ1 and s0, respectively, to the bond numbers. The second, dynamic problem is
for the same, but initially unstressed lattice with the extended crack, m=ÿ1, ÿ2,
. . . . The lattice is suddenly loaded by the forces3sÿ1 applied at the upper, n=0,
and the lower, n=ÿ1, crack surfaces, respectively, at m=ÿ1, t = 0. In this
problem, let the internal force in the bond m=0 be s(t ).

Further, consider the problem in total. It corresponds to the ®rst one where the
crack-front bond m=ÿ1 breaks at t = 0 because the total crack-surface forces
acting at m=ÿ1 are zero for t > 0. This problem corresponds to a very slow
crack growth when the time-interval between the break of neighboring bonds is
large enough to permit the lattice to approach the static state before the next
break. The crack-tip force is

stotal�0, t� � s0 � s�t� �59�
and therefore,

stotal�0, t�Rstotal�0,1� � sÿ1 if s�t�Rs�1� �60�
and vice versa. Thus, the SAR/DOR interfaces for the second and the total
problems are the same, and such an interface for the slow crack in the lattice can
be found based on the examination of the second problem.

3.2. Derivation of a governing equation

We ®rst denote the nondimensional values

x 0 � x

a
, t 0 � to � ct

a
, u 0 � u

a
, s 0 � s

k
, a 0 � ao � ac

a
,

b 0 � bo � bc
a
:

�61�

In the following, as before the primes are dropped (the normalization of t, a and
b remains the same; recall that o � ����������

k=M
p �: Eq. (58) becomes�

1� b
d

dt

�
d2um, n

dt2
�
�
1� a

d

dt

�
�um�1, n � umÿ1, n � um, n�1 � um, nÿ1

ÿ 4um, n�: �62�

The Laplace transformation under zero initial conditions leads to

s2uL
m, n�s� � E�uL

m�1, n�s� � umÿ1, n�s� � um, n�1�s� � um, nÿ1�s� ÿ 4um, n�s��, �63�
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where

E � 1� as
1� bs

: �64�

Further, the Fourier discrete transform

uLF
n �s, k� �

X1
m�ÿ1

uL
mn�s�eikm �65�

of this equation leads to the equality

�h2 � 2E �uLF
n ÿ E�uLF

n�1 � uLF
nÿ1� � 0: �66�

Here and below the following notations are used:

h2 � 2E�1ÿ cos k� � s2, r2 � h2 � 4E: �67�
Eq. (66) and zero conditions at in®nity are satis®ed by the expressions valid for
symmetric strain of the lattice

uLF
n � uLFln �n > 0�, uF � uF

0,

uLF
n � ÿuLFlÿnÿ1 �n < ÿ1�, l � rÿ h

r� h
: �68�

Consider now the line n=0. Let sm be the nondimensional stress that acts on the
particle (m, 0) from below. The dynamic equation for a particle lying on this line
is �

1� b
d

dt

��
d2um, 0

dt2
� sm

�

�
�
1� a

d

dt

�
�um�1, 0 � umÿ1, 0 � um, 1 ÿ 3um, 0�: �69�

From this it follows that

�sm�LF � s� � sÿ � ÿ�h2 � E �uLF ÿ EuLF1 �70�
or, using (68),

s� � sÿ � ÿh�r� h�
2

uLF � ÿh�r� h�
2
�u� � uÿ�: �71�

Here and below s+, u+ are the double, Laplace and Fourier, transforms of the
functions with the support at m = 0, 1, . . . , while sÿ, uÿ are those of the
functions with the support at m=ÿ1, ÿ2, . . . .

The viscoelastic law is
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s� � EE� � 2Eu�: �72�
Substituting u+ from this into (71) we get the governing equation

L

2E
s� � uÿ � ÿLÿ 1

2E
sÿ: �73�

with

L�s, k� � r

h
: �74�

3.3. Factorization

The following explicit factorization of L(s, k ) is valid:

