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Abstract

Wave con2gurations for modes I and II of crack propagation in an elastic triangular-cell lattice
are studied. [Mode III was considered in Part I of the paper: Slepyan, L.I. Feeding and dissipative
waves in fracture and phase transition. I. Some 1D structures and a square-cell lattice. J. Mech.
Phys. Solids 49 (2001) 469.] A general solution incorporates a complete set of the feeding and
dissipative waves. The solution is based on the wave dispersion dependences obtained in an
explicit form. Also some general properties and the long-wave asymptotes of the corresponding
Green function are found. This results in the determination of the wavenumbers and modes. The
macrolevel-associated solutions exist as the sub-Rayleigh crack speed regime for both modes and
as a shear-longitudinal wave-speed intersonic regime for mode II only. In particular, it is shown
that any intersonic crack speed is possible, whereas only the speed (shear wave speed multiplied
by

√
2) corresponds to a positive energy release in the cohesive-zone-free homogeneous-material

model. This is a manifestation of the fact that the local energy release in the lattice is not
connected with the singularity of the macrolevel 2eld. Microlevel solutions, corresponding to a
nonzero feeding wavenumber, exist for both modes, at least from the energy point of view, for
any, sub- and super-Rayleigh, intersonic and supersonic crack speed regimes. In particular, in the
super-Rayleigh regime, a high-frequency wave delivers energy to the crack, while the macrolevel
wave carries energy away from the crack. ? 2001 Elsevier Science Ltd. All rights reserved.

Keywords: A. Dynamics; B. Crack mechanics; Lattice; C. Integral transforms

1. Introduction

In part I of this series (Slepyan, 2001a), the crack propagation in an elastic square-cell
lattice was considered as a process caused by feeding waves, carrying energy to the
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crack front, and accompanied by dissipative waves carrying a part of this energy away
from the front (the diDerence is spent on the bond disintegration). A complete set of
steady-state, macrolevel-associated solutions (solutions of a zero feeding wavenumber)
and genuine microlevel solutions (each of a nonzero wavenumber) for mode III crack
propagation was represented. Part II (Slepyan, 2001b) was devoted to the study of
similar wave con2gurations for phase transition dynamics.
In the present work, the last part of the series, modes I and II of crack propagation in

a triangular-cell lattice are considered. The 2rst analytical solution for crack propagation
in the triangular-cell lattice was obtained in Kulakhmetova et al. (1984) where the total
dissipation was found for the case of the sub-Rayleigh macrolevel-associated solution.
Stability of crack propagation in this lattice was examined by Marder and Gross (1995).
Some other related works were referenced in Part I of the paper (Slepyan, 2001a). Note
that recently Gerde and Marder (2001) have successfully used this lattice model for
the study of friction as mode II quasi-static fracture.
In the case of the triangular-cell lattice, the main relations are much more complicated

than those for the square-cell lattice. However, fortunately wave dispersion dependences
are found in an explicit form. This allows us to determine the feeding and dissipative
wavenumbers and wave modes as in the case of the square-cell lattice.
The below-considered macrolevel-associated solutions exist only for the sub-Rayleigh

crack speed (for both modes) and intersonic regions (for mode II). Both these regions
are under consideration. While in the homogeneous-material model (without a cohesive
zone), mode II intersonic crack can propagate only with the speed,

√
2c2, any crack

speed in the shear-longitudinal wave-speed region is possible in the lattice model. In a
sense, this is as for the cohesive-zone homogeneous model. The lattice model possesses,
however, more possibilities. In particular, it describes dissipative waves radiated by the
propagating crack and microlevel feeding waves allowing the crack to propagate in
the case where there is no macrolevel energy release. An inhomogeneous solution for
the crack loaded by macrolevel distributed forces shows a 2nite local-to-global energy
release ratio in a wide intersonic range.
Intersonic crack propagation in an elastic homogeneous material was considered in

a number of works, in particular, in Burridge et al. (1979), Freund (1979), Slepyan
(1981), Broberg (1999), Gao et al. (1999). Numerical simulations and experiments also
show a possibility of the intersonic crack propagation (Rosakis et al., 1998; Needleman
and Rosakis, 1999; Rosakis et al., 1999; Abraham and Gao, 2000).
The microlevel solutions are derived indiscriminately for sub- and super-Rayleigh

(0¡v¡cR and cR ¡V ¡c2), intersonic (c2¡v¡c1) and supersonic (v¡c1) crack
propagation. Here and below cR ; c2 and c1 are the Rayleigh wave, shear wave and lon-
gitudinal wave speeds, respectively (the same notations are used for the corresponding
nondimensional values). Note that in the homogeneous-material model (with or with-
out a cohesive zone) the super-Rayleigh crack speed is forbidden since the macrolevel
wave corresponds to a negative energy release. In contrast, the lattice model, at least
from the energy point of view, admits a super-Rayleigh solution. It corresponds to a
microlevel feeding wave and includes the macrolevel wave as a dissipative one.
The lattice consists of particles connected by massless bonds (Fig. 1(a)). A semi-

in2nite crack is assumed to propagate to the right with a constant speed, v, that is, with
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Fig. 1. The lattice: (a) the lattice and the coordinates; (b) the unit vectors and; (c) the external forces acting
on the crack surface, n=0 (only one loaded particle is shown).

a constant time-interval between the disintegration of neighboring bonds on the crack
path, a=(2v). The solution corresponds to cutting of the bonds with a given speed.
In solving the problem, some general properties of the Green function are established

without inspection of its speci2c structure. This allows us to use an analytical technique,
the same as in part I, without detailed analysis of this complicated function.

2. General properties of fundamental solutions

2.1. The lattice and coordinates

In this lattice (Fig. 1(a)), each particle of mass M is connected with six neighbors
by the same elastic bonds, each of the length a and stiDness 
. In the long-wave=low-
frequency approximation, the lattice corresponds to a two-dimensional, homogeneous,
isotropic, elastic body with density �=2M=(

√
3a2), Poisson’s ratio �=1=3 and the
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following velocities of the longitudinal, shear and Rayleigh waves: c1 =
√
9=8c, c2 =√

3=8c and cR = 1
2

√
3−√

3c, respectively, where c= a
√


=M . The shear modulus is

0 = �c22 =

√
3
=4.

