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Abstract

An elastic space containing an elastic helical rod subjected to both axial and radial
extension as well as torsion is considered. Due to translation-rotation helical symmetry, the

resulting elastic ®elds in the matrix can be expressed in terms of a two-dimensional helix-
associated coordinate system. In this problem, a `helical elastic foundation' as a
generalization of the Winkler foundation is determined by means of which the interacting

force and moment at the rod/matrix interface can be expressed in terms of the rod
displacement. The matrix is assumed to be linear elastic while the geometric nonlinearity of
the helical rod is taken into account. Using superposition of fundamental solutions for a

homogeneous elastic space (in the absence of the rod), and the constitutive and equilibrium
equations for the rod, the internal forces and moments in the rod as well as the
displacement and elastic ®elds in the matrix are obtained. Along with the general results,

two asymptotic solutions are presented. The ®rst, corresponding to a small curvature but
not too small pitch, allows an analytical integration of the rod±matrix interaction over the
rod cross-section boundary. The second corresponds to an almost straight helical rod: the
helix becomes a straight line, but in the limit the main normal to its axis describes a screw

surface as in the case of a `genuine' helix. In this case, the helical elastic foundation has a
closed-form parametric expression which is valid for a rather large range of the helix
parameters. The foundation sti�ness is found as a function of the helix pitch and the rod

radius; the problem thus is reduced to a system of ®nite, nonlinear equations. # 2000
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1. Introduction

From the point of view of their diverse applications, composites based on
curvilinear inclusions possess considerable advantages in comparison with straight-
®ber composites. The former can be more extensible and ¯exible and provide for a
greater controlled variation of the mechanical features of the composite. In
particular, for this reason, ropes and cables are usually fabricated as an assembly
of helical strands. Since curvilinear reinforcements lead to a hardening type
nonlinear stress±strain relation, this provides for an increased stability of the
material under extension thus leading to an essential increase of energy absorption
of the material before rupture (Cherkaev and Slepyan, 1995). It is one of the most
important features of such a composite. If the structure is properly chosen, stable
extension continues even during progressive fracture of the matrix. A simple
model of such a process is presented below.

Among such structures, composites based on helical inclusions deserve special
attention. The helix, having two free geometric parameters, is a unique perfect
curve with uniform curvature and torsion which, for the case of a single helical
inclusion in an isotropic matrix (or in the case of a set of coaxial helices of the
same pitch and direction of rotation), leads to helical symmetry and thus presents
a unique possibility to examine the main phenomena based on a relatively simple
model. Owing to uniformity, translation-rotation symmetry holds, which leads to
the existence of simple states of the composite. In such a state, the stress and
strain ®elds appear invariant to an observer moving and rotating with the triad
natural to the helix. In this connection, note that a composite with a spatial helix
represents a two-dimensional problem, while a plane curvilinear ®ber leads to a
three-dimensional problem.

Composites based on plane curvilinear ®bers and layers were considered by
Kagawa et al. (1982), Chou (1992), Chiskis et al. (1997) and Chiskis and Parnes
(1998). Dynamic fracture behavior of helical ®ber metal±matrix composites was
experimentally studied in Kagawa et al. (1982). It was shown that initial twisting
of the ®ber increases the ductility of the composite. Fairly larger ultimate tensile
strains were obtained at a small expense of ultimate tensile stresses. Composites
with helical symmetry were also considered in Iwata et al. (1994), Li et al. (1994),
Kohkoner et al. (1991). Delamination of a helically reinforced composite was
experimentally investigated by Foral (1989). The mechanics of helically wound
materials was studied by Morris and Harris (1989) and Kautz (1987). Some
devices of thermal energy storage systems include a helical heat exchanger
embedded in a soil (Rabin and Korin, 1996) which can be considered in the
framework of the helical inclusion theory. Helical elements have also been used as
soil stabilizers (Shewbridge and Sousa, 1991). Many applications of single- and
multi-helix structures for medical purposes are shown in the Handbook of
Coronary Stents (1997).

It should be mentioned that along with the problem of a composite material
with helical inclusions, helical systems are relevant to a wide variety of ®elds in
di�erent areas of science and engineering, from mechanical properties of helical
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DNA molecules and chiral polymers to mechanics of reinforced concrete, large-

scale spatial structures, deployable antennas, etc. Note that helical symmetry of

mechanical properties arises not only due to the corresponding inclusion. For

example, as shown in Lhermitte et al. (1989), some types of cross-ply reinforced

composites exhibit helical symmetry on the microlevel. Further, it is known that

some polymers develop helical properties on the microlevel during polymerizations

(Fujiki, 1996; Meille and Allegra, 1996; Okamoto and Nakano, 1996). We present

below several types of systems related to this `helical topic'.

Helical structures are very common in biological systems. It was recently found

that some bones possess a helical organization of their structure (Petryl et al.,

1996). A special class of biological objects with helices is represented by the DNA

molecule which is known as a double helix. Mechanical properties of such a helix

are of interest (Bustamante et al., 1994; Kobe and Wiest, 1993; Smith et al., 1992).

In addition, some medical devices (for example, micro-pumps) embedded in a bio-

medium have helical structure (Dong et al., 1996; Pathak and Singh, 1996).

Helical microstructure also has an in¯uence on the mechanical properties of wood

(Navi and Huet, 1989).

Many structural elements used in engineering practice can be considered as

helical composite structures. The best known example, as mentioned above, is a

cable consisting of a number of helical strains. The mechanics of such a cable has

recently been studied intensively (Cardou and Jolicoeur, 1997; Zhang, 1997;

Grum-Grzhimajlo et al., 1995; Williams et al., 1993; Ergashov, 1992). Helical

strands are also used as reinforcements for tubes and ¯exible pipes (Butterworth,

1992; Breig, 1991; Savenkov and Solodova, 1988). In Shen et al. (1997), a helical

constrained layer was shown to be useful as an actuator for longitudinal-torsional

vibration control of shafts.

Some classes of solutions relevant to the dynamics of a helical string were

recently obtained. An exact analytical solution describing solitary waves in an

inextensible helical ®ber was obtained in Slepyan et al. (1995a). Some numerical

results of the problem were presented in Slepyan et al. (1995b). This solution was

then extended to the case of an extensible helical string of an arbitrary nonlinear

elastic material (Slepyan et al., 1998). Solitary waves in the helical string, rotating

at in®nity as a rigid body, were thereafter considered in Krylov and Rosenau

(1996). A complete traveling wave solution describing all possible types of periodic

and solitary waves in an inextensible ®ber was obtained in Krylov et al. (1998).

Finally, it was shown that axial dynamic tension of a helical thread leads to an

extraordinary nonstationary binary wave (Krylov and Slepyan, 1997).

This topic is not exhausted by mechanical problems. Electro-magnetic-wave-

propagation conductors preshaped into a helix are widely used, especially as

antennae. This kind of device has long been in use (Watkins and Ash, 1954).

Some recent results can be found in Padros et al. (1997) and Pistol'kors et al.

(1995). A large number of works are devoted to the study of so-called chiral

media. Such a medium can be represented by a composite containing helical

conductive or dielectric ®bers embedded in a matrix. As a result, the composite
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possesses helical symmetry in its electro-magnetic features. This has been studied

by Lindell et al. (1994), Mariotte et al. (1996) and Ge et al. (1996).

In the present work, uniform axial and radial extension and torsion of the

matrix perturbed by the helical inclusion are studied. The work falls within the

®eld of the mechanics of heterogeneous materials (Aboudi, 1991; Christensen,

1979; Hashin, 1983). The main goals are (a) homogenization of the helix-inclusion

composite, that is, the determination of additional global sti�nesses introduced by

the inclusion; (b) a derivation of the main asymptotes which describe the

inclusion/matrix interaction, thus leading to the determination of a `helical elastic

foundation' as a generalization of the Winkler elastic foundation and (c)

estimation of the inherent scales of the local, inclusion/matrix interaction stress

®elds.

