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We consider a Mode III lattice with an interface layer where the dynamic crack growth is

caused by a localised sinusoidal wave. In the wave–fracture scenario, the ‘feeding wave’

(here also called the knife wave) delivers energy to the moving crack front, while the

dissipative waves carry a part of this energy away from the front. The questions

addressed here are:
� What are the conditions of existence of the localised knife wave?

� What is the lower bound of the amplitude of the feeding wave, which supports the

crack propagation, for a given deformational fracture criterion?

� How does the crack speed depend on the amplitude of the feeding wave?

� What are the dissipative waves? How much energy is irradiated by these waves and

what is the total dissipation?

� What are the conditions of existence of the steady-state regime for the propagating

crack?
ll r

an).
We consider analytically two established regimes: the steady-state regime, where the

motion of neighbouring masses (along the interface) differs only by a constant shift in

time, and an alternating-strain regime, where the corresponding amplitudes differ by

sign. We also present the numerical simulation results for a model of a high-contrast

interface structure. Along with the energy of the feeding and dissipative waves, an

energy radiated to the bulk of the lattice is identified.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The motivation for the present work comes from the real life experiments on high-speed rupture within structural
interfaces and, in particular, within regions of frictional contact. As presented in the paper by Coker et al. (2005), a high
speed rupture is observed at an interface between two elastic materials, which were in frictional contact under the applied
pressure and shear loading. For a homogeneous elastic material, a special value of the mode II intersonic crack speed was
found, v ¼ cs

ffiffiffi
2
p

, where there is no wave radiation from the propagating crack, and the crack tip asymptotes have the
required square root type.

Intersonic crack propagation was considered, in particular, in Burridge (1976), Freund (1979), Slepyan and Fishkov
(1981), Broberg (1999), and Gao et al. (1999). Numerical simulations and experiments also demonstrate a possibility of
intersonic crack propagation—see Rosakis et al. (1998, 1999), Needleman and Rosakis (1999) and Abraham and Gao (2000).
ights reserved.
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Also see Slepyan (2002, Section 12.4.4). Marder (2006) has found that the supersonic crack propagation can occur in a
nonlinear material.

On the other hand, in lattice structures, the supersonic fracture can occur under high-frequency lattice vibrations as was
presented by Slepyan (1981), also see Slepyan (2002, Section 11.5.4). In this theoretical study, a uniform lattice was
considered, and no localisation of waves was present, whereas for problems of structural interfaces localisation features
can be anticipated. This concept is consistent with the notion of structural contact via models of lattice interfaces (see, for
example, Edagawa et al., 1977; Gerde and Marder, 2001; Movchan et al., 2003). In this connection, we also note some earlier
papers on dynamic fracture within inhomogeneous lattices of periodic structures, Mishuris et al. (2007, 2008a, 2008b),
which include analytical representation for the displacement around the crack, dissipation rate, and issues of
homogenisation approximations.

In the present work, we consider the steady-state and the ‘alternating-strain steady-state’ dynamic fracture caused by
high-frequency exponentially localised harmonic waves.

We address a scalar model of antiplane shear of a square lattice containing an interface layer, which possesses different
elastic and/or inertia properties compared to the ambient infinite lattice. We consider rupture propagating along such an
interface, where the energy is supplied by a high frequency ‘feeding wave’, exponentially localised at the interface; here to
emphasise the strong localisation we also call it the knife wave.

The plan of the paper is as follows. Sections 2 and 3 include the description of the geometry of the inhomogeneous
lattice with the crack, governing equations for the displacements of the nodes of the lattice, and the equivalent formulation
in terms of the Fourier transforms. In Section 4, we formulate and solve model problems for the lattice half planes with
different types (Neumann or Dirichlet) boundary conditions on their edge. The corresponding dispersion diagrams
are linked to the waves behind the crack front and waves ahead of the crack. Given the knife wave frequency the
diagrams allow to determine directly the possible crack speed and also the frequencies and the group velocities of the
dissipative waves.

The crack dynamics problem considered in Section 5 is reduced to the functional equation of the Wiener–Hopf type,
which is solved in the closed analytical form. In Section 6, we analyse the properties of the kernel function of the main
functional equation, which are closely linked to the characteristics of the knife wave, which supplies the energy to the
propagating crack, and of the dissipative waves. A special alternating-strain formulation is introduced and analysed in
Section 7. Results of numerical simulations, which support the analytically considered regimes of the knife-wave rupture
and have revealed some ‘crack-speed-oscillating’ regimes, are presented in Section 8. Then in Sections 9.1 and 9.2, we
consider particularly important cases of a low contrast (light) interface and of a heavy interface. A special attention is given
to the analysis of the energy relations as the comparative rates of the energies of the knife wave and the dissipative waves,
Section 10.

2. Formulation of the problem. Governing equations

We consider a Mode III dynamic fracture of a square lattice shown in Fig. 1. The lattice consists of point masses M1;M2,
connected by linearly elastic bonds of stiffnesses C1 and C2. The masses M1, together with the bonds of the stiffness C1, form
the structured interface. Given ðm;nÞ as a multi-index characterising a position of a mass within the lattice, the structured
interface involves two layers with n ¼71 together with the connecting bonds, whereas the bulk of the lattice lies above
and below the interface, i.e. it consists of the layers n ¼72;73; . . . . The normalisation is introduced in such a way that the
lattice spacing is equal to 1. The crack is assumed to propagate between the layers n ¼ 1 and �1, with a constant speed v.
This implies that the time interval between the breakages of neighbouring bonds is equal to 1=v.

The loading is imposed via a high-frequency ‘feeding’ wave propagating in the same direction as the crack itself. In addition
to this wave, there exist ‘dissipative waves’ excited by the propagating crack. For the structures considered below, these waves
are exponentially localised in a neighbourhood of the interface, i.e. they appear to decay exponentially as jnj-1.

Let um;nðtÞ be the displacement of the node ðm;nÞ at time t. Taking into account the symmetry, um;nðtÞ ¼ �um;�nðtÞ, we
consider only the upper half-plane as shown in Fig. 1. We note that behind the crack front there are no forces acting from
below on the masses of the layer n ¼ 1, whereas ahead of the crack the intact bonds have zero displacement on the
horizontal symmetry line.
Fig. 1. The lattice with the propagating crack. The upper part of the symmetric structure is shown. The structural interface consists of two lines, n ¼ 1 and

�1 (the latter is not shown) of masses M1 connected with each other and with the bulk of the lattice by the massless bonds with the stiffness C1. Since the

displacements are antisymmetric on n, the middle point of each bond between n ¼ 1 and �1 is fixed; the effective stiffness is thus 2C1.
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It is convenient to consider equations of motion for particles within an intact lattice, with the forces qmðtÞ applied to the
masses at the nodes ðm;1Þ along the crack and chosen in such a way that they compensate for the action of vertical bonds
connecting the layers of n ¼ 1 and �1 in the crack region. Namely, behind the crack front we have qmðtÞ ¼ 2C1um;1ðtÞ,
whereas ahead of the crack qm ¼ 0. Then the equations of motion take the form