L�s, k� � L��s, k�Lÿ�s, k�,

L� �
"

sin�k=2� i arcsinh
�������������������������
1� s2=�4E �

p
�

sin�k=2� i arcsinh�s=�2 ����
E
p ��

#1=2

�
" ����������������

s2 � 8E
p

sin k=2� i
����������������
s2 � 4E
p

cos k=2����������������
s2 � 4E
p

sin k=2� is cos k=2

#1=2

,

Lÿ �
"

sin�k=2ÿ i arcsinh
�������������������������
1� s2=�4E �

p
�

sin�k=2ÿ i arcsinh�s=�2 ����
E
p ��

#1=2

�
" ����������������

s2 � 8E
p

sin k=2ÿ i
����������������
s2 � 4E
p

cos k=2����������������
s2 � 4E
p

sin k=2ÿ is cos k=2

#1=2

: �75�

It can be seen that L+ is a regular function in the upper half-plane of the complex
variable k, while Lÿ is a regular function in the lower half-plane. Eq. (73) can
now be presented as follows:

L�s� � 2E

Lÿ
uÿ � C� � Cÿ � sÿ

Lÿ
, �76�

where C+ and Cÿ correspond to functions with the support m = 0, 1, . . . and
m=ÿ1, ÿ2, . . . , respectively, and the sum is

C� � Cÿ � C � ÿL�sÿ: �77�
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3.4. Division of the right-hand part

For such a division of C there exists a formula as a generalization of the
Cauchy-type integral for a 2p-periodic function (see Eatwell and Willis, 1982;
Slepyan, 1982a)

C2�k� � 1

2p

�p
ÿp

C�x�d2�xÿ k�dx

d��k� �
X1
n�0

eÿikn � �1ÿ eÿik�ÿ1 �Im k > 0�,

dÿ�k� �
Xÿ1

n�ÿ1
eÿikn � eik�1ÿ eik�ÿ1 �Im k < 0�: �78�

It can be seen that in the limit, Im k4 0, the sum d+(k )+dÿ(k )=d(k ), while the
functions d+(xÿk ) and dÿ(xÿk ) separately satisfy the required conditions at k4
2 i1, respectively. When the separation is made, the Laplace transform of the
strain of the bond, which connects the particles m=n= 0 and m= 0, n=ÿ1, can
be obtained as

EL � lim k4 i1
C�
EL�

: �79�

As discussed above, constant external forces should be applied (say, at t = 0) to
the particles n=0, m=ÿ1 and n=ÿ1, m=ÿ1 in opposite directions; let the force
be ÿs0 for n=0. Thus,

sÿ � ÿs0
s

eÿik: �80�

Formula (78) for k4 i1 gives

C�0
1

2p

�p
ÿp

C�k�dk � s0
s
I, I � 1

2p

�p
ÿp

L��s, k�eÿik dk: �81�

The function L+ can be presented by a series as

L� �
X1
n�0

ln�s�eikn �82�

and hence,

I � l1 � lim k4 i1eÿik�L��s, k� ÿ L��s, i1��: �83�
Further, for k4 i1,
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L��s, k� ÿ L��s, i1�

0Lÿ�s, i1�
2

 ����������������
s2 � 4E
p ÿ s����������������
s2 � 4E
p � s

ÿ
����������������
s2 � 8E
p ÿ ����������������

s2 � 4E
p����������������

s2 � 8E
p � ����������������

s2 � 4E
p

!
eik:

�84�

3.5. Solution

The required Laplace transform can now be expressed as follows:

EL�s� � s0
4E 2s

�
����������������
s2 � 4E

p
�
����������������
s2 � 8E

p
ÿ s� ÿ 4E �, E � 1� as

1� bs
: �85�

The limiting strain is

lim t41E � E1 � lim s40sEL�s� � �
���
2
p
ÿ 1�s0: �86�

Note that in terms of dimensional values it is

E1 � �
���
2
p
ÿ 1�s0

ka
: �87�

The SAR/DOR boundary can be found as that which separates a non-negative
di�erence, L=[E1ÿE(t )]/s0, namely, Lr0 (0 R t <1) in the SAR domain, and
L does not satisfy the inequality in the DOR domain. The Laplace transform of L
is

LL�s� � 1

s

� ���
2
p
ÿ 1ÿ 1

4E 2
�
����������������
s2 � 4E

p
�
����������������
s2 � 8E

p
ÿ s� ÿ 4E �

�
: �88�

This expression has the following singular points:

s � ÿsa, sa � 1=a,

s � ÿsb, sb � 1=b �89�
and the roots of the equations

�1� bs�s2 � 4�1� as� � �bs� s1, 4��s� s2, 4 � iO4��s� s2, 4 ÿ iO4�,

�1� bs�s2 � 8�1� as� � �bs� s1, 8��s� s2, 8 � iO8��s� s2, 8 ÿ iO8�: �90�
Consider the case of real frequencies O4 and O8. The singular points

sa < s1, 8=b < s1, 4=b < sb �91�
correspond asymptotically (t 41) to non-oscillatory exponentials, while the real
parts of the remaining singular points
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s2, 4 < s2, 8 �92�

correspond to oscillatory exponentials. Note that inequalities (91) are still true in
the MR domains, that is in the cases of imaginary frequencies, O4 or/and O8, as
well as ÿs1,4 and ÿs1,8 are the minimal roots of the corresponding polynomials.