In this paper, the main solutions from uniform strains of an elastic space

perturbed by a unique, elastic helical inclusion are derived. Due to translation-

rotation helical symmetry these solutions are two-dimensional in a helix-associated

coordinate system: they are independent of the coordinate along the rod axis.

The inclusion is considered to be a helical rod whose behavior is governed by

geometrically nonlinear equations. Elongation of the rod is taken into account

along with its bending and torsion while lateral shear is neglected. In accordance

with the equations for the rod, only integral values of the rod±matrix interaction,

namely the normal force and moment, are considered. The Fourier components,

self-equilibrated at the rod cross-section are not taken into account nor is stability

of the helical rod under compression and the decreasing-helical-angle torsion of

the composite considered.

The radial displacement and the rotation of the rod cross-section as well as the

rod±matrix-interaction radial force and moment are derived. In determining the

stress and strain ®elds in the matrix, the `method of imaginary sources' is used.

These ®elds are represented using superposition of the fundamental Kelvin

solutions corresponding to a homogeneous elastic space (in the absence of the

rod) subjected to a concentrated force and a concentrated moment. Displacement

and strain ®elds are calculated as functions of unknown distributions of these

forces and moments along the deformed rod axis. Making use of compatibility at

the rod/matrix interface, the proper distributions are found which lead to the

actual stress and displacement ®elds in the matrix as well as the internal forces,

moments and displacements of the rod.

Numerical results of the solutions are presented to show the in¯uence of the

helix parameters and the ratios of the matrix-to-helix elastic moduli. The stress

®elds in the matrix due to the rod/matrix interaction are shown to decay rapidly

outward from the rod. In essence, they exist in a surrounding-rod layer of the

order of the rod radius.

Along with the general results, some asymptotic solutions are presented. The

®rst corresponds to the condition when the curvature of the helix is small and the

angle between the helix and its axis, the `helical angle' is not too close to p/2. In
this asymptote, the helical foundation is represented by a single-integral

L.I. Slepyan et al. / J. Mech. Phys. Solids 48 (2000) 827±865830



parametric expression while in the general case it has a double-integral
representation.

The second asymptote corresponds to a small helical angle and helix radius,
such that the helix approaches a straight line, but the normal to its axis forms (in
the limit) a screw surface as in the case of a `genuine' helix. This asymptotic
formulation leads to ®nite expressions for the rod/matrix interaction. The helical-
foundation is found in terms of ®nite helix-pitch-dependent, nonlinear parametric
expressions. As a result, the problem is reduced to a system of ®nite nonlinear
equations. This asymptote is shown to be valid for a rather large range of the
helix angle.

2. Some preliminary remarks

We consider a right-hand rotation helical elastic rod embedded in a matrix. We
denote the central curvilinear axis of the rod, as the s-axis, represented by a helix
of radius r0 (Fig. 1) and let the angle between the helix and its axis (x-axis; x0x1)
be a0. In the following, we write helix to distinguish this central helix from others.

The helix can be characterized by the orthogonal Frenet triad ttt, n, b:

ttt � R 0, �1�

ttt 0 � k0n, k0 � sin 2 a0
r0

, �2�

n 0 � ÿk0ttt� t0b, t0 � sin a0 cos a0
r0

, �3�

Fig. 1. The helical rod and the X-coordinate system.
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b 0 � ÿt0n, l � 2pr0 cot a0, �4�
where, here and below,

��� 0 � d���
ds

,

and where R is the position vector; ttt, n and b are the unit vectors (tangent, main
normal and bi-normal, respectively); k0 is the curvature, t0 is the torsion of the
curve and l is the pitch of the helix.

The geometric and material characteristics of the rod are assumed to be s-
independent Ð in a helix-associated coordinate system Ð in accordance with the
translation-rotation symmetry of the helix. In addition, the rod cross-section is
taken as symmetric about the main normal to the helix thus leading to re¯ection
symmetry.

Under these conditions, simple states of the composite are considered in which
the components of tensors (in the description of the state) are s-independent as are
the above-mentioned characteristics. Accordingly, uniform axial and radial
extension of the composite and its torsion around the x-axis are considered.

Additional restrictions such as constitutive law, homogeneity, linearity, etc. are
not introduced at this stage. However, we note here that the complete study of the
problem is carried out below under a formulation where the geometrically
nonlinear elastic rod is assumed to have a circular cross-section and the in®nite
matrix is considered in the framework of the linear elasticity. A circular cross-
section is not only most natural for a ®bre inclusion but also leads to a simpli®ed
determination of the rod/matrix interaction force and moment based on the stress
®eld in the matrix.

3. Coordinate systems

We de®ne a helical transformation as a rigid translation-rotation movement of
a material space such that material points belonging to the helix (the curvilinear s-
axis) and its axis (the x-axis) remain on the s- and x-axes, respectively. We seek a
state which is invariant under this transformation. Our goal here is to construct a
helix-related coordinate system such that only one coordinate, s, is variable under
the helical transformation. Clearly, under these conditions, any point of the
composite moves along some helix. Thus, we construct, by this de®nition, a family
of coordinates which consists of coaxial helices having the same pitch and
direction of rotation.

Let r be the radius of any given helix of this family and let a be the angle
between the helix and the x-axis (for the central helix, r=r0, a=a0). The rotation
angle c can then be expressed as

c � x tan a
r

� x tan a0
r0

�5�
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and hence,

a�r� � arctan

�
r

r0
tan a0

�
: �6�

We now show that there exists no surface orthogonal to the ®rst family, i.e. to the
family of s-coordinates. Assume, for a moment, that such a surface, S, does exist.
Its intersection with a cylindrical surface of radius r is a curve, Z, orthogonal to
the helices lying on this cylindrical surface, and hence, it is also a helix (a
`conjugate' helix) which forms an angle a(r )ÿp/2 with the axis. Furthermore, a
straight radial line orthogonal to the axis must belong to S since it is orthogonal
to each helix (and conjugate helix) crossed. Consider a regular (non-singular)
point on S. In a vicinity of this point, the surface (if it exists) can be represented
as

x � x�r, Z�: �7�
We then have

@x

@Z
� sin a,

@x

@r
� 0

@

@r

@x

@Z
� r20 tan a0
�r20 � r2 tan 2 a0�3=2

6� @

@Z
@x

@r
� 0: �8�

It follows from this inequality that the representation (7) does not exist and hence,
such a surface does not exist; thus no global orthogonal coordinate system exists
with the helices as a family of coordinate lines.

Therefore, among helix-associated coordinate systems only oblique-angled
global systems are de®ned below. In addition, rectangular local coordinate systems
are used. The following coordinate systems are de®ned:

X-system: a global rectangular Cartesian system xm, m = 1, 2, 3; x10x (s = 0
at x=0, Fig. 1).

C-system: a cylindrical system, x, r, y (Fig. 2a) related to the X-system such that
the helix crosses the plane x= 0 at r=x2=r0, y=x3=0. In this system, the radial
displacement is denoted by the subscript r. [This system is used to describe
uniform strain of the matrix (in the absence of the rod).]