M1 €um;1ðtÞ ¼ C1½umþ1;1ðtÞ þ um�1;1ðtÞ þ um;2ðtÞ � 5um;1ðtÞ� þ qmðtÞ ðfor n ¼ 1Þ;

M2 €um;2ðtÞ ¼ C2½umþ1;2ðtÞ þ um�1;2ðtÞ þ um;3ðtÞ � 3um;2ðtÞ� þ C1½um;1ðtÞ � um;2ðtÞ� ðfor n ¼ 2Þ;

M2 €um;nðtÞ ¼ C2½umþ1;nðtÞ þ um�1;nðtÞ þ um;nþ1ðtÞ þ um;n�1ðtÞ � 4um;nðtÞ� ðfor n42Þ: ð1Þ

Next we introduce the variable Z ¼ m� vt associated with the moving coordinate system. The bonds are assumed to brake
at Z ¼ 0. Thus the crack region is �1oZo0. We now consider a ‘steady state’ problem where the displacements um;n

depend on Z and n only and define

um;nðtÞ ¼ UnðZÞ; qmðtÞ ¼ Q ðZÞ ¼ 2C1U1ðZÞHð�ZÞ: ð2Þ

For the discrete lattice, by saying ‘steady state’ we mean that

umþ1;nðtÞ ¼ um;nðt � 1=vÞ; ð3Þ

for all nodes ðm;nÞ.
Applying the Fourier transform with respect to Z we deduce

M1ð0þ ikvÞ2UF
1ðkÞ ¼ C1½ð2cos k� 5ÞUF

1ðkÞ þ UF
2ðkÞ� þ QF ðkÞ ðfor n ¼ 1Þ; ð4Þ

M2ð0þ ikvÞ2UF
2ðkÞ ¼ C1½U

F
1ðkÞ � UF

2ðkÞ� þ C2½ð2cos k� 3ÞUF
2ðkÞ þ UF

3ðkÞ� ðfor n ¼ 2Þ; ð5Þ

M2ð0þ ikvÞ2UF
nðkÞ ¼ C2½ð2cos k� 4ÞUF

nðkÞ þ UF
nþ1ðkÞ þ UF

n�1ðkÞ� ðfor n42Þ; ð6Þ

where

UF
nðkÞ ¼

Z 1
�1

UnðZÞeikZ dZ; QF ðkÞ ¼

Z 1
�1

Q ðZÞeikZ dZ ¼ 2C1

Z 0

�1

U1ðZÞeikZ dZ: ð7Þ

The solution is sought in the class of functions vanishing as n-1.
3. Recurrence relations for a solution of the system (4)–(6)

The dependence of UF
nðkÞ on n for n42 is sought in the form

UF
nðkÞ ¼ ln�2UF

2ðkÞ with jljr1: ð8Þ

The direct substitution in (6) yields

lþ
1

l
¼ 2OðkÞ; ð9Þ

where

OðkÞ ¼ 2� cos kþ
M2

2C2
ð0þ ikvÞ2: ð10Þ

If jOðkÞjZ1 then l is real,

l ¼ OðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2
ðkÞ � 1

q
signðOðkÞÞ: ð11Þ

Otherwise, if jOjo1, the quantity l is complex, and jlj ¼ 1.
Furthermore, Eqs. (4) and (5) yield

UF
1ðkÞ ¼

S2ðk; kvÞ

S1ðk; kvÞ
QF ðkÞ; UF

2ðkÞ ¼
C1

S1ðk; kvÞ
QF ðkÞ; ð12Þ
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where

S1ðk;0þ ikvÞ ¼ ½M1ð0þ ikvÞ2 þ C1ð5� 2cos kÞ�S2ðk;0þ ikvÞ � C2
1 ;

S2ðk;0þ ikvÞ ¼ M2ð0þ ikvÞ2 þ C1 þ C2ð3� 2cos k� lÞ: ð13Þ

Note that if C1 ¼ C2 ¼ C then

S2ðk;0þ ikvÞ ¼
C

l
; ð14Þ

and the relation in (8) can be extended to n ¼ 1;2; . . . as follows:

UF
nðkÞ ¼ ln�1UF

1ðkÞ; jljr1: ð15Þ

The function QF ðkÞ, used in (12), and hence the Fourier transform of the entire solution will be determined in Section 5.
The moving crack is accompanied by waves which may propagate ahead of the crack front and behind the crack front.

The first type of waves corresponds to the lattice half-plane with the fixed boundary, whereas the waves behind the crack
front are linked to a solution of the problem for the lattice half-plane with the traction free boundary. Correspondingly, the
above functions S1 and S2 are linked to dispersion properties of waves in a discrete lattice structure occupying a half-plane,
which will be the topic of the next section.

4. Dispersion relations for waves in the lattice

We shall use model solutions for a lattice half-plane with the fixed boundary and with the boundary, which is free of
tractions. The case of the undamaged lattice half-plane with the fixed boundary corresponds to QF ðkÞ ¼ 0, which is related
to a skew-symmetric (in n) deformation of the lattice plane. In the other case of the traction free boundary, we have
QF ðkÞ ¼ 2C1UF

1ðkÞ.
The dispersion relations, o ¼ oðkÞ, for the sinusoidal waves along the horizontal layers (n41)

fnexp½iðot � kmÞ�; ð16Þ

with the amplitudes

f1 ¼ A1; f2 ¼ A2 ¼
C1A1

S2ðk; ioÞ
; fn ¼ ln�2f2 ðn42Þ ð17Þ

follow from the above-considered Fourier transforms if the ‘inertia term’ 0þ ikv is replaced by io, where o is the radian
frequency. It follows from (14) that A2 ¼ lA1 if C1 ¼ C2.

For the fixed and free boundaries the dispersion relations are written in the form

P1ðk; ioÞ ¼ 0 where P1ðk; ioÞ ¼ S1ðk; ioÞ ð18Þ

and

P2ðk; ioÞ ¼ 0 where P2ðk; ioÞ ¼ S1ðk; ioÞ � 2C1S2ðk; ioÞ: ð19Þ

In these relations, k is the wave number. The phase and group velocities of the wave are v ¼ o=k and do=dk, respectively.
The above relations are equivalent to

P1ðk; ioÞ ¼ ½�M1o2 þ C1ð5� 2cos kÞ�S2ðk; ioÞ � C2
1 ¼ 0;

P2ðk; ioÞ ¼ ½�M1o2 þ C1ð3� 2cos kÞ�S2ðk; ioÞ � C2
1 ¼ 0: ð20Þ

For the case of C1 ¼ C2 ¼ C, according to (14) we deduce

P1ðk; ioÞ ¼
M2

2
�M1

� �
o2

C
þ 3� cos kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2
� 1

p
signðOÞ ¼ 0; ð21Þ

P2ðk; ioÞ ¼
M2

2
�M1

� �
o2

C
þ 1� cos kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2
� 1

p
signðOÞ ¼ 0: ð22Þ

In particular, if M1oM2=2, then the acoustical branch in the dispersion diagram is absent, i.e. for any admissible k there
are no real roots o of the dispersion equation within an interval adjacent to the origin. Indeed, otherwise, there must be an
interval in k where 0oo2o2C=M2, and hence O ¼ 2� cos k�M2o2=ð2CÞ40. Thus, in this interval, the square root term is
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Fig. 2. Dispersion diagrams. (a) M1 ¼ 0:01. The phase speed v ¼ o=k ¼ 2: thecross-point B corresponds to the feeding knife wave behind the crack front;

v ¼ o=k ¼ 4: the cross-point F corresponds to the feeding knife wave ahead of the crack front. (b) M ¼ 0:05. The phase speed v ¼ o=k ¼ 1:05: the cross-

point B corresponds to the feeding knife wave behind the crack front; v ¼ o=k ¼ 3: the cross-point F corresponds to the feeding knife wave ahead of the

crack front.
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positive, zero or complex, whereas the other terms in the left-hand side of (21), (22) are positive. Thus neither the first nor
the second dispersion relation is satisfied. Eq. (22) is, however, satisfied at the origin: k ¼ o ¼ 0.