In the following, we use nondimensional values associated with the natural units of
the system: the particle mass (M =1), the bond length (a=1) and the bond stiDness
(
=1). In these terms, c is the speed unit (c=1), a=c is the time unit, �=2=

√
3,

c1 =
√
9=8, c2 =

√
3=8 and cR = 1

2

√
3−√

3.
Coordinates of the particles are de2ned by the position vector

x′=mI0 + nI1; (1)

where m and n are integer numbers, and Ip; p=0; 1; : : : ; 5, are the unit vectors directed
from a given particle to the neighboring ones (Fig. 1(b)). In terms of the projections
onto the x; y-axis shown in Fig. 1(a) these vectors are

Ip= [cos(�p=3); sin(�p=3)]: (2)

According to this we may use both the rectangular coordinates, x=m+n=2; y=
√
3n=2,

and the m; n-system.
The crack propagation is a consequence of disintegration of the bonds between lines

n=0 and n= − 1. These bonds correspond to the vectors I4 and I5—for the particles
with n=0 or the vectors I1 and I2—for the particles with n= − 1.

2.2. Integral transform in the moving coordinate system

For the considered steady-state problem, we assume that displacements of the parti-
cles depend on two variables only: y and �= x − Vt, where V = v=c is the nondimen-
sional crack speed. Along with this, the steady-state solution is considered as a limit,
t → ∞; �= const, of a transient solution which corresponds to zero initial conditions.
Accordingly, the Fourier transform in the moving coordinate system

uF =
∫ ∞

−∞
u(�; y)eik� d� (3)

is considered as a limit of the Laplace and Fourier double transform. To show the
connection let us 2rst introduce an x-continuous representation of the displacements,
u0(t; x; y). The discrete Fourier transform is

uD0 (t; k; y)=
∑
x

u0(t; x; y)exp(ikx); (4)

where x=m+ n=2; m=0;±1; : : : . The inverse transform is

u0(t; x; y)=
1
2�

∫ �

−�
uD0 (t; k; y)exp(−ikx) dk: (5)

The function u0(t; x; y) in the last equation can be treated as a function of x as a
continuous variable with the Laplace and Fourier double transform as

uLF0 (s; k; y)=
∫ ∞

0

∫ ∞

−∞
u0(t; x; y)exp(−st + ikx) dx dt: (6)
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Substitutions

x= �+ Vt; dx=d�; s= s′ + ikV (7)

lead to the double transform in the moving coordinate system

uLF0 (s
′ + ikV; k)=

∫ ∞

0

∫ ∞

−∞
u0(t; �+ Vt; y)exp(−s′t + ik�) d� dt: (8)

If the steady-state limit exists then

uF = lim
s′→0

s′uLF0 (s
′ + ikV; k; y): (9)

Note that the multiplier, s′ in this relation is canceled by the multiplier 1=s′ as the
Laplace transform of the unit step function, H (t), in the expression of the load as
q(�)H (t). Thus the expression 0+ ikV used below means the corresponding limit with
0+ as the trace of its origin, while any function of the form f(s′ + ikV; k) is the
double transform (multiplied by s′) in the moving coordinate system, where s′ is the
parameter the Laplace transform with respect to time (�=const) and k is the parameter
of the Fourier transform with respect to � (t=const). This de2nition of the steady-state
solution follows from the causality principle (see Appendix A in part I of the paper,
Slepyan, 2001a).

2.3. Plan of the solution

The goal is to 2nd possible wave con2gurations and to describe both the macrolevel
and microlevel solutions. Such a solution, being found for any given crack speed,
allows one to determine the speed if a feeding wave or the global energy release rate
as well as the fracture criterion are given. In outline, the plan of the solution is as
follows.
At 2rst, the intact lattice is considered. This allows a general solution of an exponen-

tial type to be derived. Further, the equations for the particles forming the boundary of
the upper half-plane, n=0, are considered. At the crack, these particles are connected
with four neighbors only, while there are six connections for each particle outside the
crack. In addition, in the dynamic equations for these particles, nonspeci2ed external
forces, q, directed along the bonds (or a trace of a broken bond), are introduced—for
convenience in an initial stage of the considerations (see Fig. 1(c) where the forces
are shown only for one of the loaded particles).
As a result, a relation between the Fourier transform of the forces and the elongation

of a bond on the crack path, QF, is obtained. Note that elongation of any other bond on
the crack path is the same but with a shift in time depending on its location (in fracture
mode II, lengthening and shortening alternate). At the crack, it is the elongation of the
distance between the corresponding particles. This relation can be expressed as

QF ≡ Q+ + Q−=f(s′ + ikV; k)(Q+ + qF); (10)

where Q+ is the right-side Fourier transform of the elongation (related to the crack
continuation), while Q− is the left-side transform (related to the crack).
The Laplace and Fourier double transform f(s′ + ikV; k) or to be more precise, a

half of it, can be called the fundamental solution (or Green function) for the lattice
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half-plane. Indeed, because of symmetry, this relation with qF = 1 [q= �(�)] and zero
force Q+ on the right hand side of Eq. (10) represents the corresponding projections
of the displacements of the upper half-plane boundary. The dynamic equations for the
lattice are used just for the determination of this function.
From relation (10) we come to the governing equation for the lattice with a propa-

gating crack:

L(s′ + ikV; k)Q+ + Q−= [1− L(s′ + ikV; k)]qF; (11)

where the crack-related Green function is

L(s′ + ikV; k)= 1− f(s′ + ikV; k): (12)

The next step is the transition to a homogeneous problem. This is made using a
procedure where q(�)→ 0 with a nonzero limit of the right hand side of Eq. (11). In
this way, existence of zero points of L(0+ ikV; k) and 1=L(0+ ikV; k) is important, and
the corresponding dependences as dispersion relations for waves in the lattice plane
and the lattice half-plane are derived. Fortunately it appears that these relations can be
expressed in an explicit form.
Finally, using the Wiener–Hopf technique a general solution and macrolevel-

associated and microlevel solutions for diDerent crack-speed regions are determined.