H-system: a local, rectangular Cartesian system xm with the origin at a point, s,
of the helix (Fig. 2b). In this system, x1 is parallel to x (x=xÿs cos a0) and x3 is
directed toward the x-axis along the main normal to the helix. The x-axis crosses
the x2, x3-plane at the point (0, 0, r0). Note that after displacements of the X-
system (s cos a0 and r0, along x1 and x2, respectively), and its revolution about the
helix axis by an angle p/2+c, c=s sin a0/r0, the X-system coincides with the H-
system. (The H-system is used for the representation of the fundamental ®elds
produced by a concentrated force or a concentrated moment applied at the origin
of the coordinate system in a space ®lled entirely by the matrix material.)
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T-system: s, n, b, where, according to the Frenet triad, n and b are Cartesian
rectangular coordinates in a plane orthogonal to the helix (Fig. 2c). A helical
coordinate line, s, connects points with the same couple of n, b. The angle
between s and this plane depends on the distance from the helix [at the helix it is
p/2, see (6)]. In this system, the displacement directed toward the helix axis is
denoted by the subscript n. Note that this displacement di�ers from that in the C-
system by sign only. (This system is used in the formulation of the equilibrium
equations of the helical rod.)

TC-system: s, r, f with the locally cylindrical coordinates on the plane s =
const: n=r cos f, b=r sin f (Fig. 2d). Relations between the coordinate systems
are presented in the Appendix. (This system is used in calculating the rod/matrix
interaction force and moment.)

Fig. 2. (a) The helical rod axis and the cylindrical C-system. (b) The H-system. (c) The T-system. (d)

The TC-system at s=0.
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Consider the oblique-angled helix-associated T- and TC-systems. The position
vector can be represented as

R � Ra � nn� bb �9�

where Ra corresponds to a point at the helix. From this, it follows that

R 0 � �1ÿ k0n�ttt� t0�nbÿ bn� � �1ÿ k0n�ttt� t0rkf, �10�

where kf is the tangent unit vector (Fig. 3).
Thus, the vector R ' contains a rotational component proportional to the

distance, r, from the n, b-origin. Note that this coordinate system can be obtained
by the corresponding bending and torsion of a rectangular Cartesian system
initially associated with a straight line. The length of the tangent vector, R ', is

H1 �j R 0 j�
�����������������������������������
�1ÿ k0n�2 � t20r

2

q
, �11�

where r 2=n 2+b 2.
In the following, we assume the rod to be of circular cross-section, 0 R r R r0.

Note that the expression (11) can be simpli®ed if the curvature of the helix is
small and the angle a0 is not too close to p/2, namely if

k0r0 � cos a0: �12�

In this case, for rR r0, this length,

H1 �j R 0 j0
�����������������
1� t20r2

q
, �13�

can be considered as f-independent.

Fig. 3. The tangent unit vector.
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4. Equilibrium of the helical rod

The orthogonal triad ttt, n, b natural to the helix and the T-system are assumed
to be associated with the actual state of the deformed rod.

The equilibrium equations for the rod are then as follows:

Q 0 � q � 0, �14�

M 0 � ttt� Q� m � 0, �15�

where the internal force acting on the rod's cross-section with the external normal
ttt is

Q � Tttt�Nn� Bb �16�

and the internal moment acting on the same cross-section is

M �Mtttt�Mnn�Mbb: �17�

The external force and moment distributed along the helix are accordingly

q � qtttt� qnn� qbb,

mmm � mtttt� mnn� mbb: �18�

For a simple state of the rod with s-independent components of the internal forces
and moments, the equilibrium equations take the form

k0N � qt,

k0Tÿ t0B � ÿqn,

t0N � ÿqb,

k0Mn � mt,

k0Mt ÿ t0Mb ÿ B � ÿmn,

t0Mn �N � ÿmb: �19�

In particular, from this and from Eqs. (2) and (3) it follows that

qx � qt cos a0 � qb sin a0 � 0,
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qy � qt sin a0 ÿ qb cos a0 � sin a0
r0

N,

mx � mt cos a0 � mb sin a0 � ÿN cos a0 � ÿqyr0,

my � mt sin a0 ÿ mb cos a0 � sin a0
r0

Mn �N cos a0: �20�

Eqs. (19) can then be rewritten in the following form:

k0Tÿ t0B � ÿqn, �21�

N � r0
sin a0

qy, �22�

k0Mt ÿ t0Mb ÿ B � ÿmn, �23�

Mn � r0
sin a0

�my ÿ qyr0 cot a0�, �24�

qx � 0, �25�

mx � ÿqyr0: �26�
The number of unknowns can be essentially reduced by taking into account
re¯ection symmetry, that is, equivalence of the `forward' and `back' directions
along the x-axis. As was mentioned, this equivalence takes place if the cross-
section of the rod possesses symmetry about the main normal, that is, with respect
to the b-to-(ÿb )-transformation. Hence each component of any physical external
vector must be invariant with respect to the transformation (x, y ) to (ÿx, ÿy ).

Fig. 4. The normal rod±matrix interaction force qn (the vector representation of the interaction moment

mn has the same orientation).
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From this, it follows that only normal-oriented vectors can exist (Fig. 4) and

qt � qb � mt � mb � 0: �27�
Therefore, N=Mn=0, and only two nontrivial equilibrium equations remain,
namely

k0Tÿ t0B � ÿqn, �28�

k0Mt ÿ t0Mb ÿ B � ÿmn: �29�
Consider an element of the rod bounded by two cross-sections with coordinates s
and s + ds. Beside the external force, qn ds, and moment, mn ds, self-equilibrated
tractions can act on the external surface of the element. Although such tractions
can be present in the formulation of the problem using a higher-order rod model,
for the case of a Bernoulli±Euler rod only non-self-equilibrated loads are
signi®cant. In the following, the latter model is used assuming the rod material to
be su�ciently rigid in comparison with the matrix material.

5. Deformation of the rod and internal forces and moments

The deformation of the rod can be considered as consisting of an axis-
associated deformation and internal torsion. The former state of a thin rod, its
stretch, curvature and torsion, is de®ned as the state of its axis. Such is the case if,
during deformation, the normal to the axis consists of the same material points.
This means that the family of helices in the T-system represents material helices.
The internal torsion corresponds to torsion of the rod such that its shape remains
constant, namely that of the `rigid' helix. Under internal torsion, material helices
rotate about the coordinate helices. Internal torsion is not considered here.

We now express the initial parameters of the helix and the axis-associated
deformation of the rod in terms of strain of the cylinder 0R rR r0 (Fig. 5):

Fig. 5. The reference cylinder rR r0.
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lx � dx

dxi
, lr � r0

ri0
, g: �30�

In the above, x i and r i0 are initial values of the material coordinate and helix
radius, respectively, g is the torsion of the cylinder, i.e. the increase of the angle of
revolution about the x-axis per unit length in the deformed state; lx and lr are
corresponding stretches in the x- and r-directions, respectively. Recalling that x=s
cos a0, the stretch of the helix can be expressed as

ls � ds

dsi
� cos ai0

cos a0
lx: �31�

Letting (x, y ) and (x i, y i) be the C-coordinates of a material point of the helix in
the deformed state and the initial state, respectively (at the origin of the
coordinate system, x=x i=0), the following equalities then hold:

y � x tan a0
r0

,

yi � yÿ xg � xi tan ai0
ri0

: �32�

It follows that

tan ai0 �
lx
lr
�tan a0 ÿ gr0�: �33�

This formula de®nes the initial angle, a i
0 (0 R a i

0 < p/2). Now the helix stretch is
determined by expression (31) and its initial curvature and torsion, namely by the
corresponding expressions (2) and (3) now used for the values r i0, a i

0. Under
condition (12), the axis-associated deformation of the rod, the longitudinal strain
and variation of curvature and torsion, are de®ned by the corresponding
parameters for the helix as determined above. Note that under the present
considerations, lateral shear of the rod is neglected and hence, the material helix is
normal to the material cross-sections in both the deformed and initial states of the
rod. Further, the rotation of a rod cross-section about the n-axis can then be
expressed as