Unless otherwise stated, in the sequel of the paper we consider a lattice of a uniform stiffness, and choose the
normalised lattice parameters so that C1 ¼ C2 ¼ 1 and M2 ¼ 1.

It follows from (21) and (22) that, for the values of M1, such that 0oM1o 1
2, and for real values of o, which corresponds

to the propagating waves, we have Oo� 1 and �1olo0. Thus, in the case of the ‘light interface’, the waves propagate in
the horizontal direction while being exponentially localised in the vicinity of the interface.

The solutions of (21) and (22) are

o ¼ o1;2 ¼ �A1;2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1;2 � B1;2

qh i1=2

; ð23Þ

where

A1 ¼
5� 2cos k� 2M1ð3� cos kÞ

2M1ðM1 � 1Þ
; B1 ¼

6� 2cos k

M1ðM1 � 1Þ
;

A2 ¼
3� 2cos k� 2M1ð1� cos kÞ

2M1ðM1 � 1Þ
; B2 ¼ �

2ð1� cos kÞ

M1ðM1 � 1Þ
: ð24Þ

The dispersion curves o ¼ o1ðkÞ and o ¼ o2ðkÞ for M1 ¼ 0:01 and 0:05 are plotted in Figs. 2a and b. The corresponding
exponents l ¼ l1ðkÞ and l ¼ l2ðkÞ, as defined in (11), are shown in Figs. 3a and b. Since l51, according to (15) the
waves corresponding to the dispersion relations (23) and shown in Figs. 2a and b are strongly localised around the layer
n ¼ 1.

The points of intersection of the dispersion curves with the rays o ¼ const k;o40, shown in Fig. 2a and b, correspond
to the waves propagating with the same phase speed, v ¼ o=k for each of the rays. Thus, these waves can be associated
with the steady-state regime of the crack propagating with the same speed v. If the group velocity is sufficiently
large vg ¼ do2=dk4v (see point B), then such a wave propagating from behind of the crack front can deliver energy to the
crack tip. In the other case of small group velocity vg ¼ do1=dkov (see point F), such a wave propagating ahead of the
crack front still can deliver energy to the overtaking crack. These waves are referred to as the ‘feeding waves’ (see Slepyan,
2002).

In Figs. 2a and b, the intersections of the rays o ¼ 2k and o ¼ 1:05k with the dispersion curves are marked by letters A,
B, C and D, whereas the points E and F correspond to the rays o ¼ 4k and o ¼ 3k. We also note that the maximal group
velocity in the bulk of the lattice, outside the structural interface, is equal to 1. Thus, the waves corresponding to the
intersection points B and F are supersonic with respect to the bulk of the lattice. The strongly localised feeding wave, which
supplies the energy to the crack and cuts the bonds, is called here the knife wave.
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5. Solution of the crack dynamics problem

We recall that in Section 3 we have derived the Fourier transforms of the solution subject to evaluation of the unknown
function QF . The present section completes this analysis via reduction of the problem to the functional equation of the
Wiener–Hopf type.

The notations U7ðkÞ are introduced in such a way that

UF
1ðkÞ ¼ U�ðkÞ þ UþðkÞ; ð25Þ

where

UþðkÞ ¼

Z 1
0

U1ðZÞeikZ dZ; U�ðkÞ ¼

Z 0

�1

U1ðZÞeikZ dZ: ð26Þ

Then Eq. (7) can be rewritten in the form

QF ¼ 2C1U�: ð27Þ

From (12) and (27), we have the homogeneous functional equation

UþðkÞ þ LðkÞU�ðkÞ ¼ 0; ð28Þ

with

LðkÞ ¼ 1�
2C1S2ðk;0þ ikvÞ

S1ðk;0þ ikvÞ
¼

P2ðk;0þ ikvÞ

P1ðk;0þ ikvÞ
: ð29Þ

Eq. (28) is the functional equation of the Wiener–Hopf type. The kernel functions of this type for a periodic lattice was
analysed by Slepyan (2002). It is straightforward to verify that LðkÞ has a zero index and LðkÞ-1 as k-71. This enables us
to use the Cauchy type integral to factorise this function, that is, to represent it as a product

LðkÞ ¼ LþðkÞL�ðkÞ; ð30Þ

with

L7ðkÞ ¼ exp 7
1

2pi

Z 1
�1

ln LðxÞ
x� k

dx
� �

; ð31Þ

where 7Ik40, respectively. Note that for real k

jLð�kÞj ¼ jLðkÞj; Arg Lð�kÞ ¼ �Arg LðkÞ; ð32Þ
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and the above expression (31) can be rewritten in the form

L7ðkÞ ¼ exp 7
1

pi

Z 1
0

klnjLðxÞj þ ixArg LðxÞ
x2
� k2

dx

" #
; ð33Þ

with 7Ik40, respectively. Also note that Arg LðkÞ has a finite support. For real k, Eqs. (31) and (32) yield

L7ð�kÞ ¼ L7ðkÞ: ð34Þ

The factorised form of (28) is

UþðkÞ

LþðkÞ
þ L�ðkÞU�ðkÞ ¼ 0: ð35Þ

This equation does not have non-trivial solutions corresponding to bounded displacements at Z ¼ 0, which also vanish at
infinity. To set up a physical problem, we assume that the energy is supplied to the crack front by a feeding wave coming
from Z ¼ �1, and correspondingly we introduce the right-hand side as a regularisation of the Dirac delta function,
dðk� kf Þ, similar to Slepyan (2002, pp. 400–402). The ‘modified’ equation (35) is

UþðkÞ

LþðkÞ
þ L�ðkÞU�ðkÞ ¼ Af

1

0þ iðk� kf Þ
þ

1

0� iðk� kf Þ

� �
; ð36Þ

where Af is an arbitrary complex constant, and the solution has the form

UþðkÞ ¼
Af LþðkÞ

0� iðk� kf Þ
; U�ðkÞ ¼

Af

½ð0þ iðk� kf ÞÞ�L�ðkÞ
: ð37Þ

According to the physical nature of the problem, the feeding wave arrives from Z ¼ �1 and hence U�ðkÞ has a pole at
k ¼ kf , whereas UþðkÞ is bounded at that point. This implies that kf coincides with zero k ¼ kB of LþðkÞ, which follows from
(29) and is illustrated in Fig. 2.