2.4. Some properties of the fundamental solutions

In the following, in connection with the use of the Wiener–Hopf technique, Arg
L(s′ + ikV; k) for L as a complex function will be needed. However, this function is
so complicated that a direct analysis of it is too diKcult. At the same time, some
properties of it which help much for the determination of Arg L(s′ + ikV; k) can be
learned using general considerations, without inspection of its speci2c expression.
With this in mind, because some of the properties are true not only for the considered

lattice but in a general case, consider a linear dynamic problem for the upper half-plane
2lled by an elastic or viscoelastic material of a general structure (in particular, a
homogeneous medium) which allows a steady-state solution to exist. We assume that
the material is passive, that is it can transfer and, possibly, absorb energy but cannot
produce it.
Let qf(t; x) be a distributed external force acting on the half-plane boundary and

u(t; x) be the corresponding displacement directed opposite (as �yy (�yx) and uy (ux)
in the case of a homogeneous material). We assume that under zero initial conditions
the Laplace and Fourier double transform at y=0 leads to the relation

uLF(s; k)=ULF(s; k)qLFf (s; k): (13)

Let us take the force as

q= qf = q0(�)exp(s0t)H (t); s0¿ 0: (14)
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The double transform in the moving coordinate system is then

uLF(s′ + ikV; k)=ULF(s′ + ikV; k)
qF0

s′ − s0
: (15)

Note that the fundamental solution, U (t; x), corresponds to the displacement under the
external force �(x)�(t). Such action results in a displacement 2eld propagating from
the force. The Fourier transform of the 2eld, due to passivity of the material, is a
slow-growing function of t if Ik =0 (it is assumed that k is real except as otherwise
noted). The Laplace transform of such function is a regular function of s in the right
half-plane, Rs¿ 0(Rs′ ¿ 0). An asymptote of uF(t; k) for t → ∞; �=const: is de2ned
by the double transform (15) as a contribution of the singular point in s′-plane with
the greatest real part, that is s′= s0. Thus

uF =ULF(s0 + ikV; k)qF0 exp(s0t): (16)

Now consider a mixed problem where the displacements at �¿ 0 cause forces (with
a constant coeKcient of proportionality denoted here by 
). In this case, denoting the
total forces acting on the upper half-plane as qt and the real external forces as q, we
have

(qt)+ = 
u+ + q+; (qt)−= q−; q+ + q−= qF: (17)

We obtain the governing equation

L(s′ + ikv; k)u+ + u−= [1− L(s′ + ikv; k)]qF=
 (18)

with the crack-related Green function

L(s′ + ikv; k)= 1− 
ULF(s′ + ikV; k): (19)

Note that if u+ =0 (as in the case of a homogeneous material) the product, 
u+, must
be treated as the crack continuation stress, �+. In this case, Eq. (18) can be rewritten
as

−ULF(s′ + ikv; k)�+ + u−=ULF(s′ + ikV; k)q−: (20)

Also note that the function f(s′+ikV; k) in (12) has the same sense as ULF(s′+ikV; k)
in (19). Recall that for the lattice we use the system of units where 
=1.
Some important features of the fundamental solutions, ULF(s′ + ikV; k) and

L(s′ + ikv; k) are discussed below.

Theorem on the fundamental solutions. If s′ ¿ 0 (a) the fundamental solution ULF

(s′+ikV; k) cannot be positive and (b) kVIULF(s′+ikV; k)¿ 0 if RULF(s′+ikV; k)¿ 0.
Correspondingly, if s′ ¿ 0 (a′) the crack-related fundamental solution L(s′+ikV; k)

cannot be zero or negative, (b′) kVIL(s′ + ikV; k)¡ 0 if RLLF(s′ + ikV; k)]¡ 0, (c′)
on the real k-axis L(s′ + ikV; k) and 1=L(s′ + ikV; k) are regular functions of s′; for
s′= + 0 (d′) kVIL(0 + ikV; k)6 0.

To prove the theorem consider the energy Lux produced by the load

qf = q0 exp(s0t − ik0�); qFf =2� exp(s0t)q0�(k − k0): (21)
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In this case

uF(k)=ULF(s0 + ikV; k)2� exp(s0t)q0�(k − k0) (22)

and

u(t; �+ Vt)=ULF(s0 + ik0V; k0)q0 exp(s0t − ik0�): (23)

If one takes into account the work by both the real and the imaginary parts of the
load, the energy Lux, N , can be expressed as

N = −R

(
du
dt
Mq
)
= − |q0|2 exp(2s0t)R[(s0 + ikV )ULF(s0 + ik0V; k0)]

= −|q0|2 exp(2s0t)[s0RULF(s0 + ik0V; k0)− kVIULF(s0 + ik0V; k0)]: (24)

Because of passivity of the material, the energy Lux cannot be directed from the
half-plane, that is it cannot be negative. Statements (a); (b) and (a′); (b′) and (d′) of
the theorem follow directly from the last relation. The regularity of L and 1=L [as in
the statement (c′)] follows directly from the regularity of ULF.
The theorem is proved.
Consider now what is the index of the fundamental solution L(0 + ikV; k) which is

de2ned for V ¿ 0 as

Ind L(0 + ikV; k)=
1
2�
[Arg L(0− i∞;−i∞)− Arg L(0 + i∞; i∞)]: (25)

Theorem on the index. For V ¿ 0, in a general case, −16 Ind L(0+ikV; k)6 0, while
for the discrete lattice (a) L=1 (k = ± ∞) and (b) Ind L(0 + ikV; k)= 0.

The statement for a general case follows directly from the theorem on the fundamen-
tal solutions. Indeed, in the limit, s= +0, for negative k the function is above the real
axis of the complex plane or on the positive half-axis; then it goes on to the negative
half-plane or remains on the real axis. So, its trace on the complex plane can make
not more than one clockwise revolution around the origin and hence the argument can
be changed no more than from � to −�.
For the lattice, due to the presence of rigid particles, f(s′+ikV; k)→ 0 if s+ikV → ∞

[f=O(1=(s+ikV )2]. So, L(s′+ikV; k)→ 1 (s′ → ∞) and L(s′+ikV; k)= 1 (k = ±∞).
It follows that Ind L=0 for large s′ since its trace is a closed curve with the origin
in the external domain. However, since the function L(s′ + ikV; k) has neither singular
nor zero points in the right half-plane of s′, this equality is true for any positive s′ and
in the limit s′= + 0.
The theorem is proved. These conclusions will be used in the factorization of L, in

the determination of its long-wave asymptotes and in the calculations where Arg L is
needed.
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3. Equations and general solutions

3.1. Dynamic equations

The dynamic equation for a particle outside the crack is

d2u(t; x′)
dt2

−
5∑

p= 0

Qp(t; x′)Ip=0; (26)

where u(t; x′) is the displacement vector and Qp(t; x′) is the elongation of the bond
associated with vector Ip:

Qp(t; x′)= [u(t; x′ + Ip)− u(t; x′)]Ip: (27)

For the considered steady-state problem, the displacements are assumed to depend on
�= x−Vt and y, that is u= u(t; x), where x= x′ − (Vt+ n=2)I0 = (�; y): The equation
of motion becomes

