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Abstract We consider some structures where the
harmonic ‘feeding’ wave localized at the crack faces
can force the crack to grow. First, we present some
results related to a lattice with a high-contrast layer,
where the wave speed is larger than in the ambient
matrix. The analytical solution obtained for the steady-
state regime, where the crack speed is independent
of the wave amplitude, is used to determine the
energy relations and the wave-amplitude-dependent
position of the crack front relative to the feeding
wave. The corresponding numerical simulations con-
firmed the existence of the steady-state regime within a
range of the wave amplitude. For lager amplitudes the
simulations revealed a set of ordered crack-speed
oscillation regimes, where the average crack speed is
characterized by a stepwise dependence on the wave
amplitude. We show that the related cluster-type wave
representation allows the average crack speeds to be
determined analytically. We also show the connec-
tion between the cluster representation and the ‘local’
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crack-speeds within the cluster. As an example of a
continuous system, where the crack can uniformly
grow under the localized harmonic wave, an elastic
flexural plate is considered. Both symmetric and anti-
symmetric fracture modes are examined.
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1 Introduction

We consider a semi-infinite crack in a two-dimensional
elastic structure. The crack is assumed to grow while a
harmonic wave is radiated by a localized remote source
placed behind the crack front. The parameters of the
lattice are chosen in such a way that the wave is local-
ized at the crack faces and hence can reach the crack
front. It is assumed that the crack moves uniformly and
hence its speed coincides with the wave phase speed. In
this steady-state regime, the group velocity of the wave,
which is equal to the energy flux velocity, must exceed
its phase speed; otherwise, the wave cannot deliver the
energy to the crack front, as required to support the
crack growth. Note that in principle, an opposite situ-
ation can exist where the crack gains the energy from
the wave ahead of the crack front. In this latter case,
the steady-state regime can exist if the group velocity
of the wave is below its phase speed.
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92 L. I. Slepyan et al.

The key role of the dispersion relations is empha-
sized in the lattice problem as well as in the problem
for the flexural elastic plate. One of these dispersion
relations corresponds to the half-plane with a trac-
tion-free boundary (the crack faces) and the other one
corresponds to the symmetry condition (the crack
continuation). Given the incident (feeding) wave fre-
quency, the dispersion relations are used to determine
the corresponding crack speed and the frequencies of
the reflected and refracted waves.

The dynamic crack growth in a lattice under a
non-localized harmonic wave was first considered by
Slepyan (1981) (also see Slepyan 2002). In the pre-
vious paper by the authors (Mishuris et al. 2009), we
considered the dynamic crack growth caused by a local-
ized sinusoidal wave. In the wave-fracture scenario, the
harmonic ‘feeding wave’ delivers energy to the mov-
ing crack front, while the reflected ’dissipative waves’
carry a part of this energy away from the front. Two
well established regimes were examined analytically:
the steady-state regime, where the motion of neigh-
boring masses (along the interface) differs only by a
constant shift in time, and an alternating-strain regime,
where the motion of neighboring masses also differs
by sign. The energy of the localized reflective waves as
well as the energy radiated to the ambient lattice were
evaluated.

The numerical simulations conducted for a high-
contrast interface confirm the theoretical findings for
the above-mentioned regimes and, in addition, reveal
some different, crack-speed oscillating regimes with
a stepwise dependence of the averaged crack speed
on the wave amplitude. A special attention is now
given to such a locally irregular crack motion. In the
numerical simulations, we consider a discrete chain
with the local interaction of the particles, which is
the limiting model for the corresponding 2D lattice
with a high-contrast interface. For the corresponding
periodic structure we find a set of dispersion rela-
tions for each value of the cluster width. For a gen-
eral case, where the cluster contains n particles, the
Floquet type wave can be represented as a superpo-
sition of n sinusoidal waves uq = u(q) exp[i(ωt −
km(q))], where the subscript q corresponds to the
particle number within the cluster, q = 1, 2, . . . , n,
and m(q) = q, q + n, q + 2n, . . ., is the discrete
coordinate of the particle. If the dispersion relation
for n = 1 is f (ω) = cos k, then for a general n
there are n dispersion relations: f (ω) = cos(k −

2πp/n), p = 0, 1, . . . , n − 1, with the displacement
amplitudes u(q + 1) = u(q) exp(2π ip/n). It follows
that the phase speed, averaged over the cluster, is equal
to ω/k, whereas the local speeds can take different
values.

The model for an elastic flexural plate gives an exam-
ple of a continuous homogeneous structure which pos-
sesses special properties related to the considered type
of fracture. Some aspects of the crack dynamics in the
plate, including that interacting with a compressible
fluid, are considered in Slepyan (2002, Sect. 9.7). In this
model, the crack closure phenomenon can be important
(see, e.g., Slepyan et al. 1995); in the present consider-
ation, however, it is neglected.

The edge wave in the flexural plate half-plane is
exponentially localized (in fact, rather weakly) hav-
ing slightly lower phase and group velocities, v and
vg = 2v, than the flexural wave in the plate in front
of the crack. For the plate, both symmetric and anti-
symmetric modes of fracture are inspected. The energy
criterion is used, and the ratio of the energy release rate
to the energy delivered by the feeding wave is deter-
mined. This ratio appears to be very small especially
for the symmetric mode. In contrary to the lattice, the
dispersion relations define a unique crack speed inde-
pendently of the wave amplitude, and this relations give
no direct evidence concerning the existence of other
ordered regimes.

Thus, the structure of the paper is as follows. We
show that the localized feeding wave, which supplies
the energy to the crack front, can exist in the case of
a rather low contrast interface as well as for the case
of high-contrast. Both types of the higher-wave-speed
interface are considered: the one with lighter masses
and the other one with stiffer bonds. The main steps
in the analytical solution for the steady-state formu-
lation are shown. Then we consider the results of the
numerical simulation and identify a discrete set of the
average crack speeds. We propose a theoretical frame-
work for such regimes based on the cluster-type wave
representation. It appears that the discrete values of the
average crack speed, found numerically, are in agree-
ment with the theoretical prediction of the possible
speed.