Note that, in addition to the delta-function term Afdðk� kf Þ, the same function but related to the symmetric zero k ¼ �kf

can be introduced as Bfdðkþ kf Þ. Referring to (32) and (33) to get a real solution we take Bf ¼ Af . Thus

UþðkÞ ¼
Af LþðkÞ

0� iðk� kf Þ
þ

Af LþðkÞ

0� iðkþ kf Þ
;

U�ðkÞ ¼
Af

½0þ iðk� kf Þ�L�ðkÞ
þ

Af

½ð0þ iðkþ kf ÞÞ�L�ðkÞ
: ð38Þ

As it follows from here and (34) for reak k

U7ð�kÞ ¼ U7ðkÞ ð39Þ

and hence UðZÞ is a real function.

6. Further analysis of feeding and dissipative waves

6.1. Normalisation of LðkÞ

In this section, we consider the cases where the high-speed feeding wave propagates toward the front (vg4v). The
background solutions have been given in Section 4. The intersection points of the dispersion curve o1;2ðkÞwith the straight
line o ¼ kv, shown in Fig. 2, define zeros of the functions P1;2, respectively. The values of k corresponding to the
intersection point B in Fig. 2, where the group velocity exceeds the phase speed, are associated with zeros of LþðkÞ. The
other intersection points, where the group velocity is less than the phase speed, and the origin k ¼ 0 correspond to the
singular points of L�ðkÞ. In addition to the positive zeros, there are negative ones placed symmetrically. For the sake of
convenience we normalise the functions LðkÞ and L7ðkÞ as follows:

LðkÞ ¼ L0ðkÞM�ðkÞMþðkÞ; L0ðkÞ ¼ L0
�ðkÞL

0
þðkÞ; L�ðkÞ ¼ L0

�ðkÞM�ðkÞ; LþðkÞ ¼ L0
þðkÞMþðkÞ;

M�ðkÞ ¼
ð0þ ikÞ½0þ iðk� kAÞ�½0þ iðkþ kAÞ�½0þ iðk� kCÞ�½0þ iðkþ kCÞ�

ð1þ ikÞ½0þ iðk� kDÞ�½0þ iðkþ kDÞ�ð5þ ikÞ2
;

MþðkÞ ¼
½0� iðk� kBÞ�½0� iðkþ kBÞ�

ð5� ikÞ2
; ð40Þ



ARTICLE IN PRESS

G.S. Mishuris et al. / J. Mech. Phys. Solids 57 (2009) 1958–1979 1965
where the number ‘5’ can be replaced by any positive number; we take just this value to avoid too large values of the
function lnjL0j.

For the case of M1 ¼ 0:01;v ¼ 2 (see Fig. 2a) the wave numbers and the corresponding group velocities (see the points
A; . . . ;D in Fig. 2a) are kA ¼ 5:725200135 (vg ¼ �4:596669685), kB ¼ kf ¼ 7:451364094 (vg ¼ 6:160892550), kC ¼

10:31705294 (vg ¼ �3:770776501), kD ¼ 11:05318120 (vg ¼ �4:514179340). The functions L0
7ðkÞ are defined by the

relation (31) if LðxÞ is replaced by L0ðxÞ. Note that L0ðkÞ has no zeros and poles (it, however, has singular points associated
with zeros of the square root in the expression (11) for l). Due to (38) and (40), we deduce

UþðkÞ ¼
Af L0
þðkÞMþðkÞ

0� iðk� kf Þ
þ

Af L0
þðkÞMþðkÞ

0� iðkþ kf Þ
;

U�ðkÞ ¼
Af

½0þ iðk� kf Þ�L0
�ðkÞM�ðkÞ

þ
Af

½ð0þ iðkþ kf ÞÞ�L0
�ðkÞM�ðkÞ

: ð41Þ

Similar normalisation is valid for M1 ¼ 0:05;v ¼ 1:05 (see Fig. 2b). In this case kA ¼ 5:474451977 (vg ¼ �2:466278976),
kB ¼ kf ¼ 8:214348564 (vg ¼ 2:161418984), kC ¼ 9:524480395 (vg ¼ �0:1986336447), kD ¼ 10:45930645 (vg ¼

�1:563247862).
6.2. The feeding wave

Let the feeding wave amplitude be A040. Referring to (38) we take

Af ¼
1
2A0F; F ¼ L�ðkf Þe

�if; ð42Þ

where f is an ‘initial’ phase which defines the position of the wave relative to the breaking bond at the crack front, i.e. the
point Z ¼ 0. The feeding wave is defined by the values k ¼7kf , and we deduce

Uf ðZÞ ¼ A0cos ðkfZþfÞHð�ZÞ: ð43Þ

Note that there is no such a wave ahead of the crack. Indeed, in the expression (41) for UþðkÞ, the explicitly written zeros
k ¼7kf are eliminated by the same zeros of MþðkÞ (see (40), kB ¼ kf ).

6.3. The dissipative waves

In both cases, when M1 ¼ 0:01; v ¼ 2 and M1 ¼ 0:05; v ¼ 1:05, the dissipative waves are related to the poles of U� :
k ¼7kA and k ¼7kC . Note that the point k ¼ kD is a zero of U�ðkÞ in (38) rather than a pole. Let us denote these waves by
UAðZÞ and UCðZÞ, respectively. We also introduce the quantities

L��ðkAÞ ¼ L0
�ðkAÞ lim

k-kA

M�ðkÞ

0þ iðk� kAÞ
; L��ðkCÞ ¼ L0

�ðkCÞ lim
k-kC

M�ðkÞ

0þ iðk� kCÞ
: ð44Þ

From (40)–(42) we deduce that the dissipative wave amplitudes are

W ¼
2A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�ðRFÞ2 þ k2

f ðIFÞ
2

q
jk2
� � k2

f jjL
�
�ðk�Þj

; ð45Þ

where k� ¼ kA and k� ¼ kC for kA and kC-waves, respectively. These waves propagate behind the crack front. There are no
waves propagating ahead of the crack.
6.4. Contribution of the pole at k ¼ 0

From (40)–(42) it can be found that the pole at k ¼ 0 yields a constant displacement as Z-�1:

U0 ¼ �
25A0k2

D

kf k2
Ak2

CL0
�ð0Þ

IF: ð46Þ

Note that L0
�ð0Þ40. Thus, in addition to the oscillations defined by the feeding and dissipative waves, there is a constant

shift of the crack faces relative to each other caused by the oscillating waves (in fact, it tends to a constant as Z-�1). This
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phenomenon as a drift of a finite mass or a shift of a semi-infinite waveguide under a harmonic load can be explicitly
shown on simple examples (the non-oscillating terms are shown in bold).