Y � Yn � a0 ÿ ai0: �34�

Eqs. (30)±(34) yield the following representation, respectively, for the angle of
rotation of the cross-section of the rod, the change of its curvature, H-torsion and
the stretch of the rod:

a0 ÿ ai0 � arctan

� �lr ÿ lx� tan a0 � lxgr0
lr � lx�tan a0 ÿ gr0� tan a0

�
, �35�
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k0 ÿ ki0 � k0

"
1ÿ lr

�tan Yÿ tan a0�2
�1� tan 2 Y� tan 2 a0

#
, �36�

t0 ÿ ti0 � t0

"
1ÿ lr

tan a0�1ÿ tan 2 Y� ÿ tan Y�1ÿ tan 2 a0�
�1� tan 2 Y� tan a0

#
, �37�

ls � lx
1� tan a0 tan Y�����������������������

1� tan 2 Y
p : �38�

For the cylinder r=r0 undergoing small strains, i.e. when (Ex, Er, g )<<1, the above
relations take the form

Y0�Er ÿ Ex� sin a0 cos a0 � gr0 cos 2 a0, Ex � lx ÿ 1, Er � lr ÿ 1, �39�

k0 ÿ ki002t0Yÿ k0Er, �40�

t0 ÿ ti00k0Y
1ÿ tan 2 a0

tan 2 a0
ÿ t0Er, �41�

Es � ls ÿ 10Y tan a0 � Ex: �42�
Assuming the rod material to be elastic and the linear Hook's law to be valid, we
can express the internal longitudinal force and moment as follows:

T � EA�ls ÿ 1�, �43�
where E is the Young elastic modulus of the rod material, and A is the cross-
section area,

Mb � EI�k0 ÿ ki0� �44�

and where I is the moment of inertia (for the homogeneous circular cross-section,
I=pr 4

0/4). The torsional moment is expressed as

Mt � GIp�t0 ÿ ti0�, �45�

where G is the shear modulus of the rod material and Ip is the polar moment of
inertia (for the homogeneous circular cross-section Ip=pr 4

0/2).
Note that the shear force B is not determined here from the shear strain since

the latter is neglected. Instead we assume the perpendicularity condition for the
helix and the rod cross-section.

Note that strain of the helix can be small, vlsÿ1v<<1, even under a large
deformation. In this case, the dependence of lr on lx becomes ls-dependent:
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lr � lx
tan a0 ÿ gr0����������������������������������������

�lx=ls cos a0�2 ÿ 1

q 0lx
tan a0 ÿ gr0�����������������������������������
�lx= cos a0�2 ÿ 1

q : �46�

By way of example, let us consider a limiting deformation of an inextensible helix
which degenerates to a straight line. Let g=g0=0. In this case, the stretch lx=1/
cos a i

0ls=1. Under this deformation

y � x tan a0
r0

and s � x

cos a0
�47�

are invariable and hence,

t0 � sin ai0
ri0

: �48�

This relation shows how the rotation of the helix and hence, H-torsion of the
helical bar vary when the helix is strained 1.

6. Kelvin's fundamental solutions

We seek the response of the matrix surrounding the rod to the action of a force,
q3=ÿqn, and moment, m3=ÿmn uniformly distributed along the bar (Fig. 4).
Using the H-system, we note that the subscript `3' denotes the corresponding
component in this system, while qn (28) and mn (29) are the force and the moment
acting on the rod. Also note that in this context, `uniformly' means that these
components applied to the matrix by the rod are s-independent. Thus, the
problem here concerns the external domain surrounding the helical rod.

We obtain a solution according to the following procedure. The displacement
and stress ®elds produced by a concentrated force in an unbounded elastic space
(in the absence of the rod) are ®rst determined using Kelvin's fundamental
solution. The corresponding ®elds due to a concentrated moment can then be
easily obtained. Superposition of the ®elds induced by such forces and moments
directed toward the helix axis and uniformly distributed along the helix represents
the required ®elds. In this way, the rod/matrix interaction force is represented as a
sum of two terms: the ®rst is proportional to the force distributed along the helix
and the second is proportional to the moment also distributed along the helix. A
similar representation is used for the rod/matrix interaction moment.

In this formulation, the stress ®eld is constructed to correspond to arbitrary
values of the force and the moment, which are then determined uniquely. In doing
so, the stress ®eld is uniquely determined as well. However, this uniqueness is a
consequence of the formulation, where only singularities corresponding to the
force and moment are distributed along the rod axis. In fact, an additional self-

1 Large torsion under such elongation explains why a cable reeled out from a coil must be untwisted.
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equilibrated part of the ®eld (self-equilibrated at the rod cross-section boundary)
must be present in the exact solution. However, it cannot be found based on the
formulation adopted above since the corresponding interface conditions are not
taken into account. This additional ®eld can have an importance in itself,
especially for the determination of the initiation of delamination and fracture of
the matrix. Moreover, the solution with a `correct' self-equilibrated ®eld may
correspond to a corrected non-self-equilibrated force/moment ®eld as well.

The rough approximation used in this study is justi®ed since it yields reasonable
results in the homogenization. Note that the self-equilibrated ®elds are local, near-
rod ®elds, and the geometric nonlinearity concerns them as well as the rod. In the
approach to the problem which is adopted, the nonlinearity in the description of
the low-modulus matrix is neglected assuming it to be a `second-order' e�ect. This
approach seems to be reasonable for the determination of the deformation of the
rod and for an estimation of the e�ective properties of the composite. The
problem for the local, near-rod ®elds, which are important mainly for the
estimation of fracture initiation, is still open. At the same time, the ®eld induced
by the distributed force/moment singularities creates a framework for the local
®eld representing conditions far from the bar. In addition, this non-self-
equilibrated ®eld solution yields an estimate of the e�ective region of the complete
®eld location since the self-equilibrated components decay with the distance from
the rod faster than the former components.

Thus, the concentrated forces and moments play an auxiliary role, as they
remain outside the real domain of the matrix. The unknown force and moment
densities are then determined using the condition of continuity of the displacement
and rotation at the interface r=r0. However, in this section, only the ®elds
produced by unit concentrated forces and moments are considered.

Consider a space ®lled entirely by the matrix material. Although the helical rod
is not considered to be present, we express the required quantities in terms of the
above introduced H-system, Fig. 2b. We consider the space to be subjected to the
concentrated force, q 0

h, and moment, m 0
h, applied at the origin of the H-system at

a point s and directed along the h-axis (h = 1, 2, 3). Let qu h
m (x1, x2, x3) and

mu h
m (x1, x2, x3), m=1, 2, 3, be the m-components of displacements induced by the

unit force (q 0
h=1) and moment (m 0

h=1), respectively. The left superscripts used for
the fundamental stresses, qs h

ml and
ms h

ml, have the same sense (m, l= 1, 2, 3). The
components of displacements follow from the general Papkovich±Neuber
representation (see, e.g., Fung, 1965)

qum � 4�1ÿ n�Fm ÿ @

@xm

X3
l�0

xlFl, x0 � 1: �49�

For the case considered,

Fl � 1� n
8p�1ÿ n�EMR

dlh, R2 �
X3
m�1

x2m, �50�
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where n is the Poisson's ratio, EM is the Young modulus of the matrix and dlh is
the Kronecker delta. Therefore, we have

quhm �
1� n

8p�1ÿ n�EM

�
xmxh
R3
� �3ÿ 4n�dmh

R

�
: �51�

The stress components are expressed as follows:

qshml �
1

8p�1ÿ n�

�
�1ÿ 2n�xhdml ÿ xmdlh ÿ xldmh

R3
ÿ 3xmxlxj

R5

�
: �52�

Displacements induced by the unit moment m 0
3=1 are 2

mu3m �
1

2

 
@qu1m
@x2
ÿ @

qu2m
@x1

!
� 1� n

4pEM

x1dm2 ÿ x2dm1

R3
: �53�

The corresponding stress components are given as

ms3ml �
1

2

 
@qs1ml

@x2
ÿ @

qs2ml

@x1

!
� 3

8p
x2�xmdl1 � xldm1� ÿ x1�xmdl2 � xldm2�

R5
: �54�

Note that displacements and stresses corresponding to moments m 0
1 and m 0

2 can be
obtained from the expressions (53) and (54) by means of the cyclic permutation of
the explicitly written indices.