Finally, we note that a flexural plate gives an exam-
ple of a continuous body where the group velocity of the
edge wave exceeds its phase velocity, and the growth
of the steady-state dynamic crack can be supported by
the localized sinusoidal wave.
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Crack in a lattice waveguide 93

Fig. 1 The lattice with the propagating crack. The upper part of
the symmetric structure is shown. The structural interface con-
sists of two rows, n = 1 and n = −1 (the latter is not shown),
of masses M1 connected with each other and with the ambient
lattice by the massless bonds of the stiffness C1. Since the dis-
placements are antisymmetric with respect to n, the middle point
of each bond between n = 1 and n = −1 is fixed. Thus, the
effective stiffness of this bond is 2C1

2 The lattice waveguide

2.1 The lattice

As in the paper by Mishuris et al. (2009) mode III dy-
namic fracture of a square lattice shown in Fig. 1 is con-
sidered. The lattice consists of point masses M1,M2,
connected by linearly elastic bonds of stiffnesses C1,
C2. The particles of the mass M1, together with the
bonds of the stiffness C1, form the structured interface.
Given (m, n) as a multi-index characterizing a position
of a mass within the lattice, the structured interface con-
sists of the masses at n = ±1, and the bonds between
these rows and between the rows n = ±1 and n = ±2,
respectively. The ambient lattice lies above and below
the interface; it consists of the rows n = ±2,±3, . . .,
and the corresponding bonds connected neighboring
rows. The normalization is introduced in such a way
that the lattice spacing, the mass M2 and the stiffness
C2 are equal to unity. In the steady-state regime, the
crack is assumed to propagate between the rows n = 1
and n = −1, with a constant speed v. This implies that
the time interval between the breakages of neighbor-
ing bonds is equal to 1/v. Due to the symmetry of the
problem, we can consider only the part of the lattice
located in the upper half-plane, as shown in Fig. 1.

The equations of motion of the intact lattice have the
form:

M1üm,1(t) = C1[um+1,1(t)+ um−1,1(t)

+um,2(t)− β um,1(t)],
üm,2(t) = [um+1,2(t)+ um−1,2(t)+ um,3(t)

−3um,2(t)] + C1[um,1(t)− um,2(t)],

üm,n(t) = [um+1,n(t)+ um−1,n(t)+ um,n+1(t)

+um,n−1(t)− 4um,n(t)] (n > 2). (1)

Here um,n(t) is the displacement, and the equations
correspond to n = 1, n = 2 and n > 2, respectively,
β = 3 if (m, 1) belongs to the crack area, where there
are no bonds below the row n = 1; otherwise, β = 5.
The loading is imposed via a harmonic ‘feeding’ wave
propagating in the same directions as the crack itself. In
addition to this wave, there exist reflective (dissipative)
waves excited by the propagating crack. In the consid-
ered range of the feeding wave frequencies, all these
waves are exponentially localized in the vicinity of the
interface. In Mishuris et al. (2009), the possibilities are
examined for the steady-state regime, where each bond
breaks at the same phase of the feeding wave, and for
the ‘alternating-strain’ regime, where the values of the
limiting strain alternate in sign. In the present paper,
we focus on the steady-state regime.

2.2 The dispersion curves

Consider the complex representation of a localized
harmonic wave. In accordance with (1), for the intact
lattice

um,1 = A1 exp[i(ωt − km)],
um,2 = um,1(β − 2 cos k − M1ω

2/C1), (2)
um,n = um,2λ

n−2 (n ≥ 2, λ2 < 1).

Recall that for the boundary condition related to the
crack area β = 3; otherwise, β = 5. The arbitrary coef-
ficient A1 can be called the complex amplitude of the
wave.

We consider two types of the interfaces, with
C1 = 1,M1 < 1 and C1 > 1,M1 = 1, with the
same ratio C1/M1. The dispersion relations, ω1(k) and
ω2(k), and the exponent, λ, follow from (1) and (2). In
particular

λ = �(k)−
√
�2(k)− 1 sign(�(k)),

(3)
�(k) = 2 − cos k − ω2

2
for �2 > 1; in this case, λ2 < 1. The dispersion
curves and the corresponding exponents λ are shown in
Figs. 2, 3, 4, 5, 6 and 7. Note that the dispersion relations
correspond to the conditions ahead of the crack front,
ω = ω1(k), and to the crack faces, which are traction
free, ω = ω2(k).

It can be seen that for a high-contrast interface,
Figs. 2 and 3, the waves are strongly localized, and the
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Fig. 2 Dispersion diagrams for M1 = 0.01,C1 = 1 (a) and
M1 = 1,C1 = 100 (b). The upper curves (1) correspond to the
intact lattice, whereas the lower ones (2) correspond to the trac-
tion-free boundary condition. The intersection points of the rays
(3), ω = 2k (a) and ω = 2.3k (b), with the dispersion curves
correspond to the frequencies, ω, and the wavenumbers, k, of the
waves with the phase velocity v = 2 and v = 2.3, respectively.

The condition vg = dω/ dk > v is satisfied at the intersec-
tion point marked by ∗. The other crossings with the curve (2)
correspond to the reflective (dissipative) waves. The intersection
points on the curve (1) valid for the crack continuation do not
correspond to any wave since vg < v and hence there is no such
a wave ahead of the crack front

Fig. 3 The feeding wave
exponents for
M1 = 0.01,C1 = 1 (a) and
for M1 = 1,C1 = 100 (b).
The upper curves (1)
correspond to the dispersion
curves (1), and the lower
ones (2) correspond to the
dispersion curves (2) in
Fig. 2
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Fig. 4 Dispersion
diagrams: a
M1 = 0.1,C1 = 1,
b M1 = 1,C1 = 10.
The ray (3) corresponds to
the subsonic phase velocity
v = 0.73. The other
description is similar to that
given in the caption to Fig. 2

0

2

4

6

8

2 4 10 126 8 0

2

4

6

8

2 4 10 126 8

(a) (b)

dispersion curves for the cases (a) and (b) are similar.
The feeding wave is supersonic relatively to the wave
speed in the ambient lattice. The localization, however,
takes place in the subsonic case as well.