The necessary condition for the SAR is

saRs2, 4: �93�

Indeed, in the opposite case, the oscillatory exponential associated with s2,4 will
manifest itself in oscillations relative to the axis L=0, at least, when time is
su�ciently large.

For the determination of the interface in a, b-plane corresponding to the
equality in (93) the following equations can be used [compare with (54)]:

s1, 4 � 2bs2, 4 � 1,

2 s1, 4s2, 4 � b�s22, 4 � O2
4� � 4a,

s1, 4�s22, 4 � O2
4� � 4: �94�

Substituting s2,4=sa, we ®nd the relation required as

a � 1ÿ 2f��������������������
2�1ÿ 3f�p , f � b

a
: �95�

In this dependence

a � 1=
���
2
p

�b � 0�, amin � 2=3 �b � 1=9�, f41=3 �a41�: �96�

The corresponding MR domain boundary (O4=0) can be determined in the same
way as for the oscillator. The lower and the upper branches are described as
[compare with (49)]

b2 � 1

54
�2�1ÿ 12ab�3=2 � 18abÿ 1�, �97�

respectively. In this dependence

a � 1 �b � 0�, amin �
���
3
p
=2 �b � bmax � 1=�6

���
3
p
��: �98�

Dependencies (95) and (97) are shown in Fig. 5.
The MR domain boundary for O8 follows from (97) by way of the uniform

compression of the a, b-plane, namely, a8 � a4=
���
2
p

, b8 � b4=
���
2
p

, where the
subscripts are used in accordance with the frequency subscripts. However, this
boundary position does not in¯uence the SAR/DOR domains interface, and only
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the fact that the MR domain for O4 is contained in the above-determined SAR
domain is important.

Numerical calculations show su�ciency of the above asymptotic analysis for the
SAR/DOR interface determination and hence, the dependence (95) does represent
this interface. Note that the di�erence s2,4ÿsa increases together with a, and hence,
the SAR domain lies to the right from the interface. This concerns the phase-
transition problem considered below as well. Some results obtained by the
numerical inversion of the expression (88) are presented in Fig. 6 where
L=[E1ÿE(t )]/s0.

For the point a � 1=
���
2
p

, b=0 of the interface (95), the expression (88) can be
simpli®ed dramatically. In this case, the original, L(t ), is

L �
�t
0

"�t
0

J1�
���
2
p

t�
t
�t1 ÿ t�dt

#
eÿ

��
2
p

t1 dt1: �99�

It can be seen that L > 0 (0 R t<1) and hence, this point belongs to the SAR
domain.

The original of LL for the elastic lattice (E=1) can be expressed explicitly as

L�t� �
���
2
p
ÿ J1�

���
8
p

t����
2
p

t
�

���
2
p �t

0

�
J1�2t�

ÿ 2

�t
0

J0�2t 0 �dt 0
�
J1�

���
8
p �tÿ t��
tÿ t

dt, �100�

where J0 and J1 are the Bessel functions. This dependence is shown in Fig. 6(a)
(curve 1). It can be seen that L(t ) becomes negative at a ®nite time and this does

Fig. 5. The DOR, SAR and MR domains for the standard-material viscoelastic square-cell lattice.
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Fig. 6. Normalized strain of the crack-front bond in the viscoelastic lattice. (a) The DOR domain: 1.

the elastic lattice response, a=b; 2. a=0.5, b=0.25; 3. a=0.5, b=0; 4. a=1, b=0.5. (b) The SAR

domain: 1. a=1, b=0.25; 2. a=10, b=0.



not permit a crack to propagate slowly. In contrast, for a high viscosity, within
the SAR domain but far away from its boundary, the crack-tip bond elongates
slowly and approaches the limiting value long after the previous bond is broken
[Fig. 6(b), curve 2].