Consider a mass, say M ¼ 1, subject to the oscillatory force sin ðot þ fÞ. The initial conditions are assumed to be zero.
Then the displacement at tZ0 is

u ¼
tcos /

x
þ

sin /

x2
�

sin ðot þ fÞ
o2

: ð47Þ

For an elastic rod, x40, under the same load applied at x ¼ 0, we find (in terms of the natural units) that the oscillations
accompanied by a constant shift propagate as a wave:

uðx; tÞ ¼
cos ð/Þ

x
�

cos ðoðt � xÞ þ fÞ
o

� �
Hðt � xÞ; tZ0: ð48Þ

For a semi-infinite chain with the unit masses and stiffness, loaded by this force applied to the first mass, it can be found
that, in the subcritical case, o2o4, the constant shift is the same as in the previous example. In the supercritical case, o42,
the high-frequency oscillations do not propagate, and the shift does not exist. However, in this case, a finite amount of the
energy goes to the chain. It is the energy of the localised oscillations with the frequency o and the energy associated with
the subcritical frequencies, which appear due to the presence of the initial conditions. All these phenomena appear in the
lattice problem, considered in this paper. The constant shift behind the crack (46) is associated with a region of the
subcritical frequencies, and the energy redistributed between the waves is produced by the high-frequency oscillations, as
described in Section 10.
7. Alternating strain: um;nðtÞ ¼ UnðZÞð�1Þm

For mode III deformation and fracture caused by a sinusoidal wave, a different ‘steady-state’ regime of the crack growth
in the considered square lattice can be envisaged. It can be assumed that the sequence of the bond ruptures takes place in
equal time-intervals, as in the above-considered regime, but with alternating signs of the critical strain. Thus we now
assume that the displacements can be represented in the form

um;nðtÞ ¼ UnðZÞð�1Þm; Z ¼ m� vt: ð49Þ

With respect to a sinusoidal wave propagating in the m-direction this means that

um;nðtÞ ¼ Ane�i½oðkÞt�km�ð�1Þm ¼ Ane�i½oðkÞt�ðk�pÞm�: ð50Þ

The latter expression is suitable for the continuum representation of the wave where m can be considered as a continuous
variable; on the other hand, for the discrete system, only the integer values of the coordinate are important. Let UF

nðkÞ

denote the Fourier transform of um;n for an even m ¼ 0;72; . . .

UF
nðkÞ ¼

Z 1
�1

UnðZÞeikZ dZ: ð51Þ

Then for any odd m

½um;nðtÞ�
F ¼ �UF

nðkÞ; m ¼71;73; . . . : ð52Þ

We now rewrite the equations for the alternating-strain regime. Using Eqs. (1) and (49) we obtain (compare with (4)–(6))

M1ð0þ ikvÞ2UF
1ðkÞ ¼ C1½�ð2cos kþ 5ÞUF

1ðkÞ þ UF
2ðkÞ� þ QF ðkÞ ðfor n ¼ 1Þ; ð53Þ

M2ð0þ ikvÞ2UF
2ðkÞ ¼ C1½U

F
1ðkÞ � UF

2ðkÞ� þ C2½�ð2cos kþ 3ÞUF
2ðkÞ þ UF

3ðkÞ� ðfor n ¼ 2Þ; ð54Þ

M2ð0þ ikvÞ2UF
nðkÞ ¼ C2½�ð2cos kþ 4ÞUF

nðkÞ þ UF
nþ1ðkÞ þ UF

n�1ðkÞ� ðfor n42Þ: ð55Þ

Next, among the relations of Section 3, only (10) and (13) have now been changed to become

OðkÞ ¼ 2þ cos kþ
M2

2C2
ð0þ ikvÞ2; ð56Þ
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and

S1ðk;0þ ikvÞ ¼ ½M1ð0þ ikvÞ2 þ C1ð5þ 2cos kÞ�S2ðk; kvÞ;

S2ðk;0þ ikvÞ ¼ M2ð0þ ikvÞ2 þ C1 þ C2ð3þ 2cos k� lÞ; ð57Þ

whereas the remaining relations are still as they are. Accordingly, in Section 4, the relations (20)–(22) become

P1ðk; ioÞ ¼ ½�M1o2 þ C1ð5þ 2cos kÞ�S2ðk; ioÞ � C2
1 ¼ 0;

P2ðk; ioÞ ¼ ½�M1o2 þ C1ð3þ 2cos kÞ�S2ðk; ioÞ � C2
1 ¼ 0; ð58Þ

and in the case of C1 ¼ C2 ¼ C (see (11) and (14)) we have

P1ðk; ioÞ ¼
M2

2
�M1

� �
o2

C
þ 3þ cos kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2
� 1

p
signðOÞ ¼ 0; ð59Þ

P2ðk; ioÞ ¼
M2

2
�M1

� �
o2

C
þ 1þ cos kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2
� 1

p
signðOÞ ¼ 0: ð60Þ

The statement concerning the absence of the acoustical branch is still valid in this case. Now the zero at the origin does not
exist, and hence there is no constant shift term for the displacement at Z-�1.

The quantities in the relation (23) become

A1 ¼
5þ 2cos k� 2M1ð3þ cos kÞ

2M1ðM1 � 1Þ
; B1 ¼

6þ 2cos k

M1ðM1 � 1Þ
;

A2 ¼
3þ 2cos k� 2M1ð1þ cos kÞ

2M1ðM1 � 1Þ
; B2 ¼ �

2ð1þ cos kÞ

M1ðM1 � 1Þ
: ð61Þ

The dispersion curves are presented in Fig. 4 for M1 ¼ 0:1; v ¼ 1:15, and the related exponents l are shown in Fig. 5.
The corresponding wave numbers (as the cross-points o1;2 on the ray o ¼ 1:25k) are: kA ¼ 2:944022994
(vg ¼ �0:5252941955), kB ¼ kf ¼ 4:575226946 (vg ¼ 1:853576372), kC ¼ 6:152173545 (vg ¼ 0:1837938996), kD ¼

7:013954860 (vg ¼ �0:8253775985).
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Fig. 4. Dispersion diagram for the alternating-strain regime, M1 ¼ 0:1. The cross-points correspond to the phase speed v ¼ o=k ¼ 1:15.
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Fig. 5. The exponents l1 ; l2 for the case M1 ¼ 0:1.
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8. High-contrast interface approximation, and numerical simulation

8.1. The lattice strip

In the above-considered examples, jlj51. Hence the oscillation amplitudes outside the interface are very small
relatively those in the line n ¼ 1. Since the energy is a quadratic function of the amplitudes, it follows that almost all the
energy of the waves is contained in the interface. Besides, only an infinitesimal amount of the energy is radiated from the
interface to the bulk of the lattice.

This suggests that a good approximation of the lattice dynamics, incorporating the wave amplitudes and the energy
fluxes, can be achieved through an analysis of a one-dimensional model. The latter can be constructed by assuming that the
masses outside the interface, i.e. on the lines n41, are fixed, and the waveguide itself consists of the interface particles
only. Here we keep this approximation and assume that the masses on the line n ¼ 2 are stationary.

We consider the chain m ¼ 0;1; . . . ;mend ¼ 200 with the initial crack at m ¼ 0;1; . . . ;m�ð0Þ ¼ 51. Under zero initial
conditions the system of ordinary differential equations is

u0 ¼ Asino0
f tHðtÞ; umend

¼ 0;

€um ¼ �3um þ um�1 þ umþ1 ðmom�ðtÞÞ;

€um ¼ �5um þ um�1 þ umþ1 ðmZm�ðtÞÞ; ð62Þ

where m�ðtÞ is the crack front. At the moment when um first reaches the critical value, the corresponding bond (below the
mass) breaks and m� receives a unit increment.