It follows from (3) that the localized wave can exist
if there is a point on the dispersion curve such that at
this point

�2 > 1 �⇒ ω >
√

2(3 − cos k). (4)

This inequality holds for any k if ω >
√

8, that is, if
the frequency exceeds the upper limit of the harmonic
wave frequencies in the ambient lattice. Figures 6 and
7 provide the evidence that such a wave can exist even
in the case of a rather low contrast of the interface. In
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Fig. 5 The feeding wave
exponents for
M1 = 0.1,C1 = 1 (a) and
for M1 = 1,C1 = 10
(b). The upper curves (1)
correspond to the dispersion
curves (1), and the lower
ones (2) correspond to the
dispersion curves (2) in
Fig. 4 –10
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Fig. 6 Dispersion
diagrams: a
M1 = 0.4,C1 = 1,
b M1 = 1,C1 = 2.5. The
ray (3) corresponds to the
subsonic phase speed
v = 0.35 (a) and v = 0.38
(b). The other description is
similar to that given in the
caption to Fig. 2
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Fig. 7 The feeding wave
exponents for
M1 = 0.4,C1 = 1 (a) and
for M1 = 1,C1 = 2.5
(b). The upper curves (1)
correspond to the dispersion
curves (1), and the lower
ones (2) correspond to the
dispersion curves (2) in
Fig. 6
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the latter case, however, the radiation from the propa-
gating crack is much more powerful than for the high-
contrast interface, but the feeding wave itself remains
localized.

The other condition, vg>v, can be satisfied in any
case. Indeed, for the discrete lattice the dispersion rela-
tion is periodic in k and the phase velocity is not
uniquely defined. Thus for a given frequency, which
defines the group velocity uniquely, the wavenumber k
can always be found in such a way that the inequality
is satisfied. We note that the group velocity of the feed-
ing wave must be positive (otherwise, the crack cannot
move).

3 Analytical solution for the steady-state regime

The analytical solution is summarized as follows.
For the steady-state regime we introduce the variable
η = m − vt associated with the moving coordinate
system. Now um,n(t) = Un(η). The Fourier transform
is used as

U F
1 (k) = U+(k)+ U−(k),

U±(k) = ±
±∞∫

0

U1(η)e
ikη dη,
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96 L. I. Slepyan et al.

U F
2 =

∞∫

−∞
U2(η)e

ikη dη,

U F
n (k) = λn−2(k)U F

2 (k) (n ≥ 2), (5)

where λ(k) is defined in (3) with ω = 0 + ikv

λ2(k) < 1 (�2 > 1) ;
λ = �+ i

√
1 −�2 signk,

|λ(k)| = 1 (�2 < 1). (6)

Equation (1) for the intact lattice becomes

M1(0 + ikv)2U F
1 (k)

= C1

[
(2 cos k − 5)U F

1 (k) +U F
2 (k)

]

+QF (k) (for n = 1),

(0 + ikv)2U F
2 (k)

= C1

[
U F

1 (k)− U F
2 (k)

]

+
[
(2 cos k − 3)U F

2 (k) +U F
3 (k)

]
(for n = 2),

(0 + ikv)2U F
n (k)

=
[
(2 cos k − 4)U F

n (k) + U F
n+1(k)

+U F
n−1(k)

]
(for n > 2), (7)

where the body forces, Q(η), are introduced to com-
pensate for the action of the broken bonds

Q(η)= 2C1U1(η)H(−η), QF (k)= 2C1U−(k). (8)

This yields the Wiener-Hopf type equation

U+(k)+ L(k)U−(k) = 0 (9)

with

L(k) = P2(k, 0 + ikv)

P1(k, 0 + ikv)
,

P1(k, 0 + ikv) = [M1(0 + ikv)2 + C1(5

−2 cos k)]S2(k, 0 + ikv)− C2
1 ,

P2(k, 0 + ikv) = [M1(0 + ikv)2 + C1(3

−2 cos k)]S2(k, 0 + ikv)− C2
1 ,

S2(k, 0 + ikv) = (0 + ikv)2

+C1 + 3 − 2 cos k − λ(k), (10)

The kernel function of this equation for a periodic lat-
tice of a general structure was analyzed in Slepyan
(2002), and it is also straightforward to verify that L(k)
has a zero index and L(k) → 1 as k → ±∞. This
enables us to use the Cauchy type integral to factorize
this function, that is, to represent it as a product

L(k) = L+(k)L−(k), (11)

with

L±(k) = exp

⎡

⎣± 1

2π i

∞∫

−∞

ln L(ξ)

ξ − k
dξ

⎤

⎦ , (12)

where in the latter relation, ±	k > 0, respectively.
The factorized form of the equation in (9) is

U+(k)
L+(k)

+ L−(k)U−(k) = 0. (13)

This equation does not have non-trivial solutions cor-
responding to bounded displacements at η = 0. To
set up a physical problem, with the energy supply to
the crack front, we introduce the corresponding Dirac
delta function, δ(k − k f ), as the generalized limit of its
analytical representation (see Slepyan 2002, pp. 400–
402). Its support, k = k f , is the corresponding zero of
L+(k). The wavenumber k = k f corresponds to the
intersection point marked by ∗ in Figs. 2, 4 and 6. The
‘modified’ Eq. (13) is

U+(k)
L+(k)

+ L−(k)U−(k) = A f

[
1

0 + i(k − k f )

+ 1

0 − i(k − k f )

]
, (14)

where A f is an arbitrary complex constant. In terms of
the Fourier transforms, the corresponding solution is

U+(k) = A f L+(k)
0 − i(k − k f )

,

U−(k) = A f

[(0 + i(k − k f )]L−(k)
. (15)

Note that, in addition to the delta-function term
A f δ(k −k f ), the same function but related to the sym-
metric zero k = −k f can be introduced as B f δ(k+k f ).
To get a real solution we take B f = A f . Thus

U+(k) = A f L+(k)
0 − i(k − k f )

+ A f L+(k)
0 − i(k + k f )

,

U−(k) = A f

[0 + i(k − k f )]L−(k)

+ A f

[(0 + i(k + k f )]L−(k)
. (16)

For real k

U±(−k) = U±(k) (17)

and hence U (η) is indeed a real function.

123



Crack in a lattice waveguide 97

3.1 The feeding wave

Let the feeding wave amplitude be |A1| = A0. Refer-
ring to (16) we take

A f = 1

2
A0
, 
 = L−(k f )e

−iφ, (18)

where φ is an ‘initial’ phase which defines the position
of the wave relative to the breaking bond at the crack
front at η = 0. The feeding wave is defined by the poles
k = ±k f of the Eq. (16). We obtain

U f (η) = A0 cos(k f η + φ)H(−η). (19)

Note that there is no such a wave ahead of the crack
front.