V 2 d
2u(x)
d�2

−
5∑

p= 0

Qp(x)Ip=0;

Qp(x)= [u(x+ Ip)− u(x)]Ip: (28)

Denote projections of the displacements onto the x-, y-axis as ux(�; n); uy(�; n). Ac-
cordingly, the elongation Qp is Qp(�; n). In terms of the projections, Eq. (28) yields

V 2 d
2ux

d�2
− Q0 + Q3 − 1

2
(Q1 − Q2 − Q4 + Q5)= 0;

V 2 d
2uy

d�2
−

√
3
2
(Q1 + Q2 − Q4 − Q5)= 0; (29)

where

Q0 = ux(�+ 1; n)− ux(�; n);

Q1 = 1
2 [ux(�+ 1=2; n+ 1)− ux(�; n)] +

√
3
2 [uy(�+ 1=2; n+ 1)− uy(�; n)];

Q2 = − 1
2 [ux(�− 1=2; n+ 1)− ux(�; n)] +

√
3
2 [uy(�− 1=2; n+ 1)− uy(�; n)];

Q3 = − [ux(�− 1; n)− ux(�; n)];

Q4 = − 1
2 [ux(�− 1=2; n− 1)− ux(�; n)]−

√
3
2 [uy(�− 1=2; n− 1)− uy(�; n)];

Q5 = 1
2 [ux(�+ 1=2; n− 1)− ux(�; n)]−

√
3
2 [uy(�+ 1=2; n− 1)− uy(�; n)]: (30)

We now use the Fourier transform with respect to �. Eqs. (29) and expressions
(30) in the transformed form are

YuFx − QF
0 + QF

3 − 1
2 (Q

F
1 − QF

2 − QF
4 + QF

5)= 0;

YuFy −
√
3
2 (Q

F
1 + QF

2 − QF
4 − QF

5)= 0;

Y =(0 + ikV )2; 0 + ikV = lim(s′ + ikV ) (s′ → 0; Rs′ ¿ 0) (31)
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with

QF
0 = (e

−ik − 1)uFx (k; n);
QF
1 =

1
2 [u

F
x (k; n+ 1)e

−ik=2 − uFx (k; n)] +
√
3
2 [u

F
y(k; n+ 1)e

−ik=2 − uFy(k; n)];

QF
2 = − 1

2 [u
F
x (k; n+ 1)e

ik=2 − uFx (k; n)] +
√
3
2 [u

F
y(k; n+ 1)e

ik=2 − uFy(k; n)];

QF
3 = − (eik − 1)uFx (k; n);

QF
4 = − 1

2 [u
F
x (k; n− 1)eik=2 − uFx (k; n)]−

√
3
2 [u

F
y(k; n− 1)eik=2 − uFy(k; n)];

QF
5 =

1
2 [u

F
x (k; n− 1)e−ik=2 − uFx (k; n)]−

√
3
2 [u

F
y(k; n− 1)e−ik=2 − uFy(k; n)]: (32)

This results in the following equations:

2(3− 2 cos k + Y )uFx (k; n)− cos k=2[uFx (k; n+ 1) + uFx (k; n− 1)]
+
√
3i sin k=2[uFy(k; n+ 1)− uFy(k; n− 1)]= 0

−
√
3i sin k=2[uFx (k; n+ 1)− uFx (k; n− 1)]

+3 cos k=2[uFy(k; n+ 1) + uFy(k; n− 1)]− 2(3 + Y )uFy(k; n)= 0: (33)

3.2. General solution for the intact lattice

Eqs. (33) are satis2ed by the general solution

uFx (k; n)=Cx'n; uFy(k; n)=Cy'n; (34)

where Cx and Cy are independent of n. This yields equations regarding the constants

[2(3− 2 cos k + Y )− cos k=2('+ 1=')]Cx +
√
3i sin k=2('− 1=')Cy =0;

−
√
3i sin k=2('− 1=')Cx + [3 cos k=2('+ 1=')− 2(3 + Y )]Cy =0 (35)

and then an equation regarding '

('+ 1=')2 − 2(4− 2 cos k + 4
3Y ) cos k=2('+ 1=')

+2(5− 3 cos k) + 4
3Y (6− 2 cos k + Y )= 0: (36)

There are four roots:

' = '1;2; (|'1;2|¡ 1 if s′ ¿ 0) and '= '3;4 = 1='1;2;

'1;2 + 1='1;2 = 2n1;2; '1;2 = n1;2 −
√

n21;2 − 1;

n1 = h0 −
√

h20 − b; n2 = h0 +
√

h20 − b;

h0 = (1 + 2 sin
2 k=2 + 2

3Y )cos k=2;
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b=1 + 3 sin2 k=2 + 1
3Y (4 + 4 sin

2 k=2 + Y );

h20 − b=
1
9
Y 2 − 4 sin2 k

2

(
sin2

k
2
+
1
3
Y
)2

: (37)

Note that the sign of the square root in the expression for '1;2 is de2ned by the
requirement: |'1;2|¡ 1. The sign shown in (37) corresponds, in particular, to real n1;2
with |n1;2|¿ 1. In the case where |'1;2|=1 independently of the sign, as for instance,
for real n1;2 with |n1;2|¡ 1, the sign can be determined using continuity of the functions
when s′ ¿ 0. From the physical point of view these formal requirements correspond to
a condition regarding the energy Lux in the y-direction: it must be zero or positive at
least if s′ ¿ 0.
The displacements for n¿ 0 can now be represented as

uFx (k; n)=Cx1'n
1 + Cx2'n

2;

uFy(k; n)=Cy1'n
1 + Cy2'n

2 (38)

with the equations for the coeKcients:

fx('1)Cx1 + fy('1)Cy1 = 0;

fx('2)Cx2 + fy('2)Cy2 = 0; (39)

where, as it follows from (35),

fx(')= −
√
3i sin k=2('− 1=');

fy(')= 3 cos k=2('+ 1=')− 2(3 + Y ): (40)

Thus,

Cy1 = g1Cx1; g1 = − fx('1)
fy('1)

;

Cy2 = g2Cx2; g2 = − fx('2)
fy('2)

: (41)