For such a lattice strip

o ¼ o0
1ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
582cos k

p
for the intact chain;

o ¼ o0
2ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
382cos k

p
for the crack region boundary condition; ð63Þ

where the signs 8 correspond to the steady-state and alternating-strain regimes, respectively; the mass of each particle is
taken to be unity. The dispersion diagrams o0

2ðkÞ are plotted in Fig. 6. With the reference to the above-considered cases we
now have to take, in the one-dimensional model, the frequency o0

f ¼ of

ffiffiffiffiffiffiffi
M1

p
, and we may expect to obtain the crack speed

as theoretically predicted: V ¼ v
ffiffiffiffiffiffiffi
M1

p
. For the numerical simulations, we take V ¼ Vsteady ¼ 0:2 for the steady-state regime,

that relates to the case M1 ¼ 0:01; v ¼ 2 considered in Section 6. From the dispersion relation o0
2ðkÞ in (63) it follows

that kf ¼ 7:455033153, o0
2 ¼ 1:491006630, Vg ¼ 0:6180186908. We take the same frequency for the alternating-strain

case; using the first dispersion relation from (63) we thus have V ¼ Valternate ¼ 0:3456652828, kf ¼ 4:313440499,
o0

2 ¼ 1:491006630, Vg ¼ 0:6180186908.

8.2. Critical amplitude of the feeding wave

First we find the feeding wave amplitude which is required for an initial crack to grow. In the numerical simulations, we
assume that only the crack-line bonds can be broken. Consider an established regime where the complex wave

uI ¼ A0eiðot�kmÞ ð64Þ
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Fig. 6. The lattice strip dispersion diagram, o0
2ðkÞ, for the steady-state regime (1) and for the alternating-strain regime (2). The corresponding phase

speeds are defined by the rays 3 and 4. Horizontal line 5 corresponds to the frequency o0 ¼ 1:491006630.
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propagating toward the stationary crack front, m ¼ 0, is accompanied by the reflected and transmitted waves as

uR ¼ AReiðotþkmÞ ðmr0Þ; uT ¼ ATl
meiot ðmZ0; lo1Þ; ð65Þ

where it is assumed that 1oo2o3 (in this region, no propagating wave exists at m40). From the last equation in (62) it
follows that

l ¼
5�o2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�o2

2

� �2

� 1

s
: ð66Þ

From the displacement continuity and dynamic equilibrium conditions at m ¼ 0 we find

AT ¼ A0 þ AR ¼ A0
2i sin k

1=l� expð�ikÞ
cos k ¼

3�o2

2

� �
: ð67Þ

The critical value of the amplitude at m ¼ 0 is equal to the displacement breaking the bond, that is

A0
2i sin k

1=l� expð�ikÞ

����
���� ¼ uc ¼) A ¼

A0

uc
¼A� ¼

1=l� expð�ikÞ

2sin k

����
����: ð68Þ

Thus, for the crack to grow the feeding wave amplitude must be greater than this value. The plot of this limiting
dependence is presented in Fig. 7.

8.3. Crack speeds

Two formulations related to the high-contrast interface are analysed numerically: the steady-state formulation with the
fracture criterion um ¼ uc40, and the alternate-strain formulation with the fracture criterion jumj ¼ uc40. Recall that
for both cases we take the same frequency o ¼ 1:491006630; the other parameters of the feeding waves are listed in
Section 8.1. The numerical simulations show that, in certain regions of A, these regimes are established with the
corresponding (theoretically predicted) crack speeds.

Figs. 8a and b give the numerically obtained crack speed, under the steady-state criterion, as a function of A. If
AoA� ¼ 1:176770982, the crack growth, even if initiated, stops. As A4A� the crack propagates, and the crack speed is
independent of the amplitude within the interval A 2 ðA�;2:18�; this crack speed is equal to the theoretically predicted
speed Vsteady ¼ 0:2. On the other hand, further increase in the amplitude results in the increase of the average crack speed,
/VS which approaches the value of the feeding wave group velocity Vg ¼ 0:6180186908 as A-1.

It is worth mentioning that the crack itself is not steady in this case. Figs. 8a and b show the jump-like increase of the
crack speed for certain values of the increasing amplitude of the feeding wave. It is also remarked that there exists
an interval of amplitudes where the crack speed is approximately constant, and it is equal to the alternating-strain regime.
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Fig. 8. The crack speed as a function of the amplitude of the feeding wave. The calculations were conducted under the steady-state regime related fracture

criterion, um ¼ uc40. (a) A�oAo10, (b) A�oAo100.
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Fig. 7. The lower bound of the ratio of the feeding wave amplitude to the critical elongation of the bond on the crack path, A ¼ A0=u� ¼A� as a function

of the frequency. The asterisks correspond to the numerically obtained values.
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Fig. 8b also shows that for sufficiently large values of the amplitude A the averaged crack speed approaches the group
velocity of the feeding wave.

In Fig. 9 we show the position of the crack front as a function of time for different amplitudes of the feeding wave. In
particular, for the two chosen values, A ¼ 1:2 and 2:0, the speeds of the crack are the same, and the time-interval between
the breakage of the neighbouring bonds is constant, equal to 1=V that corresponds to the steady-state regime. At the higher
values of the amplitude, the averaged speed is established as A-dependent constant, whereas the local crack speed is non-
uniform; it oscillates between the steady-state value, V ¼ 0:2, and a higher value, V � 0:8. As can be seen in Fig. 9, large
clusters within the lattice correspond to the higher speed, whereas the lower, theoretically predicted (V ¼ 0:2) corresponds
to the local speed between the clusters.

This non-uniformity in the local crack speed is shown in more detail in Fig. 10. This mode of fracture can be called the
oscillating crack-speed regime. As shown in Fig. 10, at a very large amplitude multiple local speeds arise; however, even in
such a locally disordered crack growth, the averaged (macrolevel) crack speed is established; it is a function of the
amplitude only.