Thus, the displacement components induced by the unit force and moment
directed towards the helix axis (h=3) are

qu31 �
1� n

8p�1ÿ n�EM

x1x3
R3

, qu32 �
1� n

8p�1ÿ n�EM

x2x3
R3

,

qu33 �
1� n

8p�1ÿ n�EM

�
x23
R3
� 3ÿ 4n

R

�

mu31 � ÿ
1� n
4pEM

x2
R3

, mu32 �
1� n
4pEM

x1
R3

, mu33 � 0: �55�

Finally, the stress components are written as

qs311 �
1

8p�1ÿ n�

�
�1ÿ 2n�x3

R3
ÿ 3x21x3

R5

�
,

2 A pure moment without shear singularity is considered because lateral shear of the bar is neglected.
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qs322 �
1

8p�1ÿ n�

�
�1ÿ 2n�x3

R3
ÿ 3x22x3

R5

�
,

qs333 � ÿ
1

8p�1ÿ n�

�
�1ÿ 2n�x3

R3
� 3x33

R5

�
,

qs312 � ÿ
3

8p�1ÿ n�
x1x2x3
R5

,

qs313 � ÿ
1

8p�1ÿ n�

�
�1ÿ 2n�x1

R3
� 3x1x

2
3

R5

�
,

qs323 � ÿ
1

8p�1ÿ n�

�
�1ÿ 2n�x2

R3
� 3x2x

2
3

R5

�
,

ms311 �
3

4p
x1x2
R5

, ms322 � ÿms311,
ms333 � 0,

ms312 �
3

8p
x22 ÿ x21
R5

, ms313 �
3

8p
x2x3
R5

, ms323 � ÿ
3

8p
x1x3
R5

: �56�

7. Fields in the matrix at the interface

We now use the T-system in which we must ®nd the force, qn, and moment, mn,
acting on the prospective cross-section of the rod, as well as its displacement, Un

and rotation, Yn. (As was mentioned above, since it follows from the symmetry of
the problem that all vectors are oriented along the main normal to the helix, that
is, in the T-system, only components with the subscript n remain.)

A two-dimensional element of the interface is formed by a one-dimensional
element of the cross-section boundary and the one-dimensional element which is
normal to the cross-section [see the ®rst term in the expression of R ' (10)].
According to the accuracy as de®ned in (12), this component is the unit tangent
vector. Hence, the radial displacement of the rod, the force and the moment can
be found in terms of displacements and stresses, properly averaged over the
circumference r=r0. With this in mind, we de®ne the following components of
displacements and stresses along this circumference (Fig. 6):

u01 � ut�0, r0, f� ÿ the displacement in ttt-direction,

u02 � un�0, r0, f� ÿ the displacement in n-direction,
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s022 � snm�0, r0, f� and s032 � sbn�0, r0, f� ÿ the stresses acting in

n-direction,

s021 � snt�0, r0, f� and s031 � sbt�0, r0, f� ÿ the stresses acting in

ttt-direction:
�57�

These components, expressed in terms of the fundamental solutions, are

u0m � gml�q03qu3l �x1, x2, x3� � m03mu
3
l �x1, x2, x3��,

s0ml � gmpglq�q03qs3pq�x1, x2, x3� � m03ms
3
pq�x1, x2, x3��, �58�

where q 0
3 and m 0

3 are the unknown force and moment distributed along the helix.
The displacements and stresses on the right-hand-side are de®ned in the H-system
[see (55) and (56)]; coordinates xm and the spin matrix C0 [gml] are presented in
the Appendix.

The values averaged over the cross-section boundary have the following
expressions:

U 0
n � ÿU 0

r �
1

2p

�2p
0

u02 df, �59�

Y0
n �

1

pr0

�2p
0

u01 sin f df, �60�

Fig. 6. Components of stresses at the rod±matrix interface.
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q0n � q02 � r0

�2p
0

�s022 cos f� s032 sin f�df, �61�

m0n � m02 � ÿ
1

2
r20

�2p
0

�s021 sin 2f� s031�1ÿ cos 2f��df: �62�

Here U 0
r=r0ÿr i0 is the displacement of the matrix with positive direction along

the r-axis in the C-system.
We now consider the matrix under such a loading (body force and moment),

uniformly distributed along the helix and let q 0
3 and m 0

3 (independent of s ) be the
corresponding distributions per unit length of the helix. In this case, the ®elds can
be found by our superposition. For example,

Ur �q Urq
0
3 �m Urm03 �

�1
ÿ1

U 0
r ds, Yn �q Yrq

0
3 �m Yrm03 �

�1
ÿ1

Y0
n ds, �63�

qn �q qnq
0
3 �m qnm03 �

�1
ÿ1

q0n ds, mn �q mnq
0
3 �m mnm

0
3 �

�1
ÿ1

m0n ds: �64�

In relations (63) and (64), the left superscripts q and m correspond to the
assumptions m 0

3=0 and q 0
3=0, respectively, the same as in the previous section.

Due to symmetry the components obtained are s-independent.

8. System of equations with respect to unknown forces

When the s-independent components of the displacement and the angle of
rotation of the cross-section of the rod as well as distributed forces and moments
acting on the helix are calculated [see Eqs. (63)], the unknown force q 0

3 and
moment m 0

3 can be found using equilibrium equations for the rod, Eqs. (28), (29)
and compatibility conditions. These calculations are performed in terms of given
axial, lx, and radial, 1lr, stretches and torsion g, of the cylinder 0 R r R r0, Eq.
(30).

The total radial displacement of the matrix averaged over the cross-section
boundary of the rod is expressed below as a sum of three terms. The ®rst,
1Ur=r0(

1lrÿ1), is the free-rod displacement of the matrix at r=r0 (in the C-
system) which corresponds to the given uniform radial strain of the matrix
(without any in¯uence of the rod). The second corresponds to the rod/matrix
interaction force, and the third, to the interaction moment. Thus, the total
displacement is as follows (positive displacements U and Ur are directed away
from the x-axis of the helix):

U �0 Ur �q Urq
0
3 �m Urm03: �65�

Using this and the equivalence of radial displacements of the matrix and of the
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rod,

U � r0 ÿ ri0, �66�
we obtain the initial radius of the helix and the radial stretch, lr, of the cylinder
considered, in terms of q 0

3 and m 0
3:

ri0 �
1
1lr
�r0 ÿq Urq

0
3 ÿm Urm03� �67�

lr � r0

ri0
�

1lrr0
r0 ÿq Urq

0
3 ÿm Urm03

: �68�

Finally, the second compatibility condition Y 0
in=Y=a0ÿa i

0 combined with the
equations of the equilibrium of the rod, Eqs. (28) and (29), leads to the system of
three nonlinear algebraic equations with respect to q 0

3, m
0
3 and shear force, B. We

present here this system and all additional equations explicitly.