3.3. Symmetry and the modes

To 2nd the forces acting on particles with n=0 ahead the crack, one has a need
in expressions for the displacements at the lower crack face, n= − 1, as well as for
n=0 (38). Consider two possibilities:

ux(�;−1)= ux(�; 0);

uy(�;−1)= − uy(�; 0) (42)

and

ux(�;−1)= − ux(�; 0);

uy(�;−1)= uy(�; 0): (43)
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Due to symmetry of the lattice, a solution for the upper lattice half-plane with
the continuity conditions (42), if it exists, can be continued to the lower half-plane as
mode I:

ux(�;−n− 1)= ux(�; n);

uy(�;−n− 1)= − uy(�; n); (44)

while the conditions of another type (43) lead to the continuation as mode II:

ux(�;−n− 1)= − ux(�; n);

uy(�;−n− 1)= uy(�; n): (45)

In these cases, the displacements at n6 − 1, contrary to those for n¿ 0 (38), have
the following expressions:

uFx (k; n)= ± Cx1'−n−1
1 ± Cx2'−n−1

2 ;

uFy(k; n)= ∓ Cy1'−n−1
1 ∓ Cy2'−n−1

2 : (46)

Here and below, the upper and lower signs correspond to the modes I and II, respec-
tively. From these conditions of symmetry and Eqs. (30) it follows that

Q0(�;−1)= ± Q0(�; 0);

Q5(�; 0)= ± Q4(�+ 1
2 ; 0); (47)

where

Q4(�; 0)= 1
2 [ux(�; 0)∓ ux(�− 1=2; 0)] +

√
3
2 [uy(�; 0)± uy(�− 1=2; 0)]

QF
4 (k; 0)=

1
2 (1∓ eik=2)uFx (k; 0) +

√
3
2 (1± eik=2)uFy(k; 0);

QF
5 (k; 0)= ± QF

4 (k; 0)e
−ik=2: (48)

3.4. Dynamic equation for a particle with n=0

Now consider equations of motion for a particle on the line n=0. They diDer from
Eq. (31) by the expressions for QF

4 and QF
5 . Indeed, in Eq. (31) these values represent

forces acting on the particle only ahead the crack, and we denote QF
4 =Q+, while Q5 is

de2ned by Eq. (48). Note that subscript ‘+’ denotes the right-side Fourier transform,
while subscript ‘−’ is used for the left-side Fourier transform. In addition to the internal
forces, we introduce external forces, q4 = q(�) and q5(�)= ±q(�+1=2) directed as Q4
and Q5, respectively (as was already noted, these forces are introduced for convenience
in an initial stage of the considerations).
So, for n=0 we have

YuFx (k; 0)− QF
0 − 1

2Q
F
1 +

1
2Q

F
2 + QF

3 = − 1
2 (1∓ e−ik=2)(Q+ + qF);

YuFy(k; 0)−
√
3
2 (Q

F
1 + QF

2)= −
√
3
2 (1± e−ik=2)(Q+ + qF): (49)
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These equations can be simpli2ed taking into account Eqs. (31) considered with their
‘analytical continuation’ to include the crack surface, n=0. These relations allow one
to express the left-hand sides of Eqs. (49) in terms of Q4 and Q5 which correspond
to the analytical continuation (but not the considered symmetry!). To avoid confusion
we denote them ∗Q4 and ∗Q5. As a result we get

∗QF
5 −∗ QF

4 = (1∓ e−ik=2)(Q+ + qF);

∗QF
5 +

∗ QF
4 = (1± e−ik=2)(Q+ + qF); (50)

where, in accordance with expressions (32),
∗QF

4 = − 1
2 [(Cx1'−11 + Cx2'−12 )eik=2 − Cx1 − Cx2]

−
√
3
2 [(Cx1g1'−11 + Cx2g2'−12 )eik=2 − Cx1g1 − Cx2g2];

∗QF
5 =

1
2 [(Cx1'−11 + Cx2'−12 )e−ik=2 − Cx1 − Cx2]

−
√
3
2 [(Cx1g1'−11 + Cx2g2'−12 )e−ik=2 − Cx1g1 − Cx2g2]: (51)

It follows that(
1
'1
cos

k
2
− 1 + i

√
3
g1
'1
sin

k
2

)
Cx1 +

(
1
'2
cos

k
2
− 1 + i

√
3
g2
'2
sin

k
2

)
Cx2

= (1∓ e−ik=2) (Q+ + qF);(
i
'1
sin

k
2

√
3g1

(
1
'1
cos

k
2
− 1
))

Cx1 +
(
i
'2
sin

k
2

√
3g2

(
1
'2
cos

k
2
− 1
))

Cx2

= − (1± e−ik=2) (Q+ + qF): (52)

These equations allow one to obtain the coeKcients, Cx1 and Cx2, then–Cy1 and Cy2

(41), further—the displacements at n=0 (38) and n = −1 (see Eqs. (44) or (45)) and
at last—an expression for QF

4 (48) in terms of Q4 + qF.

3.5. Green function L and dispersion relations

3.5.1. Crack-related fundamental solution
Based on the dependence for QF

4 ≡ Q+ + Q− the governing equation (11) can be
obtained with

L(0 + ikV; k)=
r+
h+

; (53)

r+=3
√

n21 − 1
√

n22 − 1;

h+=
F(n2)

√
n21 − 1− F(n1)

√
n22 − 1

n2 − n1
;

F(n1;2) = 3(cos k=2− n1;2)2 + 6 sin
2 k=2(1± cos k=2)(1∓ n1;2)

+Y [(1± cos k=2)(1∓ n1;2) + 1− n1;2 cos k=2]: (54)
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3.5.2. Dispersion relations
Consider a free intact lattice. In this case, we have to introduce the force QF instead

Q+ in the right-hand side of Eq. (10). For free lattice, q=0, this leads to the equation

L(0 + ikV; k)QF(k)= 0: (55)

Real zeros of L thus correspond to free waves in the intact lattice under the conditions
of symmetry, Eq. (42) or Eq. (43). Along with this, as will be seen below, such
waves appear in the problem under consideration. The equation r+=0 is satis2ed by
four dispersion relations -=-(k), where -= kV is the frequency of the sinusoidal
wave, exp(−ik�)= exp[i(-t − kx)]. The 2rst is

-=-1 = [3− cos(k=2)− 2 cos(k)]1=2;
n2 = 1; n1 = − 1− 2

3 cos(k=2) [1− 2 cos(k=2)− 2 cos2(k=2)]: (56)

For k → 0, that is in the long-wave approximation, this dispersion relation corresponds
to a plane longitudinal wave. Indeed, in this case, V =-=k ∼ c1 =