Under the alternating-strain criterion, the crack speed dependence is presented in Figs. 11a and b. First, A�oAo1:35,
the speed coincides with that for the steady-state criterion. Then as A further increases, the speed also increases to form
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Fig. 10. The intervals between the breakage of the neighbouring bonds, Dt, versus the sequence of the breakages of the bonds, m� , in the criterion related

to the steady-state regime, um ¼ uc .
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Fig. 9. Positions of the crack front, m� , versus time, t. The calculations were conducted under the steady-state related fracture criterion, um ¼ uc40. The

values of the amplitude, A, are shown in the insert. The steady-state regime is established with V ¼ 0:2 for A ¼ 1:2 and 2:0. The oscillating crack speed

regime is established with the increased averaged speeds for A ¼ 2:2; . . . ;6:0.
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the oscillating crack-speed regime, which corresponds A 2 ð1:35;1:85Þ. In the further increase of the amplitude, the
alternating-strain regime is established where the crack speed is equal to the predicted value, V ¼ Valternate ¼

0:3456652828, which corresponds to A 2 ð1:85;2:51Þ. As the amplitude becomes greater the oscillating crack-speed
regime occurs again. The results of the numerical simulations under this criterion are illustrated in Figs. 11a and b, 12
and 13, which are of the same nature as Figs. 8a and b, 9 and 10, respectively.
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Fig. 11. The crack speed, V, as a function of the amplitude of the feeding wave, A. The calculations were conducted under the alternating-strain fracture

criterion, jumj ¼ uc40. (a) A�oAo4, (b) A�oAo100.
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Fig. 12. Positions of the crack front, m, at its break moment versus time, t. The calculations were conducted under the alternating-strain fracture criterion,

jumj ¼ uc40. The values of the amplitude, A, are listed in the insert. The steady-state regime occurs with V ¼ 0:2 for A ¼ 1:25 and the alternating-strain

regime is established with V ¼ Valternate ¼ 0:3456652828 for A ¼ 2:2. The oscillating crack speed regime is established for A ¼ 1:65 and 3:0.
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9. Other types of structural interfaces

In addition to the configurations incorporating high-contrast interface described above, we draw attention of the reader
to the fact that localised knife waves can be supported by interfaces of other types. Some of such examples are outlined
here.
9.1. The low-contrast structural interface

In the above analysis, the feeding wave was delivered along the crack surface, from minus infinity to the crack front.
Thus, the group velocity of the wave must exceed the crack speed, and the supersonic crack can exist only in the case of a
high-contrast structural interface.

As shown in Slepyan (1981, 2002), the feeding wave can be characterised by the delta-function term in the right-hand
side of the homogeneous equation (35). The ‘support’ of such right-hand side coincides with a zero of LþðkÞ—when the
feeding wave is behind the crack front, and with a pole of L�ðkÞ—when the feeding wave is ahead of the crack. As shown in
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Fig. 14. Dispersion diagram for the low-contrast interface, M1 ¼ 0:4. The intersection points A and B correspond to the phase speed v ¼ 2.
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Fig. 2, the latter type of the feeding wave can exist and corresponds to the wave number kD. In this case the dissipative wave
numbers are kA and kC .

Thus, the feeding wave may also be placed in front of the crack. For such a configuration, the group velocity of the wave
must be less than the crack speed, and we show in the text below that the fracture supported by such a feeding wave can
also exist for low-contrast structural interfaces.

The low-contrast case for the steady-state regime, M1 ¼ 0:4; v ¼ 2, is illustrated in Figs. 14 (the dispersion diagram) and
15 (the corresponding exponents characterising the rate of localisation). Now the feeding wave is placed ahead the crack
front; kB is its wave number corresponding to the intersection point B, and the dissipative wave placed behind the crack
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Fig. 16. Dispersion diagram for the heavy interface, M1 ¼ 10. The cross-points correspond to the phase speed v ¼ 0:15.
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front; kA is its wave number corresponding to the point A. We represent the function LðkÞ in the way similar to (40)

LðkÞ ¼ L0ðkÞM�ðkÞ; L0ðkÞ ¼ L0
�ðkÞL

0
þðkÞ;

L�ðkÞ ¼ L0
�ðkÞM�ðkÞ; LþðkÞ ¼ L0

þðkÞ;

M�ðkÞ ¼
ð0þ ikÞ½0þ iðk� kAÞ�½0þ iðkþ kAÞ�

ð1þ ikÞ½0þ iðk� kBÞ�½0þ iðkþ kBÞ�
; ð69Þ

where kA ¼ 1:330321963 (vg ¼ 0:7989444170), kB ¼ kf ¼ 1:893929503 (vg ¼ 0:6158398400). The expressions (41) for
U7ðkÞ are still valid, and MþðkÞ ¼ 1. Consequently, the feeding and dissipative waves are defined by the expressions (43)
and (45) with the above values of kA and kB.

9.2. Localisation within a heavy structural interface ðM141Þ

In this section we show that the localised knife wave can exist in the case of a heavy interface, when M14M2 ¼ 1. We
consider an example where M1 ¼ 10; v ¼ 0:15, and give the dispersion diagram and the graphs of the localisation
exponents in Figs. 16 and 17, respectively. Here kB is the wave number for the feeding wave placed ahead of the crack
(kB ¼ 4:640727636, vg ¼ �0:1556902544), and kA corresponds to the dissipative wave (kA ¼ 4:140924115,
vg ¼ �0:1417943765). The feeding and dissipative waves are defined by the expressions (43) and (45).
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10. Energy relations

In this section we address the fundamental relations of the energy balance. The emphasis is on the dissipation
associated with the localised waves, which carry the energy away from the ‘crack tip’. We also determine the energy
percolating to the bulk of the lattice. We make a comparative analysis of the lattice strip problem and the problem of the
structural interface separating two lattice half-planes. The effects of localisation are clearly visible in the latter results.

10.1. General dependencies

For a localised sinusoidal wave (17) the energy flux, N, is defined as the product of the force acting on a particle from the
left, and its velocity. From (17) it can be found that the energy flux in the wave propagating in the crack area is

N ¼
1

2
jA1j

2kvsin k 1þ
C1

S2
2ðk; ioÞ½1� l2

ðkÞ�

" #
; ð70Þ

where A1 is the complex wave amplitude, k is the wave number, lðkÞ is the corresponding exponent and v is the phase
velocity. It follows from (14) that if C1 ¼ C2 then the above relation is reduced to

N ¼
1

2
jA1j

2 kvsin k

1� l2
ðkÞ

: ð71Þ

For a wave with parameters k; l and vg ¼ do=dk, the energy release rate is given by

G ¼
N

vvg
jvg � vj: ð72Þ

In particular, for the feeding wave G ¼ Gf is the energy carried to the crack front, whereas for a dissipative wave this is the
energy radiated from the crack front. Note that the group velocity can be positive, zero or negative, but, in the considered
structures, the ratio ðsin kÞ=vg is always positive and bounded, which guarantees that the quantity (72) is also positive and
bounded.

10.2. The energy radiated from the interface

We consider the energy flux from the node (m;n) to the node (m;nþ 1). We note that the answer will not depend on m.
The total energy transfer is

Gr ¼ Gn-nþ1 ¼

Z 1
�1

½um;nðtÞ � um;nþ1ðtÞ� _um;nþ1ðtÞdt: ð73Þ
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Using the Parseval identity and taking into account that

UF
nþ1ðkÞ ¼ UF

nðkÞlðkÞ ¼ UF
2ðkÞl

n�1
ðkÞ ðnZ2Þ ð74Þ

we can express (73) in the form

Gr ¼ �

Z 1
�1

½UnðZÞ � Unþ1ðZÞ�
dUnþ1ðZÞ

dZ dZ ¼ � 1

2p

Z 1
�1

½UF
nðkÞ � UF

nþ1ðkÞ�ð�ikÞUF
nþ1ðkÞ dk

¼ �
1

2p

Z 1
�1

jUF
2ðkÞj

2½1� lðkÞ�jljn�2ð�ikÞlðkÞ dk; ð75Þ

where in accordance with (4)