4. Slow phase-transition wave in a chain

Consider a two-phase chain consisting of point particles of mass m, connected
by massless standard-viscoelastic-material bonds, Fig. 7. In terms of Laplace
transforms, the connection between the internal force, s L, and strain, EL, for an
intact bond is

sL � m�EE
L, m� � ka, E � 1� as

1� bs
: �101�

At the moment when the strain ®rst exceeds a critical value, E�, the modulus k
drops and the relation becomes

sL � mÿEE
L, mÿ � gka, g < 1: �102�

Equalities (101) and (102) re¯ect the two possible phases of the chain state.
As for the case of the crack in the lattice a slow phase-transition wave is

considered here, the conditions which permit such a propagation are determined
and the SAR/DOR domains are separated.

Fig. 7. The chain and the two-phase-bond force±strain relation shown for quasi-static deformation (E

=1).
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4.1. Superposition

Consider a static state of the chain with the intact bonds in front of the particle
m=ÿ1 and the dropped-modulus bonds behind this particle. Let the chain be
under the limiting force

s � kaE� , �103�
while the strain is

E � E� �in front of the particle m � ÿ1�,

E � E�=g �behind the particle m � ÿ1�: �104�
We refer to this as state A. In parallel, consider the same stressed chain but with
dropped modulus of the bonds to the left of the particle n = 0. Its state is the
same as in the above chain if the force

p � �1ÿ g�kaE� �105�
directed to the right is applied to the particle m=ÿ1 and the same but opposite
force is applied to the particle m= 0. We refer to this as state B. The elimination
of these forces means that the jump in the modulus of the bond between the
particle m=ÿ1 and m=0 in the state A occurs.

The dynamics of the chain under this jump can be presented by the
superposition of solutions of two problems. The ®rst problem is the initial state B
of the stressed chain, while the second problem is the dynamics of the initially
unstressed chain with dropped modulus behind the particle m = 0; this last chain
is under the force (105) suddenly applied to the particle m=ÿ1 and directed to
the left, and the same but opposite force applied to the particle m=0.

The problem in total corresponds to a very slow phase-transition wave when
the time-interval between the jumps in the modulus of neighboring bonds is large
enough to permit the lattice to approach the static state before the jump. The
main question is whether such a wave can exist. The answer depends on the
behavior of the next bond which connects the particles m= 0 and m= 1. A slow
wave can exist only in the case where parameters a and b belong to the SAR
domain. Clearly, the boundary of this domain is the same for the second and in-
total problems and hence the solution can be obtained by means of the
examination of the former.

4.2. Solution

In terms of the dimensional values, dynamic equations for the left, m<ÿ1, and
the right, m>0, parts of the chain are
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M

�
1� b

d

dt

�
d2un
dt2
� gk

�
1� a

d

dt

�
�un�1 � unÿ1 ÿ 2un� �n < ÿ1�,

M

�
1� b

d

dt

�
d2un
dt2
� k

�
1� a

d

dt

�
�un�1 � unÿ1 ÿ 2un� �n > 0�, �106�

while for n=ÿ1 and n=0 they take the form

M

�
1� b

d

dt

�
d2uÿ1

dt2
� k

�
1� a

d

dt

�
�g�uÿ2 ÿ uÿ1� � u0 ÿ uÿ1� ÿ p �n � ÿ1�,

M

�
1� b

d

dt

�
d2u0
dt2
� k

�
1� a

d

dt

�
�u1 � uÿ1 ÿ 2u0� � p �n � 0�: �107�

Below the nondimensional values are used. The time-unit is de®ned similarly as
above: 1=o � ����������

M=k
p

, p '=p/(ka ) (with the prime dropped) and the same
normalization of the remaining variables is used as for the lattice. After taking the
Laplace transformation with respect to time, these equations become

s2uL
n � gE�uL

n�1 � uL
nÿ1 ÿ 2uL

n � �n < ÿ1�,

s2uL
n � E�uL

n�1 � uL
nÿ1 ÿ 2uL

n � �n > 0�,

s2uL
ÿ1 � E�uL

0 ÿ uL
ÿ1 � g�uL

ÿ2 ÿ uL
ÿ1�� ÿ

p

s
�n � ÿ1�,

s2uL
0 � E�uL

ÿ1 � uL
1 ÿ 2uL

0 � �
p

s
�n � 0�: �108�

A general solution can be expressed as follows:

uL
n � uL

ÿ1l
ÿnÿ1
ÿ �nRÿ 1�, uL

n � uL
0l

n
� �nr0�,

lÿ � 1ÿ s

2gE
�
������������������
s2 � 4gE

p
ÿ s�,

l� � 1ÿ s

2E
�
����������������
s2 � 4E

p
ÿ s�: �109�

Substituting this into the inhomogeneous equations of system (108) we ®nd the
solution as

uL
1 ÿ uL

0 � ÿ
8p�

������������������
s2 � 4Eg

p
� s�

�
������������������
s2 � 4Eg

p
� ����������������

s2 � 4E
p �� ����������������

s2 � 4E
p � s�3

: �110�
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The elongation considered ®rst becomes negative and corresponds to the SAR
domain if it remains non-positive all the time.

Singular points of expression (110) are s=ÿsa=1/a and the roots of the
equations [compare with (90)]:

�1� bs�s2 � 4�1� as� � �bs� s1, 4��s� s2, 4 � iO4��s� s2, 4 ÿ iO4�,

�1� bs�s2 � 4g�1� as� � �bs� s1, 4g��s� s2, 4g � iO4g��s� s2, 4g ÿ iO4g�: �111�

For the case of real frequencies, O4 and O4g,

sa < s1, 4 < s1, 4g, s2, 4g < s2, 4: �112�

The roots satisfy the Eqs. (94) and the following ones:

s1, 4g � 2bs2, 4g � 1,

2 s1, 4gs2, 4g � b�s22, 4g � O2
4g� � 4ga,

s1, 4g�s22, 4g � O2
4g� � 4g: �113�

The SAR/DOR interface can be determined in the same way as above, namely,
proceeding with the equality s2,4g=sa=1/a. The following parametric dependence
for the interface follows from this and Eqs. (113):

Fig. 8. The SAR, DOR and MR domains for the standard-material-spring viscoelastic chain.
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Fig. 9. The response of the two-phase viscoelastic chain (g=0.25). (a) The DOR domain: 1. a=1,

b=0.5; 2. a=1, b=0.25; 3. a=1, b=0. (b) The SAR domain: 1. a=2, b=0.5; 2. a=2, b=0.25; 3.

a=2, b=0. (c) The SAR domain: a=10, b=0.
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Fig. 10. The response of the two-phase viscoelastic chain (g=1). (a) The DOR domain: 1. the elastic

chain, a=b; 2. a=1, b=0.5; 3. a=2, b=1. (b) The SAR domain: 1. a=1, b=0; 2. a=2, b=0.5; 3.

a=2, b=0.25; 4. a=2, b=0. (c) The SAR domain: a=10, b=0.
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a � 1ÿ 2b=a��������������������������
2g�1ÿ 3b=a�p : �114�

This dependence is valid for all over the range 0 R b/a < 1/3 because the 4g-MR
domain [the MR domain corresponding to the second polynomial in (111)] is
contained in the SAR domain lying to the right of the boundary (114). Indeed,
the 4g-MR domain boundary is de®ned by the relation

b2 � 1

54g
�18gabÿ 12�1ÿ 12gab�3=2� �115�

which can be obtained from the corresponding dependence for the oscillator (49)
[also see (97)] by a linear transformation a4

���
g
p

a, b4
���
g
p

b: This dependence is
characterized by the following limiting points:

a � 1���
g
p �b � 0�, a � amin � 1

2

����
3

g

s �
b � bmax �

1

6

1�����
3g
p

�
�116�

and these points are placed to the right from the boundary (114). The SAR, DOR
and MR domains for a set of g are shown in Fig. 8. Note that the corresponding
result for g=1 is the same as for the lattice (Fig. 5). Some results obtained by the
numerical inversion of the expression (110) are presented in Figs. 9 and 10 where
V=(u0ÿu1)/p.

For a small jump of the modulus, g 4 1, a limit of the ratio, V=V1, exists
which can be used for the SAR/DOR interface asymptotic determination. This
limit is [see (105)]

V1 � 4����������������
s2 � 4E
p � ����������������

s2 � 4E
p � s�2 : �117�

For the elastic chain (E=1) this involves

V1 � J2�2t� �118�
where J2 is the Bessel function. This function becomes negative at a ®nite time [t
1 2.6; see Fig. 10(a), curve 1], and hence, contrary to the SAR domain, a slow
wave cannot exist.