√
9=8 (see Section

2.1). Then,

-=-2 =
√
6 |sin(k=4)|;

n2 = 1; n1 = 1 + 4 sin
2(k=4)[1− 8 sin2(k=4) + 8 sin4(k=4)]: (57)

This relation corresponds to a plane shear wave: V ∼ c2 =
√
3=8 (k → 0). Further,

-=-3 =
√
6 |cos(k=4)|;

n1 = − 1; n2 = − 1− 4 cos2(k=4)[1− 8 cos2(k=4) + 8 cos4(k=4)]: (58)

Lastly,

-=-4 = [2 cos2(k=4) + 4 sin
2(k=2)]1=2;

n1 = − 1; n2 = − 1 + 4
3 cos

2(k=4)[9− 16 cos2(k=4) + 8 cos4(k=4)]: (59)

The last two relations have no analogue on the macrolevel.
Now consider a free lattice half-plane, that is Eq. (10) with Q+ = qF = 0 in the

right-hand side. In this case, a nontrivial solution can exist if 1=f(0 + ikV; k)= 0, that
is 1=L(0 + ikV; k)= 0. The equation h+=0, where h+ is diDerent for diDerent modes,
is satis2ed by the dispersion relation

-=-R = (3−
√
3)1=2 |sin(k=2)|; (60)

valid for each mode. It corresponds to the lattice Rayleigh wave. Besides, relations
(57) and (59) are valid for mode I and relations (56) and (58)—for mode II. These
zeros of r+ and h+ cancel each other (it can be shown that they are each of the 2rst
order). Thus there are three dispersion relations for mode I:

-R = (3−
√
3)1=2|sin(k=2)| (h+=0);

-1 = [3− cos(k=2)− 2 cos(k)]1=2 (r+=0);

-3 =
√
6 |cos(k=4)| (r+=0) (61)
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Fig. 2. Dispersion relations for mode I (61): (1) the lattice Rayleigh wave; (2) the lattice longitudinal
wave; (3) the optical-I wave. The resonant rays: (4) V ≈ 0:122k; (5) V ≈ 0:207k; (6) V ≈ 0:218k;
(7) V ≈ 0:254k.

shown in Fig. 2, and three dispersion relations for mode II:

-R = (3−
√
3)1=2|sin(k=2)| (h+=0);

-2 =
√
6|sin(k=4)| (r+=0);

-4 = [2 cos2(k=4) + 4 sin
2(k=2)]1=2 (r+=0) (62)

shown in Fig. 3. Also, four ‘resonant’ rays are shown in Fig. 2, and two such rays—in
Fig. 3. Note that all these dispersion relations are valid together with their periodic
continuation: -(k+4�)=-(k). This is a manifestation of the periodicity of the discrete
lattice. For the determination of the bond elongation or the particle displacements, the
continuation does not represent any additional information. However, it is useful for
the determination of the waves excited by a moving source (the dissipative waves) or
the waves with the energy release in the moving sink (the feeding waves). For such a
wave, the wavenumber k =-=V is outside the ‘main’ region, 06 k ¡ 4�, if the speed,
V , is low enough.
For a long wave, that is for small k, relations -R, -1 and -2 correspond to low fre-

quency; they can be called the acoustic branches, while relations -3 and -4 correspond
to high frequency of antiphase oscillations; they can be called the optical branches.
Accordingly, we will call -R the Rayleigh wave branch, -1 and -2—the longitudinal
and shear wave branches, respectively, and -3 and -4—the optical-I and -II branches,
respectively.
The dispersion relations are used below for the determination of possible con2gu-

rations of the feeding and dissipative waves, while the functions '1;2, together with
equalities (41) and (52), de2ne the wave modes.
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Fig. 3. Dispersion relations for mode II (62): (1) the lattice Rayleigh wave; (2) the lattice shear wave;
(3) the optical-II wave; The resonant rays: (4) V ≈ 0:122k; (5) V ≈ 0:239k.

3.5.3. Wave modes
The dependences for n1;2 and '1;2 are represented in Figs. 4 (for -R), 5 (for -1),

6 (for -2), 7 (for -3) and, at last, in Fig. 8 (for -4). These dependences serve
in the determination of the wave modes. For the lattice Rayleigh wave (Fig. 4(b))
'1;2¡ 1 (except points k =0; �; : : :) and the wave amplitude decreases exponentially as
the distance from the surface increases. The other dispersion dependences correspond
to the cases where n21 = 1 or n22 = 1. Accordingly, '21 = 1 or '22 = 1 (see Eqs. (37)).
The corresponding part of the displacements is independent of y ('1 = 1 or '2 = 1) or
represents an antiphase-oscillation solution ('1 = −1 or '2 = −1). Another part of the
displacement (see Eq. (38)) represents a crack-path-associated solution vanishing with
an increase of |y| (the case |'|¡ 1) or a constant-amplitude wave with a sinusoidal
dependence on y.

3.6. General solution

The function L(s′+ikV; k) satis2es the conditions (see Section 2.3) which allow one
to factorize it using the Cauchy-type integral:

L(s′ + ikV; k)=L+(s′ + ikV; k)L−(s′ + ikV; k);

L±(s′ + ikV; k)= exp
(
± 1
2�i

∫ ∞

−∞

ln L(s′ + i.V; .)
.− k

d.
)

; (63)

where Ik ¿ 0 for L+, Ik ¡ 0 for L− and Arg L(s′ + i.V; .)= 0 (.= ±∞).
In this product, L+ [L−] is a regular function of k in the upper [lower] half-plane

(including the real axis if s′ ¿ 0). In accordance with Appendix B of Part I (Slepyan,
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Fig. 4. The lattice Rayleigh wave: (a) (1) n1; (2) n2 (thick curves: Rn1;2, thin curves: I(n1;2) and
(b) (1) '1; (2) '2.

Fig. 5. The lattice longitudinal wave: (a) (1) n1; (2) n2 and (b) (1) '1; (2) '2.
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Fig. 6. The lattice shear wave: (a) (1) n1; (2) n2 and (b) (1) '1; (2) '2.