3.2 The dissipative waves

The dissipative waves are related to the other two inter-
section points on the dispersion curves 2 in Figs. 2, 4
and 6. Let us denote the corresponding wavenumbers
by kA and kC (see Fig. 2). We also introduce the quan-
tities

L∗−(kA) = lim
k→kA

L−(k)
0 + i(k − kA)

,

L∗−(kC ) = lim
k→kC

L−(k)
0 + i(k − kC )

. (20)

It follows that the dissipative waves amplitudes are

W = 2A0

√
k2

0(

)2 + k2
f (	
)2

|k2
0 − k2

f ||L∗−(k0)|
. (21)

Here k0 = kA and k0 = kC for kA and kC -waves,
respectively. These waves propagate behind the crack
front. There are no waves propagating ahead of the
crack.

3.3 Contribution of the pole at k = 0

It can be found that the pole at k = 0 yields a constant
displacement at η < 0

U0(η)=− A0

k f L0−(0)
	
, L0−(0)= lim

k→0

L−(k)
0 + ik

. (22)

Note that L0−(0) > 0. Thus, in addition to the oscil-
lations defined by the feeding and dissipative waves,
there is a relative shift of the crack faces caused by
the oscillating waves (in fact, it tends to a constant as

0 1 2 3 4 5
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2.5

Fig. 8 The normalized amplitude of the feeding wave, A, versus
‘initial phase’ φ. For the two-dimensional lattice two cases are
shown: M1 = 0.01, v = 2 with Amin = 1.174 (φ = 1.0849) (1),
and M1 = 0.05, v = 1.05 with Amin = 1.278 (φmin

2 = 0.7076)
(2). The circles correspond to the lattice strip, M = 1, v = 0.2

η → −∞). This is the illustration of the phenomenon
known as a drift of a finite mass or a shift of an infi-
nite elastic structure under a harmonic load. The drift
speed, as well as the shift, depends on the phase of the
load at the instant time when it is applied.

3.4 The wave amplitude and the initial phase

The strain energy of the broken bond is

G0 = U 2(0), (23)

where the total displacement at the moment of the bond
breakage can be obtained from (16) and (18) as a limit

U (0) = lim
s→∞ sU+(is) = lim

s→∞ sU−(−is) = A0

.
(24)

Now, using the fracture criterion, we get



 = 

[

L−(k f )e
−iφ

]
= uc

A0
. (25)

Given the feeding wave amplitude, A0, and the criti-
cal elongation uc, this relation can be used for the deter-
mination of the phase φ. On the contrary, we can fix
φ and determine the relations between the amplitudes
of the feeding and dissipative waves and the critical
elongation of the bond. Some relations between the
normalized amplitude, A = A0/uc, and the phase, φ,
are presented in Fig. 8.
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4 Energy relations

4.1 General dependencies

For a localized sinusoidal wave (2) the energy flux, N ,
is defined as the product of the force acting on a par-
ticle from the left, and its velocity. From (2) it can be
found that the energy flux in the wave propagating in
the crack area is

N = 1

2
|A1|2kv sin k

×
[

C1 + (3 − 2 cos k − M1ω
2/C1)

2

1 − λ2(k)

]
, (26)

where A1 is the complex wave amplitude, k is the wave
number, λ(k) is the corresponding exponent and v is
the phase velocity. Note that if C1 = 1 then Eq. (26) is
simplified

N = 1

2

|A1|2kv sin k

1 − λ2(k)
. (27)

The energy per unit length of the crack front
advance, corresponding to a wave with parameters
k, λ and vg = dω/ dk, is

G = N

vvg
|vg − v|. (28)

In particular, for the feeding wave G = G f is the en-
ergy carried to the crack front, whereas for a local-
ized dissipative wave this is the energy radiated from
the crack front. We denote the dissipative waves ener-
gies corresponding to the intersection points A and C ,
marked in Fig. 2, by G A and GC , respectively. Note
that the group velocity can be positive, zero or negative,
but, in the considered structures, the ratio (sin k)/vg is
always positive and bounded.

4.2 The energy radiated from the interface

We consider the energy flux from the nod (m, n) to
the nod (m, n + 1). Due to the periodicity, the choice
of the value of m is not important. The total energy
transfer is

Gn→n+1 =
∞∫

−∞
[um,n(t)− um,n+1(t)]u̇m,n+1(t) dt.

(29)

Using the Parseval identity and taking into account the
fact that

U F
n+1(k) = U F

n (k)λ(k) = U F
2 (k)λ

n−1(k) (n ≥ 2)

(30)

we can express this in the form

Gn→n+1 = −
∞∫

−∞
[Un(η)− Un+1(η)] dUn+1(η)

dη
dη

= − 1

2π

∞∫

−∞

[
U F

n (k)− U F
n+1(k)

]

×(−ik)U F
n+1(k) dk

= − 1

2π

∞∫

−∞
|U F

2 (k)|2

×[1 − λ(k)]|λ|n−2(−ik)λ(k) dk. (31)

In accordance with (7) we have

U F
2 (k) =

(
5 − 2 cos k − M1

C1
k2v2

)
U+(k)

+
(

3 − 2 cos k − M1

C1
k2v2

)
U−(k). (32)

In the integral (31), only the imaginary part of λ(k)
gives a contribution. In the corresponding domain,
|λ(k)| = 1 and the integral becomes

Gn→n+1 = Gr = 1

π

∫

K
|U F

2 (k)|2
√

1 −�2 k dk. (33)

The domain K is that in the positive half-axis k > 0,
where �2 < 1. In particular, if the latter inequality is
valid and C1 = 1, then |U F

2 (k)| = |U F
1 (k)|. The ener-

gies of the waves as functions ofφ are plotted in Figs. 9,
10 and 11.