8.1. The system of equations with respect to q 0
3, m

0
3 and B

a0 ÿ ai0 �q Ynq
0
3 �m Ynm03, �69�

k0Tÿ t0B � ÿqn � ÿ�qqnq03 �m qnm03�, �70�

k0Mt ÿ t0Mb ÿ B � ÿmn � ÿ�qmnq03 �m mnm
0
3�: �71�

Here the values Yn, qn and mn are functions of unknown distributions q 0
3 and m 0

3

and are calculated using Eqs. (63) and (64). Note that in the case of a sliding rod/
matrix contact, the equation mn=0 must be used instead of Eq. (69).

8.2. The change of angle of rotation, curvature, torsion and stretch of the rod as
functions of the stretches of the cylinder 0R rR r0

a0 ÿ ai0 � arctan

� �lr ÿ lx� tan a0 � lxgr0
lr � lx�tan a0 ÿ gr0� tan a0

�
, �72�

k0 ÿ ki0 � k0

"
1ÿ lr

�tan Yÿ tan a0�2
�1� tan 2 Y� tan 2 a0

#
, �73�
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t0 ÿ ti0 � t0

"
1ÿ lr

tan a0�1ÿ tan 2 Y� ÿ tan Y�1ÿ tan 2 a0�
�1� tan 2 Y� tan a0

#
, �74�

ls � lx
1� tan a0 tan Y�����������������������

1� tan 2 Y
p : �75�

Linearized equations for small strains are presented in Eqs. (39)±(41).

8.3. Internal forces and moments within the rod as functions of stretches, curvatures
and torsion

T � EA�ls ÿ 1�, �76�

Mb � �k0 ÿ ki0�EI, �77�

Mt � GIp�t0 ÿ ti0�: �78�
Note that for small strains of the cylinder, r=r0, the linearized equations (39)±(41)
are used. In this case Eqs. (69)±(71) become quadratic with respect to q 0

3, m
0
3. If,

additionally, r0 $ 0 and the radial displacement caused by forces and moments
acting on the rod is small in comparison with the radius of the cylinder Ur<<r0,
the radial stretch can be represented as follows

lr01lr
�
1�

qUr

r0
q03 �

mUr

r0
m03

�
: �79�

In this case the system of equations becomes linear and can be solved explicitly.
When (for given lr, lx and g ) q 0

3, m 0
3 and B are found, internal forces and

moments within the rod as well as its deformations can be calculated by backward
substitution using Eqs. (72)±(78).

9. Asymptotic relations based on the condition (12)

The fundamental solutions contained in the superposition integrals (63) and (64)
depend, in particular, on the distance, R, between the external concentrated force/
moment application point and the point considered. It follows from (A6) that

R2 � 2r20�1ÿ cos c� � s2 cos 2 a� r20 ÿ 2r0r0� cos a�cÿ sin c� sin

f� �1ÿ cos c� cos f�:
�80�

Using condition (12), we now show that the last term (contained in square
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brackets) of expression (80) is relatively small. Indeed, all the terms in the ®rst line
in (80) are non-negative and two strong inequalities are valid:

2r0r0 cos a�cÿ sin c� sin f
s2 cos 2 a

� 2�cÿ sin c� sin f

c2

kr0
cos a

R2

p
kr0

p cos a
� 1 �81�

and

2r0r0 cos a�1ÿ cos c� cos f
s2 cos 2 a� 2r20�1ÿ cos c�

� 2kr0 cos f�1ÿ cos c�
2 sin 2 a�1ÿ cos cÿ c2=2� � c2

Rkr0 � 1: �82�

Thus, under the condition (12), the distance can be assumed to be f-independent,
i.e.

R2 � 2r20�1ÿ cos c� � s2 cos 2 a� r20: �83�

This simpli®es considerably the determination of the values averaged over the
circumference r=r0. The integrals in the expressions (59)±(62) can now be
calculated explicitly. As a result, we obtain:

U 0
n �q U 0

nq
0
3 �m U 0

nm
0
3,

qU 0
n �

1� n
16pEM�1ÿ n�R

�
2�4nÿ 3� cos c� 2r20�1ÿ cos c�2 ÿ r20 cos c

R2

�
,

mU 0
n �
�1� n�r0c sin c cos a0

4pEM sin a0R3
: �84�

Y0
2 �q Y0

2q
0
3 �m Y0

2m
0
3,

qY0
2 � ÿ

�1� n�r0 cos a0 sin c�cÿ �cÿ sin c� sin 2 a0�
8pEM�1ÿ n� sin a0R3

,

mY0
2 �
�1� n� cos c

4pEMR3
: �85�

q0n �q q0nq
0
3 �m q0nm

0
3,
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qq0n � ÿ
3r20fr20 cos cÿ 2r20�1ÿ cos c�� cos 2 a0�cÿ sin c� sin c� �1ÿ cos c�2�g

16�1ÿ n�R5
,

mq0n �
3r20r0 cos a0 sin c�cÿ �cÿ sin c� sin 2 a0�

8 sin a0R5
: �86�

m0n �q m0nq
0
3 �m m0nm

0
3,

qm0n �
r20r0 cos a0

16�1ÿ n� sin a0R3

�
2�1ÿ 2n� sin c�c� 2�sin cÿ c� sin 2

a0�� � 3�c� �sin cÿ c� sin 2a0��2r20�sin cÿ c��1ÿ cos c� � r20 sin c�
R2

�
,

mm0n �
3r20
16R5

�2r20�c2 cos c cot 2 a0�2 cos 2 a0 ÿ 1� � 2c sin c cos 2

a0�1� cos c� � �2 cos 2 a0 ÿ 1��cos 2 cÿ 1�� ÿ r20 cos c�:
�87�

10. Asymptotic solution for a small radius-to-pitch ratio

Asymptotic relations presented in the previous section can undergo further
simpli®cations. Note that there exists a set of asymptotic representations related to
various directions in the space of the parameters of the problem. We present here
one of the solutions which correspond to the helix tending to a straight line.

Let a0 tend to zero under a constant pitch, l. In this case, r0 0 la0/(2p ) 4 0,
while the torsion t0 4 2p/l = const; thus, the helix tends to a straight line.
However, the normal, n, which coincides with the external forces and moments,

Fig. 7. The normal rod±matrix interaction force qn for the case when the ®ber becomes almost

rectilinear.
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forms a screw surface as in the case of a `genuine' helix (Fig. 7). In this case, the
asymptotic ®elds in the matrix can be obtained based on the superposition of the
fundamental ®elds induced by the forces and moments distributed along a straight
line, but directed in accordance with its nonzero torsion. Note that the rod, which
possesses a bending sti�ness, cannot be straightened out completely by bounded
tensile forces even in the case of a free rod without a surrounding matrix. In this
real case, the torsion of the helix is single-valued Ð in contrast to the idealization
adopted in this subsection, where the limiting value of the torsion is considered.
This idealization is used here to simplify the determination of the ®elds in the
matrix while the internal forces in the rod are calculated for nonzero a0 and r0.