2001a), L+(0 + ikV; k)[L−(0 + ikV; k)] incorporates singular and zero points of
L(0+ikV; k), de2ned by the dispersion relations, Eqs. (61) and (62), where V =-=k ¡
Vg=d-=dk [V ¿Vg]. In the case V =Vg, the corresponding singular or zero point, as
a double root split by the factorization, belongs to each of the functions L±. Note that

lim L+(s′ + ikV; k)= 1 (k → i∞); lim L−(s′ + ikV; k)= 1 (k → −i∞):
(64)

The governing equation (11) can now be represented as

L+(0 + ikV; k)Q+ +
Q−

L−(0 + ikV; k)
=
[

1
L−(0 + ikV; k)

− L+(0 + ikV; k)
]
qF:

(65)

In the following, we consider homogeneous solutions which correspond to q(�)= 0 but
with a nonzero right-hand side of Eq. (65). Note that the homogeneous equation (65)
has only the trivial solution, Q+ =Q−=0, as follows from the same consideration as
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Fig. 7. The optical-I wave: (a) (1) n1; (2) n2 and (b) (1) '1; (2) '2.

in part I (Slepyan, 2001a). To obtain a nontrivial solution we consider nonzero qF,
such that qF → 0 with a nonzero limit of the right-hand side of Eq. (65). We consider
a regular case, V 
= Vg.
Let h+ (h−) be a real root of the equation h+=0, such that for this wavenumber

Vg ¿V (Vg ¡V ), and r+ (r−) be a real root of the equation r+=0 where Vg ¿V
(Vg ¡V ). Suppose that

L+(s′ + ikV; k) ∼ Lh[a+s′ − i(k − h+)]−� (k → h+; s′ → +0); �¿ 0;

L−(s′ + ikV; k) ∼ Lr[a−s′ + i(k − r−)]
 (k → r−; s′ → +0); 
¿ 0: (66)

where Lh; � and Lr; 
 are constants, a+ =1=(V − Vg) (Vg ¡V ) and a−=1=(Vg − V )
(V ¡Vg) (see Appendix B in Part I, Slepyan, 2001a).
Let us further take the external force as

q = −qh(2a+s′)� exp[(a+s′ − ih+)�]H (−�)

+ qr(2a−s′)
 exp[− (a−s′ + ir−)�]H (�); (67)

that is

qF = − (2a+s′)�

a+s′ + i(k − h+)
qh +

(2a−s′)


a−s′ − i(k − r−)
qr: (68)
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Fig. 8. The optical-II wave: (a) (1) n1; (2) n2 and (b) (1) '1; (2) '2.

So, the condition, q → 0 with s′ → 0, is satis2ed.
For s′ → +0 it follows (see Appendix C of part I (Slepyan, 2001a)) that

L+Q+ +
Q−
L−

∼ 2�
[
Lhqh�(k − h+) +

qr

Lr
�(k − r−)

]

=Lhqh

[
1

0+i(k − h+)
+

1
0− i(k−h+)

]
+

qr

Lr

[
1

0 + i(k− r−)
+

1
0− i(k − r−)

]
:

(69)

Thus the solution is

Q+ =
1

L+(k)

[
Lhqh

0− i(k − h+)
+

qr

Lr

1
0− i(k − r−)

]
;

Q−=L−(k)
[

Lhqh

0 + i(k − h+)
+

qr

Lr

1
0 + i(k − r−)

]
: (70)

The general solution can be represented as a sum over all the wavenumbers h+ and r−
which correspond to the dispersion relations (61) (mode I) or (62) (mode II) under a
given crack speed, V . Also, for each wavenumber, similar solutions corresponding to
k = − h+ and k = − r− should be taken into account to obtain real results.



L.I. Slepyan / J. Mech. Phys. Solids 49 (2001) 2839–2875 2859

Note that Q± consists of the 2rst (the second) term only if only the 2rst (the second)
condition in Eq. (66) is satis2ed, that is �¿ 0 (
¿ 0), and the homogeneous solution
does not exist at all if neither one nor other condition is true.

4. Macrolevel-associated solution

We call a macrolevel-associated solution one that corresponds to a zero feeding
wavenumber. To 2nd such a solution we need asymptotes of the lattice relations for
k → 0.

4.1. Asymptotes of some relations

The asymptotes of the functions introduced in (37) are

h0 ∼ 1 + 3
8k
2 + 2

3Y − 13
128k

4 − 1
12Y k2;

b ∼ 1 + 3
4k
2 + 2

3Y − 1
16k

4 + 1
3Y (k

2 + Y );

h20 − b ∼ 1
9Y

2 − 1
16Y k4 − 1

9Y
2k2; (71)

where Y =(0 + ikV )2. It follows that

n1 ∼ 1 +
3
8
/21 +

19
128

k4 +
1
12

Y k2 +
3k6

32Y
;

n2 ∼ 1 +
3
8
/22 −

45
128

k4 − 1
4
Y k2 − 3k6

32Y
;

n2 − n1 ∼ 2
3
Y;

/1 =
√

k2 + Y=c21; /2 =
√

k2 + Y=c22; (72)

where c21 = 9=8 and c22 = 3=8 are velocities of long longitudinal and shear waves, re-
spectively. Depending on the crack speed range the functions /1 and /2 are

/1 =
√
1− V 2=c21

√
(0 + ik)(0− ik) (06 V ¡c1);

/1 =
√

V 2=c21 − 1(0 + ik) (c1¡V );

/2 =
√
1− V 2=c22

√
(0 + ik)(0− ik) (06 V ¡c2);

/2 =
√

V 2=c22 − 1(0 + ik) (c2¡V ): (73)

Further,√
n21 − 1 ∼

√
3
2 /1;

√
n22 − 1 ∼

√
3
2 /2: (74)

Note that for the determination of an asymptote of L(0 + ikV; k) diDerent accuracy for
diDerent values in Eqs. (71)–(74) is required.
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As to functions '±, the asymptotes, k → 0, valid for any n (or y) follow from their
de2nition:

'n
1;2 = (n1;2 −

√
n21;2 − 1)n ∼ exp(−

√
3
2 /1;2n)

= exp(−/1;2y) (k → 0; k2n → 0; n¿ 0): (75)

This yields

'1;2 ∼ exp(−
√
3
2 /1;2): (76)

4.2. Asymptotes for L

An asymptote of L for k → 0 corresponds to the classical description for an elastic
homogeneous body with the above-mentioned nondimensional parameters, �=2=

√
3;

c1 =
√
9=8 and c2 =

√
3=8. For mode I we get

F(n1) ∼ − 3
32 (k

2 + /22)
2;

F(n2) ∼ − 3
8/
2
2k
2 (77)

and

L(0 + ikV; k)=LI ∼ L0I =
32Y/1√
3R0

;

R0 = (k2 + /22)
2 − 4k2/1/2; (78)

while for mode II

F(n1) ∼ 9
8/
2
1k
2;