5 Crack-speed oscillation regimes

5.1 The lattice strip

Since, in the above-considered example for a high-
contrast interface, the exponent |λ| � 1, a good
approximation can be achieved by means of a one-
dimensional model. In Mishuris et al. (2009) such a
model was used for the numerical simulations. A chain
was considered as the interface layer with the line
n = 2 fixed. This model is an asymptotic one for large
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Fig. 9 Normalized energies for the case M1 = 0.01,C1 = 1:
Ga/G f (1), G0/G f (2), Gc/G f (3), 102 · Gr/G f (4)
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Fig. 10 Normalized energies for the case M1 = 0.1,C1 = 1:
Ga/G f (1), G0/G f (2), Gc/G f (3), 102 · Gr/G f (4)

ratio M2/M1. The chain was assumed to consist of the
unit masses m = 0, 1, . . . ,mend = 200 with the initial
crack at m = 0, 1, . . . ,m∗(0) = 51. The bond stiffness
was taken as a natural unit too. The system of ordinary
differential equations under zero initial conditions was
considered as

u0 = A sin(ω f t)H(t), umend = 0,

üm = −3um + um−1 + um+1 (m < m∗(t)),
üm = −5um + um−1 + um+1 (m ≥ m∗(t)), (34)
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Fig. 11 Normalized energies for the case M1 = 0.4,C1 = 1:
Ga/G f (1), G0/G f (2), Gc/G f (3), Gr/G f (4)
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Fig. 12 The dispersion curve ω2(k) for the strip and the rays
ω = 0.2k and ω = 1.272k

where m∗(t) is the crack front. At the moment when um

first reaches the critical value, the corresponding bond
(below the mass) breaks and m∗ gains a unit increment.

For such a lattice strip

ω=ω1(k)=
√

5 − 2 cos k for the intact chain,

ω=ω2(k)=
√

3 − 2 cos k for the crack region. (35)

With the reference to the above-considered high-con-
trast case M1 = 0.01, v = 2 we have taken ω f =
1.491 (k f = 7.455), and the numerical simulations
were expected to result in the steady-state regime (at
least for a moderate amplitude A) with v = 0.2, vg =
0.618. The dispersion dependence ω2(k) is plotted in
Fig. 12.
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Fig. 13 The
cluster-averaged crack
speed as a function of the
feeding wave amplitude.
a A∗ < A < 10,
b A∗ < A < 100
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5.2 Crack speeds in numerical simulations

The problem corresponding to the high-contrast inter-
face of the lattice was analyzed in Mishuris et al. (2009)
numerically. Two formulations of the fracture criterion
were used: the steady-state formulation: um = uc > 0,
and the alternate-strain formulation: |um| = uc > 0.
Here we address the steady-state formulation.

Figure 13 gives the numerically obtained average
crack speed as a function of the normalized feeding
wave amplitude A = A/uc. If A < A∗ = 1.177, the
crack growth, even if initiated, stops. As A > A∗ the
crack propagates, and the crack speed is independent
of the amplitude within the interval A ∈ (A∗, 2.18];
this crack speed is equal to the theoretically predicted
speed v = vsteady = 0.2. On the other hand, further
increase in the amplitude results in the increase of
the average crack speed, which approaches the value
of the feeding wave group velocity vg = 0.618 as
‘A → ∞’.

In Fig. 14 the position of the crack front is shown as a
function of time for different amplitudes of the feeding
wave. In particular, for the two chosen values, A = 1.2
and 2.0, the speeds of the crack are the same, and the
time-interval between the breakage of the neighboring
bonds is constant, equal to 1/v that corresponds to the
steady-state regime. At the higher values of the ampli-
tude, the average speed is established within an inter-
val as A-dependent constant, whereas the local crack
speed is non-uniform; it oscillates between the steady-
state value, v = 0.2, and a higher value. This non-
uniformity in the local crack speed is shown in more
detail in Fig. 15. It can be seen that at a very large ampli-
tude multiple local speeds arise; however, even in such
a locally disordered crack growth, the average crack
speed is established on a macro-level scale; it is shown
to be a function of the amplitude only.
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Fig. 14 Positions of the crack front at the moment of the bond
breakage versus time. The values of the amplitude, A, are listed
in the insert. The steady-state regime is established with v =
0.2 for A = 1.2 and A = 2.0. The oscillating crack speed
regime is established with the increased average speeds for A =
2.2, . . . , 6.0

5.3 Cluster-type wave representation

Consider a chain of particles, of unit mass, numbered
by m = 0,±1,±2, . . .. Assume that neighboring par-
ticles are connected with each other by bonds of unit
stiffness, and, in addition, each particle is connected
with a rigid base by a bond of the stiffness C . The
bonds are assumed to be massless and linearly elas-
tic. Note that, in the above considered crack problem,
C = 1 behind the crack front, and C = 3 at the front
and ahead of it (see Fig. 1 where the line n = 2 is fixed).
The dynamic equation is

d2u(t,m)

dt2 + (2 + C)u(t,m)− u(t,m + 1)

−u(t,m − 1) = 0, (36)
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Fig. 15 The intervals
between the breakage of the
neighboring bonds versus
the sequence of the
breakages of the bonds
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where u is the displacement. The primitive solution to
this equation for C = const is a harmonic wave

u(t,m) = ei(ωt−km), (37)

where the frequencyω is coupled with the wavenumber
k by dispersion relation

ω2 = C + 2(1 − cos k). (38)

Given the frequency, in such a discrete system, the
wavenumber is not defined uniquely, namely, if k =
k0, −π < k0 ≤ π , satisfies (38) then any k = kn =
k0 + 2πn, n = 0,±1, . . ., also satisfies this relation.
This non-uniqueness, however, does not affect the par-
ticles motion since it does not affect the wave (37) at
the integer m, and the group velocity (which is equal
to the energy flux velocity)

vg = dω

dk
= sin k

ω
(39)

is defined uniquely. The only characteristic of the wave,
which depends on the choice of k, is the phase speed

v = ω

k
. (40)

For such a system, where m = 0,±1, . . ., it is usu-
ally assumed that k = k0. Otherwise, during the
time-period 1/v, when a fixed phase moves from one
particle to the other, this phase appears at the latter

n times. Nevertheless, as we show below, the phase
speed non-uniqueness, v = vn = ω/kn , is useful in the
analysis of the steady-state and the cluster-type regimes
of the crack motion under the sinusoidal wave.

The characteristic feature of the wave (37) is the
periodicity

u(t,m + 1) = u(t − 1/v,m). (41)

The phase speed places an important role in the interac-
tion of the wave with a moving obstacle, in particular,
with an advancing crack. In the established, ‘steady-
state’ regime, the crack speed is equal to the phase
speed of the wave, that is, the lattice bonds along the
crack path break in equal time-intervals and at the same
phase of the ‘feeding wave’ which forces the crack to
grow. In this case, the periodicity relation (41) is valid
for the lattice-with-crack displacements. For a given
value of the frequency (within the passing band), if
there are no other restrictions, the allowed set of the
crack speeds is v = ω/(k0 ± 2πn), where n is any
integer.