Under the condition a0<<1, the ®rst term in the expression for the distance R,
Eq. (83) is relatively small

2r20�1ÿ cos c�
s2 cos 2 a0

� 2r20�1ÿ cos c� sin 2 a0
c2r20 cos 2 a0

R sin 2 a0
cos 2 a0

� 1, �88�

and the distance can be represented as follows:

R2 � s2 � r20 �a0 � 1�: �89�
The force/moment and displacement/rotation relations can now be expressed
based on the relation (89). This can be done in two ways: ®rstly, by a
simpli®cation of the expressions (84)±(87) under the conditions a0 4 0, c=s sin
a0/r0 4 2ps/l and r0/l = 2p tan a0 4 0; secondly, by considering the rod to be
straight in its actual state. Both approaches, after integration with respect to s, in
accordance with Eqs. (63) and (64), lead to the same asymptotes, namely:

qUn � 1� n
8pEM�1ÿ n� �2�3ÿ 4n�K0�t0r0� � t0r0K1�t0r0��,

mUn � ÿ�1� n�t0
2pEM

K0�t0r0�, �90�

qYn � ÿ �1� n�t0
4pEM�1ÿ n�K0�t0r0�, mYn � �1� n�t0

2pEMr0
K1�t0r0�, �91�

qqn � ÿ 1ÿ 2n
2�1ÿ n� t0r0K1�t0r0� ÿ

1

4�1ÿ n�t
2
0r

2
0K2�t0r0�,

mqn � 3

4
t20r0K1�t0r0�, �92�

qmn � ÿ
r0

4�1ÿ n� ��1ÿ 2n�t0r0K0�t0r0� � t20r
2
0K1�t0r0��,
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mmn �
1

4
t20r

2
0K0�t0r0� ÿ

1

4
t0r0K1�t0r0� �

1

4
t20r

2
0K2�t0r0�, �93�

where K0(t0r0), K1(t0r0) and K2(t0r0) are the modi®ed Hankel functions.
Note that these expressions are to be substituted in the system of Eqs. (66),

(69)±(71), where the curvature k0 is not assumed to be zero. The relations (90)±
(93) yield a parametric representation of the `helical elastic foundation' as a
generalization of the Winkler foundation. The helical foundation is then
introduced in the equilibrium equations of the rod. As can be seen in Fig. 16 this
asymptotic representation of the helical foundation shows rather good accuracy
even for a0=p/6 and r0>>r0.

The asymptotic relations (90)±(93) can be further simpli®ed for the case t0r0<<1.
In this case, using well-known expansions for Hankel functions, one obtains:

qUn � 1� n
8pEM�1ÿ n� �2�3ÿ 4n��gÿ ln�2�� ÿ 1� 2�3ÿ 4n� ln�t0r0��,

mUn � ÿ�1� n�t0
2pEM

�ln�2� ÿ gÿ ln�t0r0��, �94�

qYn � ÿ �1� n�t0
4pEM�1ÿ n��ln�2� ÿ gÿ ln�t0r0��, mYn � �1� n�

2pEMr20
, �95�

qqn � ÿ1 mqn � 3
4t0, �96�

qmn � ÿ
r20t0

4�1ÿ n� ��1ÿ 2n��ln�2� ÿ gÿ ln�t0r0�� � 1�, �97�

mmn � 1
4 t

2
0r

2
0�ln�2� ÿ gÿ ln�t0r0��: �98�

In these formulas (and only here!), g is the Euler constant.

11. Inextensible rod

Consider a simpli®ed formulation of the problem, where the helical inclusion is
assumed to be inextensible. In this case, a relation between the initial radius of the
helix, r i0, and its actual value, r0, can be obtained explicitly. From Eqs. (31), (33)
and from the condition of inextensibility, ls01 it follows that

r20 � ri0
1ÿ l2x cos 2 ai0

ki0 � 2ti0r
i
0lxg� cos 2 ai0r

i
0l

2
xg2

, �99�
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r0 � ri0
sin ai0

�������������������������������
1ÿ l2x cos 2 ai0

q
, �g � 0�: �100�

Based on Eq. (31) an explicit relation can also be obtained for the angle a0:

cos a0 � lx cos ai0: �101�
The distributions q 0

3 and m 0
3 can then be easily found using the Eqs. (66) and (69).

Finally, the internal tensile and shear forces can be obtained from Eqs. (70) and
(71).

12. Numerical procedure and discussion

The procedure which was carried out in calculating the ®elds in the matrix, the
rod/matrix interaction and the forces and moments in the rod, is systematically
described here 3.

The starting point of the procedure is Kelvin's fundamental solution for
displacements (55) and stresses (56) induced by the unit concentrated force q 0

3 and
moment m 0

3 given in the H-system. In order to calculate displacements and the
angle of rotation of the cross-section of the rod as well as the distributed force
and moment acting on the rod cross-section, these components were transformed
to the helix-associated TC-system according to Eqs. (58) and (A6). The averaging
of the displacement and stress components over the cross-section interface was
carried out according to Eqs. (59)±(62). These averaged components, namely, the
displacement in the normal direction U 0

n, the angle of rotation of the cross-section
of the rod Y 0

2, the distributed force q 0
n and the moment m 0

n were then integrated
over the domain (ÿ1 < s < 1) along the helix. As the structure of the
integrands in Eqs. (59)±(62) does not permit an analytic calculation of these
integrals, a double numerical integration is inevitable. In integrating over the s-
domain, in the central section of the integration path, s $ [ÿs�, s�], where s� is
large enough, the integrals were calculated numerically. For vsv > s�, asymptotic
expressions for integrands were used, thus leading to analytic integration. The
accuracy of the integration was controlled by an adaptive procedure in which a
proper choice of the value of s� leads to the required tolerance.

As was noted in Section 8, the distance R can be assumed to be f-independent
if the condition Eq. (12) is valid. In this case all the integrals with respect to f,
Eqs. (59)±(62), were calculated analytically thus requiring only numerical
integration with respect to s.

At the next stage, the equilibrium equations of the rod and the continuity
conditions of the radial and angular displacements on the rod/matrix interface
were used. The ®nal system consists of three nonlinear equations, (69)±(71), with
respect to qn, mn and the shear force B. The solution of this system gives the

3 All calculations were performed using the symbolic computation system, ``Maple''.
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unknown distributions qn, mn and the shear force in the rod. These values were
then substituted back to Eqs. (43)±(45), thus yielding the internal forces and
moments in the rod as well as its deformation.

Note that the results obtained are expressed in terms of the deformed state of
the composite, and the initial state is only determined in the ®nal step of the
solution. However, the initial state and not the ®nal state is known in advance.
The determination of the latter is the problem. This `straightforward' way is not
directly applicable here. The di�culties are caused by the fact that all equilibrium
equations of the nonlinear problem considered are expressed in terms of the
deformed state. In order to avoid this obstacle, one may use the method of
incremental linearization. In this case, at each step in the formulation of the
equilibrium equations, the di�erence between two neighboring states can be
neglected.

Numerical results are presented for axial extension of the composite. The
in¯uence of the matrix-to-rod elastic moduli ratio on the radial strain of the helix-
associated cylinder (shown in Fig. 5) is presented in Fig. 8 for various values of
the matrix-to-rod ratio of the elastic moduli. The in¯uence of the same ratio on
the tensile force in the rod is shown in Fig. 9. We observe that as Em/Er increases,
the relations become increasingly linear.

An important geometrical parameter is the helical angle. Its in¯uence on the
tensile force in the rod is shown in Fig. 10. Variation of the angle leads to the
corresponding variation of the e�ective elastic modulus of the rod in an initial

Fig. 8. Radial strain, Er=r0/r
i
0ÿ1, for the case a0=p/6, r0/r0=0.1: (1) a free rod, EM=0; (2) EM/E =

0.001; (3) EM=0.001; (4) EM/E=0.01; (5) EM/E=1.
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Fig. 9. Normalized tensile force in the rod, T/EA, for the case a0=p/6, r0/r0=0.1: (1) a free rod,

EM=0; (2) EM/E=0.001; (3) EM=0.001; (4) EM/E=0.01; (5) EM/E=1.

Fig. 10. Normalized tensile force in the rod T/EA for the case r0/r0=0.1, EM/E = 0.001: (1) a0=p/4;
(2) a0=p/6; (3) a0=p/12.
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portion of its axial strain. An increase in the angle leads to a decrease in the
modulus and to an increase in the hardening-type nonlinearity of the stress±strain
relation.