5. Conclusions

1. In this paper, a phase-transition wave and crack propagation are considered for
some standard-viscoelastic-material systems, and the existence of the static-
amplitude-response (SAR) and dynamic-overshoot-response (DOR) domains
are shown. If the viscosity parameters belong to the latter, in particular, in the
elastic case, the dynamic overshoot phenomenon leads to a fast wave or a fast
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crack propagation. In a sense, such a process is similar to detonation. Indeed,
an excess in the energy release under the phase transformation (or fracture)
arises during a time-interval inherent for the element Ð as well as in
detonation. This results in the activation of a neighboring element, that is, in
the fast spread of the transformation. In particular, this phenomenon can
manifest itself in a positive di�erence between the initiation and dynamic stress
intensity factors in fracture. In contrast, in the case of the SAR domain where
there is not any dynamic overshoot, the considered wave or a crack can
propagate slowly, because there is no excess in the energy release. In this case,
especially for high viscosity, in the heart of the SAR domain, the element
activation or fracture takes a long time: the strain increases slowly and reaches
the critical value with large delay. Thus, the SAR domain more likely
corresponds to slow combustion or melting rather than detonation. In this
sense, one can conclude that brittle materials behave as if they are in the DOR
regime, while ductile materials correspond to the SAR domain. Note that the
asymptote of the DOR/SAR interface, b/a01/3 (a 41), is the same for the
viscoelastic oscillator, lattice and two-phase chain considered in this paper.

2. For an elastic body, some possibilities to avoid oscillations under an impact
and to eliminate the dynamic overshoot under a suddenly applied load are
shown. This can be achieved by a proper control of the dynamic load in an
initial portion of the loading period using a speci®cally designed shock
absorber. Such a possibility can be important in the application to the design of
a shock-proof structure and in some other applications, for example, in small-
scale experiments where a short-term high-level acceleration is required to
model the in¯uence of gravity. At the same time, such a control can be
applicable to the structure design to obtain a structure which can belong to the
SAR (or DOR) domain with respect to fracture or phase transition. This could
be achieved, in principle, by the creation of a proper post-peak tensile softening
of the structure element. This goal can also be achieved by a combined
in¯uence of the stress/strain law control and viscosity.

3. There exists a structure-associated size e�ect in the SAR/DOR domains
separation. Indeed, consider two samples with the same density r=M/a 2,
modulus k and viscosity times a and b< a, but with di�erent sizes of the lattice
cell. They must show the same properties in macro-level dynamic deformation,
but not in fracture or phase transition where only the nondimensional values,
ao and bo, are important. The frequency o � ����������

k=M
p � c=a, where the shear

wave velocity, c � ��������
k=r
p

, is the same for both samples. Thus, the
nondimensional relaxation/creep times are as large as the structure size, a, is
small. Consequently, the sample with a smaller structure size can belong to the
SAR domain, while another sample can belong to the DOR domain. (Under
the same conditions a coarse-grained material appears to be more brittle as it
should.)

4. The manifestation of the dynamic factor in fracture was considered by means
of an example as the fracture Mode III in a standard-material viscoelastic
square-cell lattice. At the same time, it is clear that the phenomenon exists in a
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general case, although the SAR/DOR domains interface depends, of course, on
the material structure and the fracture mode. In this connection, note that the
transient-problem solutions (51), (88) and (110) are valid for any type of
viscosity, that is, for any expression for the complex modulus, E=E(s )
(E(0)=1).

5. In this work, possibilities of slow propagation are examined, and a straight
crack, as the bond breakage between two neighboring lines of particles, is
considered. In contrast, in the case of the DOR domain, when only a fast crack
can exist, the excess of the energy release can lead to the breakage of other
bonds near the mentioned crack line which results in roughness of the crack
surfaces, oscillations in the crack velocity and an increase of the resistance to
the crack propagation.

6. It should be noted that the phenomena considered in this paper cannot
manifest themselves, at least, cannot be visible, in the case where no inherent
size unit exists, as for example, in a non-structured homogeneous viscoelastic
plane with a semi-in®nite crack.

7. In the determination of the SAR/DOR interface, it was seen that an `oscillation
conservation law' is valid, namely, if the overshoot exists the corresponding
oscillations do not disappear in time although their amplitude can decrease
exponentially under the in¯uence of viscosity. This fact allowed one to derive
an analytical description for the interface in each problem considered based on
an asymptotic analysis.
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