Recall that the real crack speed must be below
the group velocity of the feeding wave. Otherwise,
the wave cannot deliver energy to the moving crack
front. Thus, in the above-shown results of the numerical
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simulations, the steady-state crack speed, equal to the
phase speed of the feeding wave, is equal to ω/(k0 +
2π). This is because the ‘main’ value, v = ω/k0, cor-
responds to the opposite inequality, ω/k0 > vg, and
hence cannot be realized. Note, however, that at lager
amplitudes, where the crack-speed oscillating regimes
are realized, the group velocity is required to be greater
than the average crack speed; some of the local speeds
can exceed the group velocity.

In the latter case, the average crack speed can be
approximated by a piece-wise constant function of the
amplitude of the feeding wave. Each interval of the
amplitude corresponding to a plateau of the average
crack speed is characterized by a period of the crack-
speed oscillations. At a discrete set of threshold values
of the feeding wave amplitude, the number of lattice
particles in the cluster, which the crack front passes
during the period, gains a unit increment and the aver-
age crack speed increases. This suggests the viability
of a cluster-type wave representation.

We now construct a wave corresponding to several
particles in the cell of periodicity. The uniformity of
the structure allows us to take the cell of any width;
let it consist of n ≥ 1 particles. We mark the particles
within the cell by the subscript q = 0, 1, 2, . . . , n − 1,
and introduce a composite wave, U , consisting of n
‘sinusoidal waves’

U (t,m) =
n−1∑

q=0

uq exp[i(ωt − kmq)]δm,mq ,

mq = q, q ± n, q ± 2n, . . . , (42)

where δm,mq is the Kronecker delta. Eq. (36) yields the
system

Su0 − e−iku1 − eikun−1 = 0,

−eiku0 + Su1 − e−iku2 = 0,

−eiku1 + Su2 − e−iku3 = 0,

− − − − − − − − − − −,
−e−iku0 − eikun−2 + Sun−1 = 0, (43)

where S = 2 + C − ω2. There are n eigen-solutions
which satisfy this system

uq+1 = uqe2π ip/n, p = 0, 1, . . . , n − 1, (44)

with

ω2 = C + 2 − 2 cos(k − 2πp/n). (45)

Note that this dispersion relations differ only by a shift
along the k-axis. Thus, the waves are

uq exp[i(ωt−kmq)] = u0 exp[i(ωt−kmq+2πqp/n)]
= u0 exp[i(ωt − k0m)],

k0(ω) = k − 2πp/n, (46)

where k0 is, in fact, independent of n, p and q. Thus
the group velocity depends on the frequency only

vg = dω

dk
= sin[k0(ω)]

ω
, (47)

Furthermore, since the dispersion relation (45) is inde-
pendent of q, for any given n and p the phase speeds
of the waves in (42) are also the same. The periodicity
relation valid for the cluster and the cluster-associated
phase speed are

U (t,m + 1) = U (t − n/v,m),

v = vn = ω

k
= ω

k0 − 2π(p − 1)/n
. (48)

The average crack speed, however, must be below the
feeding wave group velocity vg = dω/ dk which, in
contrast to the phase speed, is uniquely defined.

Thus the admissible average crack speeds are

n\p 1 2 3 4 5 6
1 0.2
2 0.2 0.3457
3 0.2 0.2781 0.4565
4 0.2 0.2534 0.3457 0.5436
5 0.2 0.2405 0.3017 0.4046 0.6140
6 0.2 0.2327 0.2781 0.3457 0.4565 (0.6719)

where the speed shown in brackets cannot be realized
because it exceeds the group velocity.

The maximal speeds shown in bold correspond to
those obtained in the numerical simulations (compare
the first four values, 0.2, …, 0.5436, with the ‘plateau
speeds’ shown in Fig. 13a, b).

Now we discuss Fig. 15 and pay attention to the time
intervals corresponding to the wave amplitude A = 3.
The upper line value is approximately equal to 5 that
meets the steady-state speed, while the lower line value
is approximately equal to 0.8. In this respect, we note
that the feeding wave frequency ω ≈ 1.491, and the
‘main’ phase speed v0 = ω/(k f − 2π) ≈ 1.272 (k f >

π, 0 < k f − 2π < π ). Recall that it is greater than
the group velocity vg ≈ 0.618, and hence the steady-
state regime with this speed is impossible. However,
in the crack-speed oscillation regime this restriction
concerns only with the average crack speed, and the
local speed can be increased. It can be seen that the
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time interval corresponding the main phase speed is
just 1/1.272 ≈ 0.786 that is in a good agreement with
the lower lane. Thus, at this amplitude, the local crack
speeds alternate: they are equal to the main and to the
second values of the feeding wave phase speed.

6 Flexural plate as a continuous model

The elastic flexural plate is an example where the
steady-state crack growth can occur under a harmonic
wave as well as in the lattice. The necessary condi-
tions remain the same: the wave radiated by a remote
source must be localized, and its group velocity must
exceed the phase one, and these conditions are satisfied
in the case of a flexural plate. The approach is similar
to that used for the lattice. The main difference lies in
the dispersion curves which now are not periodic, the
frequency monotonically increases as the wavenumber
grows. The latter gives no direct evidence respective to
possible crack-speed oscillation regime.

6.1 The model

The classical dynamic equation for the elastic flexural
plate is

�2w(x, y, t)+ ∂2w(x, y, t)

∂t2 = 0,

� = ∂2

∂x2 + ∂2

∂y2 , (49)

where w is the transversal displacement. The bend-
ing moments and transversal forces are expressed as
follows:

My = −
(
∂2w

∂y2 + ν
∂2w

∂x2

)
,

Qy = − ∂

∂y

(
∂2w

∂y2 + (2 − ν)
∂2w

∂x2

)
,

Mx = −
(
∂2w

∂x2 + ν
∂2w

∂y2

)
,

Qx = − ∂

∂x

(
∂2w

∂x2 + (2 − ν)
∂2w

∂y2

)
. (50)

Here, we use the natural units: h (length),
h
√

12(1−ν2)�/E (time) and Eh2/[12(1−ν2)] (force),
where E, ν, � and h are the elastic modulus, Poisson’s
ratio, density and the plate thickness, respectively.