The presence of the helical inclusion which causes an additional resistance to
deformation relative to the resistance of the undisturbed matrix was calculated by
the following procedure. Using the method of incremental linearization, the
additional strain energy of the matrix, Wm, per unit length in the x-direction is
®rst calculated:

Wm � 1

cos a0

 �Un

0

qn dUn �
�Yn

0

mn dYn

!
: �102�

Noting that the strain energy of the rod per unit length in the x-direction is

Wr � EAE2s � EI�k0 ÿ ki �2 � GIp�t0 ÿ ti0�2
2 cos a0

, �103�

the total additional energy per unit length is

W �Wr �Wm: �104�
Using this result the additional resistance was calculated. In the case of an axial
extension, the total additional tensile force is

Ttotal � @W

@Ex
: �105�

The total inclusion-associated axial force versus axial extension is presented in
Figs. 11 and 12. As can be seen in Fig. 12, the matrix-associated axial force
(additional to the non-disturbed forces in the matrix) caused by the presence of
the helical rod is considerable in spite of a relatively low modulus of the matrix.

The near-rod stress ®elds in the matrix are shown in Figs. 13 and 14. These
results demonstrate that the stresses are mainly concentrated in a close vicinity of
the rod and decay rapidly with the radial distance.

Comparisons of straight, nonzero-torsion-rod asymptotic results and the results
corresponding to the spherical-model-based Winkler foundation 4 Ð with the
`exact' solutions are presented in Figs. 15 and 16. The exact solutions
corresponding to the general formulation adopted in this paper and the asymptote
based on the inequality (12) were so close that they cannot be distinguished in the
presented plots.

In Fig. 17, the expected tensile force in the rod under fracture of the matrix is

4 Consider a rigid sphere embedded in the matrix. A force to sphere diameter ratio as a function of

the sphere displacement represents the `spherical elastic foundation' which could be used for a rough

estimation of the helical foundation. In this model, the interaction force and moment are

qn=EM (r0ÿr i0), mn=0.
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Fig. 11. Normalized inclusion-associated axial tensile force, Tx/EA, for the case a0=p/6, r0/r0=0.1: (1)

a free rod, EM=0; (2) EM/E=0.001; (3) EM/E=0.01 and EM/E=0.1. (Note: the di�erence of results

for these two cases is too small to be seen in the ®gure.)

Fig. 12. Contribution of matrix to additional resistance of the composite due to presence of the

inclusion: a0=p/6, r0/r0=0.1; EM/E=0.001.
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Fig. 13. Normalized octahedral stress, s0/EM, in the matrix in the plane of the rod cross-section: a0=p/
6, r0/r0=0.1; EM/E=0.001.

Fig. 14. Normalized stress s22/EM in the matrix in the plane of the rod cross-section: a0=p/6, r0/
r0=0.1; EM/E=0.01.
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Fig. 15. Normalized tensile force in the rod, T/EA, for the case a0=p/6, r0/r0=0.1: (1) EM/E=0.0001;

(2) EM/E= 0.001; (3) EM/E = 0.01. Dotted curves correspond to the simpli®ed model, where the rod/

matrix interaction is considered as in the case of the Winkler spherical-model-based elastic foundation.

Fig. 16. Normalized tensile force in the rod, T/EA, for the case a0=p/6, r0/r0=0.1; EM/E= 0.001 and

di�erent simpli®ed models of the rod/matrix interaction.
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shown. It is assumed that during fracture when the rod is cutting the matrix the
resistance to the normal displacement of the rod toward the helix axis is constant,
the same as at initiation of fracture. It can be seen that the axial extension is still
stable during such fracture.
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Appendix. Relations between the coordinate systems

In the TC-system, the position vector, R(s, r, f ), has the following expression:

R�s, r, f� � R�s, 0� � r�n cos f� b sin f�: �A1�
The vector R(s, 0) 0 R(s, 0, f ), which de®ned a point on the helix, and the
corresponding components of the Frenet triad (2)±(4) have the following
expressions in the X-system:

R�s, 0� � s cos a0k1 � r0�cos ck2 � sin ck3�,

Fig. 17. Normalized tensile force in the rod, T/EA, for the case a0=p/6, r0/r0=0.1: (1) a free rod,

EM=0; (2) EM/E = 0.001; (3) EM/E = 0.1. Dotted curves correspond to the case of fracture of the

matrix.
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ttt � cos a0k1 ÿ sin a0�sin ck2 ÿ cos ck3�,

n � ÿcos ck2 ÿ sin ck3,

b � sin a0k1 � cos a0�sin ck2 ÿ cos ck3�,

c � s sin a0
r0

� x tan a0
r0

: �A2�

It follows immediately that the X-coordinates are expressed as

x1 � s cos a0 � r sin f sin a0,

x2 � r0 cos cÿ r�cos f cos cÿ sin f sin c cos a0�,

x3 � r0 sin cÿ r�cos f sin c� sin f cos c cos a0�: �A3�

The H-coordinates are

x1 � xÿ s cos a0 � b sin a0 � r sin f sin a0,

x2 � ÿx2 sin c� x3 cos c � ÿb cos a0 � ÿr sin f cos a0,

x3 � r0 ÿ x2 cos cÿ x3 sin c � n � r cos f: �A4�

Consider a point (0, r0, f ) in the TC-system. Its coordinates in the X-system are

x1 � r0 sin f sin a0,

x2 � r0 ÿ r0 cos f,

x3 � ÿr0 sin f cos a0: �A5�

Consider now two points: (0, r0, f ) and (s, 0). The ®rst point has the following
coordinates in the H-system with the origin at the second point:

x1 � ÿs cos a0 � x � ÿs cos a0 � r0 sin a0 sin f,

x2 � ÿx2 sin c� x3 cos c � ÿr0 sin c� r0�cos f sin cÿ sin f cos c

cos a0�,
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x3 � r0 ÿ x2 cos cÿ x3 sin c � r0�1ÿ cos c� � r0�cos f cos

c� sin f sin c cos a0�:
�A6�

Consider a point (x, r, y ) in the C-system. Its coordinates in the H-system (with
the above de®ned origin) are

x1 � xÿ s cos a0,

x2 � r sin�yÿ c�,

x3 � r0 ÿ r cos�yÿ c�: �A7�

Let km (for the X-system: x1=x, x2, x3), cm (for the C-system: x, r, y ), tm (for the
T-system: s= 0, n, b ), and hm (for the H-system: x1, x2, x3, with the origin at the
second point, s, as was de®ned above) be the unit vectors related to the
corresponding systems with one exception: t1 is directed along ttt, that is, not along
s for r$ r0; thus tm represents a local rectangular system. If aml=kmhl, the spin
matrix A=[aml], which de®nes the rotation around the x-axis by an angle ÿ(p/
2+c ), is

A �
24 1 0 0
0 ÿsin c cos c
0 ÿcos c ÿsin c

35: �A8�

If bml=cmhl, the spin matrix B=[bml], which de®nes the rotation around the x-axis
by an angle ÿ(p/2+cÿy ), is

B �
24 1 0 0
0 sin�yÿ c� cos�yÿ c�
0 ÿcos�yÿ c� sin�yÿ c�

35: �A9�

Finally, if gml=tmhl, the spin matrix C=[gml] de®nes a rotation around the x-axis
by the angle ÿ(p/2+c ), followed by a rotation about the t2-axis by the angle a0.
This is the transformation from the H-system with the origin at a point s on the
helix to the T-system:

C �
24 cos a0 sin a0 cos c ÿsin a0 sin c
0 sin c cos c
sin a0 ÿcos a0 cos c cos a0 sin c

35: �A10�

These dependencies are used in the determination of displacement and stress ®elds
in the matrix.
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