UF
2ðkÞ ¼ 5� 2cos k�

M1

C1
k2v2

� �
UþðkÞ þ 3� 2cos k�

M1

C1
k2v2

� �
U�ðkÞ: ð76Þ

Only the imaginary part of lðkÞ gives a contribution to the integral (75). In the corresponding domain, jlðkÞj ¼ 1 and the
integral becomes

Gr ¼
1

p

Z
K
jUF

2ðkÞj
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�O2

p
k dk; ð77Þ

where the domain K is a subset of the positive semi-axis k40, where O2o1. The radiated energy as a function of f is
plotted in Fig. 18, which shows the lower energy radiation for the higher contrast of the interface.
10.3. The energy of the bond

The strain energy of the broken bond is

G0 ¼ U2ð0Þ; ð78Þ

where the total displacement at the moment of the bond breakage can be obtained from (38) and (42) as the limit

Uð0Þ ¼ lim
s-1

sUþðisÞ ¼ lim
s-1

sU�ð�isÞ ¼ A0RF: ð79Þ
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Fig. 18. The ratio of the energy radiated from the interface to the feeding wave energy: M1 ¼ 0:01; v ¼ 2 (1) and M1 ¼ 0:05; v ¼ 1:05 (2).
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the lattice strip.

G.S. Mishuris et al. / J. Mech. Phys. Solids 57 (2009) 1958–1979 1977
Now, using the deformational fracture criterion, we deduce

RF � R½L�ðkf Þe
�if� ¼

1

A
¼

uc

A0
; ð80Þ

where uc is the critical elongation of the elastic bond.
Given the feeding wave amplitude, A0, and the critical elongation uc , this relation can be used to determine the initial

phase f. On the contrary, we can fix f and determine the relations between the amplitudes of the feeding and dissipative
waves and the critical elongation of the bond. The dependence of the normalised amplitude, A, on the phase f is plotted in
Fig. 19. In particular, these computations show an excellent agreement between the case of the high-contrast interface
(M1 ¼ 0:01) and the lattice strip model.

10.3.1. The energy relation for the lattice strip

Consider the steady-state regime. The kernel LðkÞ can be represented as in (40) (now Lð0Þa0):

LðkÞ ¼
3þ ð0þ ikVÞ2 � 2cos k

5þ ð0þ ikVÞ2 � 2cos k
¼ L0ðkÞM�ðkÞMþðkÞ; L0ðkÞ ¼ L0

�ðkÞL
0
þðkÞ;

L�ðkÞ ¼ L0
�ðkÞM�ðkÞ; LþðkÞ ¼ L0

þðkÞMþðkÞ;

M�ðkÞ ¼
½0þ iðk� kAÞ�½0þ iðkþ kAÞ�½0þ iðk� kCÞ�½0þ iðkþ kCÞ�

½0þ iðk� kDÞ�½0þ iðkþ kDÞ�ð5þ ikÞ2
;

MþðkÞ ¼
½0� iðk� kBÞ�½0� iðkþ kBÞ�

ð5� ikÞ2
; ð81Þ

where for V ¼ 0:2 the wave numbers are kA ¼ 5:720095950, kB ¼ kf ¼ 7:455033153, kC ¼ 10:31605445, kD ¼ 11:05246522.
Using the Cauchy type integral for the determination of L0

�ðkÞ we found, in particular, that L0
�ðkf Þ ¼ L�ðkBÞ ¼

0:8177þ 0:4593i. In addition, using (80) we deduce

0:8177cosfþ 0:4593sinf ¼
1

A
¼

uc

A0
: ð82Þ

The graph fðAÞ versus f is plotted in Fig. 19, where the corresponding dependence for the two-dimensional lattice (the
case M1 ¼ 0:01;v ¼ 2) is also shown. It appears that for the lattice strip Amin ¼ 1:2211 and Amax ¼ 2:1771. It is a
remarkable fact that these values correspond to the previously obtained bounds of the region where the steady-state
formulation is valid (compare with Section 8.3).
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10.4. The energy balance

The energy balance takes the form

Gf ¼ Gd þ Gr þ G0; ð83Þ

where Gf is the energy delivered by the feeding knife wave, Gd ¼ GA þ GC is the energy radiated via the dissipative waves
with the wavenumbers kA and kC , Gr is the energy radiated from the interface, and G0 is the critical strain energy of the
bond [see (78) with Uð0Þ ¼ uc]. Note that, for the high-contrast interface the ratio Gr=Gf is very small (see Fig. 18). The ratios
Gd=Gf and G0=Gf are shown in Fig. 20.

11. Discussion

What are the necessary conditions for the existence of the localised wave–fracture configuration? First, the contrast
between the interface layer and the surrounding lattice must be sufficiently high, such that the frequencies of the
feeding and dissipative waves stay outside the pass band in the dispersion diagram of the uniform lattice. Next, the energy
flux in the feeding wave must reach the moving crack front. This implies that the group velocity of the feeding wave
propagating from the left, in the crack area, toward the crack front must exceed the crack speed; on the other hand, it must
be below the crack speed (it can be positive, zero or negative) if the crack takes energy from the wave placed ahead of
the front.

Two well established crack growth regimes were considered, the steady-state regime, u ¼ uðZÞ; Z ¼ m� vt, and the
alternating-strain one, u ¼ uðZÞð�1Þm. Note that propagating feeding and dissipative waves exist in both regimes. The
difference lies in the wave phases corresponding to the breakage of the bonds. If in the steady-state regime the bonds break
at the feeding wave phase f, then in the alternating-strain regime they break at f for even values of m and at fþ p for odd
m (or vice versa). Clearly, the alternating-strain fracture criterion, juj ¼ uc , is weaker than that for the steady-state regime,
u ¼ uc , and hence the corresponding crack speed for the alternating-strain regime should not be less than the steady-state
regime speed.

In the formulations adopted in this paper, only the crack-path bonds were allowed to be broken. Of course, due to the
symmetry (the displacement field is antisymmetric) these bonds are the first candidates for fracture. However, especially
for large amplitudes, the other bonds may break too. To preserve the formulation (and to preserve the localised
wave–fracture scenario), at least for large amplitudes, we have to assume that the crack-path interface bonds are weaker
enough comparative to the other bonds.

In the above discussed numerical simulations (see Figs. 8–13), along with the steady-state regime we have also observed
a crack propagation with a local oscillation of the crack speed. For a sufficiently large amplitude of the feeding wave (the
range up to A ¼ 100 was analysed), the averaged (macrolevel) crack speed is established. For a certain range of values of A
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it corresponds to the steady-state or alternating-strain regimes, which agrees with the theoretical predictions. At higher
amplitudes the established crack speed becomes larger (but still it is less than the feeding wave group velocity). On the
other hand, the ‘local’ speeds, representing the time-intervals between the breakages of neighbouring bonds, appear to
alternate between two or more values, one of which corresponds to the locally ordered crack growth.

In conclusion, we note that the lattice considered in this paper can be treated as a model of a structural waveguide. In
this regard, the results obtained here can be used in modelling of dynamic fracture of the waveguide under an action of a
transmitted wave.
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