It is assumed that there exists a semi-infinite trans-
verse crack growing in the x-direction at y = 0. As
in the case of the lattice we first consider waves corre-
sponding to the conditions on the free crack faces and
to the crack continuation.

6.2 The waves

We use the representation

w = exp[−λy + i(ωt − kx)]. (51)

Four values of λ follow from (49)

λ = λ1,2 =
√

k2 ± ω and λ = λ3,4 = −
√

k2 ± ω.

(52)

6.3 Symmetric problem

Consider the upper half-plane, y > 0, with two types
of the boundary conditions at y = 0 related to the crack
problem

∂w

∂y
= Qy = 0 (a) and My = Qy = 0 (b). (53)

These conditions yield the dispersion relations as

ω = ±k2 (a) and ω = ±αk2 (b), (54)

where α = α(ν) < 1 (ν > 0) is the positive root of the
equation

(1 − ν + α)2
√

1 − α − (1 − ν − α)2
√

1 + α = 0.

(55)

Note that α monotonically tends to 1 as ν → 0; α ≈
0.9783 for ν = 1/2. The relations (a) correspond to an
y-independent flexural wave (51) with λ = 0

w = exp[i(ωt − kx)], (56)

and the relation (b) corresponds to an edge wave expo-
nentially decreasing with the distance from the free
boundary of the plate. It can be represented as

w = A0

[
exp

(
−√

1 + α |k| y
)

− 1 − ν + α

1 − ν − α
exp

(
−√

1 − α |k| y
)]

× exp[i(ωt − kx)]. (57)

Note that the latter and the corresponding relation for
the case of the plate-fluid interaction were presented in
Slepyan (2002, p. 349–351).
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For both waves, the group velocity vg = dω/ dk is
greater than the phase velocity, v = ω/k, vg = 2v.
Given the feeding wave frequency, the crack speed is
defined by the the dispersion relation (b) in (54).

The dynamic crack growth in the flexural plate is
accompanied by the wave radiation. It is shown below
that the waves radiated from the moving crack front cor-
respond to the dispersion relation (a) in (54), that is, to
the point k = ±ω which correspond to the wave prop-
agating in the x-direction, and to the region −√

ω <

k <
√
ω which corresponds to waves radiated at angle

of this axis.

6.4 The crack problem

We now consider the plate with a crack propagating
along the x-axis with a constant speed, v, and intro-
duce the steady-state problem variable η = x − vt :
w = w(η, y). The crack area is at the left, η < 0,
where we do not take into account possible crack
closure effect. The conditions at y = +0 are

My = Qy = 0 (η < 0),
∂w

∂y
= Qy = 0 (η > 0).

(58)

Using the Fourier transform on η

f F (k, y) = f+ + f−,

f± = ±
±∞∫

0

f (η, y) exp(ikη) dη, (59)

the causality principle for the steady-state formulation
(see Slepyan 2002, pp. 91–93) and the condition Qy =
0 at y = 0 we find

wF (k, y) = A exp(−μ1 y)− B exp(−μ2 y),

B = A
μ1

(
μ2

2 − νk2
)

μ2
(
μ2

1 − νk2
) ,

μ1,2 =
√

k2 ± (kv − i0). (60)

Now, comparing the expressions for M F
y (k, 0) =

M+(k) and ∂wF (k, 0)/∂y = ψ−(k) we obtain the
Wiener-Hopf equation

M+(k)− L(k)ψ−(k) = 0 (61)

with

L(k) = μ2
(
μ2

1 − νk2
)2 − μ1

(
μ2

2 − νk2
)2

2μ1μ2(kv − i0)
. (62)

The following features of the kernel L(k) are impor-
tant:


L(−k) = 
L(k),	L(−k)=−	L(k), IndL(k)=0,

L(k) = (1 − ν)(3 + ν)

2
|k| + O

(
1

k

)
(k→ ± ∞),

L(k) ∼ 1 + i

2

√
kv − i0 (k → 0), (63)

and 	L(k) has a finite support. Note that k = ±k f − i0
are the zeros of the numerator of L(k) [compare (62)
and (55)]. It is convenient to normalize this function;
we represent it as follows:

L(k) = L0(k)l(k),

l(k) = (1 − ν)(3 + ν)

2

×[0 − i(k − k f )][0 − i(k + k f )]
√

0 + ik√
(0 − ik)[0 − i(k − v)][0 − i(k + v)] ,

[
L0(k) → 1 (k → ±∞), IndL0(k) = 0

]
.

(64)

Next step is the factorization

L(k) = L+(k)L−(k), L+ = L0+l+, L− = L0−l−,
(65)

where the functions L0±(k) are defined by the Cauchy
type integral

L0±(k)= exp

⎡

⎣± 1

2π i

∞∫

−∞

ln |L0(ξ)| + iArgL0(ξ)

ξ − k
dξ

⎤

⎦.

(66)

In the integrand, 	k > 0 for L+(k), 	k < 0 for L−(k),
and ArgL0(ξ) = 0 for |ξ | > v. In turn

l+(k) =
√
(1 − ν)(3 + ν)

2

× [0 − i(k − k f )][0 − i(k + k f )]√
(0 − ik)[0 − i(k − v)][0 − i(k + v)] ,

l−(k) =
√
(1 − ν)(3 + ν)

2

√
0 + ik. (67)

In particular, it follows from (66) that asymptotes of
the factors L±(k) are

L±(k) ∼
√
(1 − ν)(3 + ν)

2

√
0 ∓ ik (k → ±i∞).

(68)
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The equation in (61) can now be rearranged in the
form
M+(k)
L+(k)

− L−(k)ψ−(k) = A

0 + i(k − k f )

+ A

0 − i(k − k f )
, (69)

where the right-hand side includes the analytical repre-
sentation of the delta-function which corresponds to the
localized feeding wave (in this connection, see Slepyan
2002, pp. 400–403). Its wavenumber k f is defined in
(54): k f = √

ω/α = v/α. Note that we keep in mind
that such a function is also introduced at k = −k f as
A [1/(0 + i(k + k f )) + 1/(0 − i(k + k f ))], and this
makes M(η) and ψ(η) to be real functions. Thus, we
can consider real parts of the functions, as obtained
directly from (69)

M+(k) = AL+(k)
0 − i(k − k f )

,

ψ−(k) = − A

[0 + i(k − k f )]L−(k)
. (70)

The feeding wave is reflected by the function
ψ(η) (η → −∞, y = +0), which is defined by the
residue at k = k f of the corresponding expression in
(70) as

ψ(η) = ∂w(η, 0)

∂y
= − A

L−(k f )
exp[i(ωt − k f x)],

ω = k f v. (71)

Comparing this with the expression for ∂w(η, 0)/∂y
following from (57) we find the coefficient A0 and the
complex amplitude of the feeding wave A [see (55)]

A0 = A
1 − ν − α

2αk f L−(k f )
(1 − α2)−1/4,

A = −A0
2α

1 − ν − α

= − A

k f L−(k f )
(1 − α2)−1/4. (72)

The energy delivered by the feeding wave per unit area
of the crack path is

G = 1

v

∞∫

0



[

Mx (η, y)
∂2w(η, y)

∂x∂t

−Qx (η, y)
∂w(η, y)

∂t

]
dy

= 8α2
√

1 + α k3
f

1 − α2
| A0| 2

= 2
√

1 + α (1 − ν − α)2k f

(1 − α2)3/2

∣
∣
∣
∣

A

L−(k f )

∣
∣
∣
∣

2

= 2
√

1 + α (1 − ν − α)2k3
f

1 − α2
| A| 2

(
k f =

√
ω

α

)
.

(73)

At the same time the crack front asymptotes are
defined by the asymptotes of M+(k) (k → i∞) and
ψ−(k) (k → −i∞) [see (68) and (70)]. These asymp-
totes, in the same way as the stress-displacement energy
couple in elasticity, define the local energy release rate
(see Slepyan 2002, p. 27, Eq. 1.42)

G0 = − lim
s→+∞ s2 M+(is)ψ−(−is) = (
A)2

= k2
f

√
1 − α2

[
(A L−(k f ))
]2
. (74)

We now represent the complex amplitude of the
feeding wave as A = |A| exp(iφ), where φ is the ‘ini-
tial’ phase which defines the crack tip position relative
the wave. Given the critical local energy release rate,
Gc, the phase is defined by



 =
√

Gc

k f (1 − α2)1/4| A| , 
 = L−(k f )e
iφ. (75)

This equation also defines the lower level of the wave
amplitude required for the crack to grow

min| A| =
√

Gc

k f (1 − α2)1/4max

. (76)

Note that, since α is very close to one, the local energy
release is only a small part of the feeding wave energy

G0

G
= (

)2

2k f
√

1 + α(1 − ν − α)2

≈ (

)2
ν2

√
ω
(1 − α)3/2. (77)

6.5 Antisymmetric mode

Now, we consider the antisymmetric problem,
w(η,−y) = −w(η, y). The corresponding conditions
at y = 0 are

w=My=0 (η > 0), My=Qy=0 (η < 0). (78)

In the same way as for the symmetric problem, we come
to the equation similar to (61) but with respect to the
energy pair Q+(k), w−(k)
Q+(k)− La(k)w−(k) = 0, La(k) = L(k)μ1μ2,

(79)

where L(k) is defined in (62). We represent
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La = L0la+la−,
la+ = l+

√[0 − i(k − v)][0 − i(k + v)],
la− = l−(0 + ik). (80)

Using the relation of the same type as in (69) we find the
local energy release rate for this hyper-singular mode

Ga0 = − lim
s→+∞ s2 Q+(is)w−(−is) = (
A)2. (81)

Furthermore, similar to the relation (72), we have

Aa0 = A(1 − ν − α)

2αL−(k f )
,

A = −A0
2α

1 − ν − α

= − A

L−(k f )
. (82)

From this and (73) it follows that the energy delivered
by the feeding wave per unit length of the crack path is

Ga = 8α2
√

1 + α k3
f

1 − α2
| A0| 2

= 2
√

1 + α (1 − ν − α)2k3
f

1 − α2

∣
∣
∣
∣

A

L−(k f )

∣
∣
∣
∣

2

= 2
√

1 + α (1 − ν − α)2k3
f

1 − α2
| A| 2

(
k f =

√
ω

α

)
.

(83)

Now the energy ratio is [compare with (77)]

Ga0

Ga
= (

)2

2k3
f

√
1 + α (1 − ν − α)2

(1 − α2)

≈ (

)2√
2 ν2ω 3/2

(1 − α) (ν > 0). (84)

Thus, this continuous model as a waveguide for the
edge wave satisfies the necessary conditions allowing
for the crack to propagate uniformly under the localized
wave. Recall, however, that contrary to the lattice, the
plate dispersion relations define a unique crack speed
independently of the wave amplitude, and this rela-
tions give no direct evidence concerning the existence
of other ordered regimes.

7 Conclusions

In this paper, it is shown how the dynamic fracture
can grow in an acoustic waveguide under a localized
harmonic wave. The steady-state regime is described
for a lattice and a continuous material model. We have

considered mode III fracture in the square lattice as
the simplest model of such a kind. A similar way of the
considerations can be used for the other fracture modes
based on different lattice structures.

The crack-speed oscillation regimes found in numer-
ical simulations of the lattice received some theoretical
justification. Note that the crack was assumed to grow
along a strait line. This implies that in the lattice the
ratio of the strength of crack-path breaking bonds to the
that of the parallel-to-the-crack bonds is low enough.
Otherwise, the latter bonds can break as it was shown
by Marder and Gross (1995) for a uniform lattice.

In the lattice, depending on the interface contrast,
both subsonic and supersonic crack speeds can exist,
while the feeding (driving) wave is localized. In both
problems, in the lattice problem as well as in the flex-
ural plate one, the wave features have basic meaning,
and the wave dispersion relations play the key role.

The feeding and dissipative (reflected) waves are
still localized in the case of a low contrast interface
as well as for the high contrast one. However, the
energy radiated from the interface increases greatly as
the contrast decreases.

With respect to the lattice it is of interest that the
cluster-type wave representation, suggested in the
present paper, yields that maximal speeds agree with
the average crack speeds found in the numerical simu-
lations. It is shown that such a representation can also
provide insight for evaluation of the local crack-speeds
within the cluster.

In the case of the flexural plate, where the crack
can grow uniformly subject to the loading by the edge
wave, the dispersion relations give the uniquely defined
crack speed, which is frequency-dependent but wave-
amplitude-independent.
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