F(n2) ∼ 9
32 (k

2 + /22)
2 (79)

and

L(0 + ikV; k)=LII ∼ L0II =
32Y/2
3
√
3R0

(80)

with the same expression for R0 as for mode I (78). Note that the considered function,
L(0+ikV; k), connects the elongation of an inclined bond (or its trace) on the crack path
with external force of the same orientation. Referring to the corresponding continuous
medium, one can express the crack opening displacement, and stresses on the crack
continuation as follows:

uy =Q=
√
3 (mode I); ux =Q (mode II);

�yy =
√
3q; (mode I); �yx = q; (mode II): (81)

We come to the classical relations

uFy =
1
3
L0I �

F
yy;

1
3
L0I =

Y/1
�c42R0

(mode I);

uFx =L0II�
F
yx; L0II =

Y/2
�c42R0

(mode II): (82)
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Recall that for the considered lattice �=2=
√
3 and c22 = 3=8.

Below we use the following notations:

11;2 =
√
1− V 2=c21;2 (V ¡c1;2);

1∗
1;2 =

√
V 2=c21;2 − 1 (c1;2¡V );

R0 = 41112 − (1 + 122)
2; R0¿ 0 (0¡V ¡cR); R0¡ 0 (cR ¡V ¡c2):

(83)

We also take into account that

/21;2 = [0 + ik(1 + V=c1;2)][0− ik(1− V=c1;2)];

k2 + /22 = [0 + ik(
√
2 + V=c2)][0− ik(

√
2− V=c2)]: (84)

Further, if one retraces the path on the complex plane of a function when k runs from
−∞ to ∞, it can be found that

Ind Y =1 (0¡V );

Ind /1;2 = 0 (0¡V¡c1;2); Ind /1;2 = 1 (c1;2¡V );

Ind R0 = 1 (0¡V¡cR); Ind R0 = 2 (cR ¡V ¡c2; c1¡V );

Ind R0 = 3
2 + ! (c2¡V¡c1); !=

1
�
arctan

(1 + 122)
2

4111∗
2

;

cR = 1
2

√
3−

√
3: (85)

We can now write down the asymptotic expressions for L(0 + ikV; k) (-; k → 0) in
diDerent ranges of the crack speed.
Mode I:
In the range 0¡V ¡cR

L0I =
32V 211√
3R0

1√
(0 + ik)(0− ik)¿ 0: (86)

In this range, Arg LI = 0 in a vicinity of k =0 and it is a function of 2nite support.
In the range cR ¡V ¡c2, the considered function can be represented as

L0I = − 32V 211√
3R0

(0− ik)1=2(0 + ik)−3=2: (87)

In the range c2¡V ¡c1, we can use the representation

L0I =
32V 211√
3T

(0− ik)!(0 + ik)−1−!; T = |R0|: (88)

Lastly, for c1¡V

L0I =
32V 21∗

1√
3[41∗

11
∗
2 + (1 + 122)2](0 + ik)

: (89)



2862 L.I. Slepyan / J. Mech. Phys. Solids 49 (2001) 2839–2875

For mode II:

L0II =
32V 212
3
√
3R0

1√
(0 + ik)(0− ik) (0¡V ¡cR); (90)

L0II = − 32V 212
3
√
3R0

(0− ik)1=2(0 + ik)−3=2 (cR ¡V ¡c2); (91)

L0II =
32V 21∗

2

3
√
3T

(0− ik)!−1=2(0 + ik)−1=2−! (c2¡V ¡c1); (92)

L0II =
32V 21∗

2

3
√
3[41∗

11
∗
2 + (1 + 122)2](0 + ik)

(c1¡V ): (93)

4.3. Asymptotes for L±

4.3.1. Sub-Rayleigh speed
The long-wave=low-frequency approximation of the functions L± can be found us-

ing the Cauchy-type integral (63) and the asymptotic relations (86) and (90) with
IL(0 + ikV; k)6 0 (see Section 2.3). For mode I it is

L+(0 + ikV; k) ∼ L0RI√
0− ik ; L−(0 + ikV; k) ∼ L0

RI
√
0 + ik

;

L0 =

√
32V 211√
3R0

(Lh=L0RI) (94)

and for mode II it is

L+(0 + ikV; k) ∼ L0RII√
0− ik ; L−(0 + ikV; k) ∼ L0

RII
√
0 + ik

;

L0 =

√
32V 212
3
√
3R0

(Lh=L0IIRII); (95)

where

RI; II = exp
(
1
�

∫ ∞

0

Arg LI; II(0 + i.V; .)
.

d.
)

: (96)

Note that for V ¿ 0 the upper limit of the integral is, in fact, a function of the speed
since the integrand is a function of 2nite support (which increases as V decreases).

4.3.2. Super-Rayleigh speed, cR ¡V ¡c2
Let us represent the function L(0 + i.V; .) in the region −1¡.¡ 1 as

L(0 + i.V; .)=L∗(0 + i.V; .)l(.); l(.)=
0− i.
0 + i.

: (97)

It follows (see Eqs. (87) and (91)) that

Arg L∗=0(.=0); |l(.)|=1; Arg l(.)= − �sgn .: (98)
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Using the Cauchy-type integral (63) for both functions, L∗ (L∗=L for |.|¿ 1) and
l(.) one obtains the following asymptotes for k → 0:

l= l+l−; l+ = exp

(
1
2�i

∫ 1

−1

ln l(.)
.− k

d.

)
∼ (0− ik) (Ik ¿ 0);

l−=exp

(
− 1
2�i

∫ 1

−1

ln l(.)
.− k

d.

)
∼ (0 + ik)−1 (Ik ¡ 0) (99)

and

L+ ∼ L0R1(0− ik)1=2; L− ∼ L0
R1
(0 + ik)−3=2;

L0 =

√
−32V

211√
3R0

(mode I); L0 =

√
−32V

212
3
√
3R0

(mode II);

R1 = exp

[
1
�

(∫ 1

0

Arg L(.) + �
.

d.+
∫ ∞

1

Arg L(.)
.

d.

)]
; (100)

where R1 is a speed-dependent function, Lh=L0R1.

4.3.3. Intersonic speed
We use the regularization of the function L(0 + i.V; .) in the region −1¡.¡ 1

similar to that for the super-Rayleigh case:

L(0 + i.V; .)=L∗(0 + i.V; .)l(.);

l(.)= lI(.)=
(
0− i.
0 + i.

)1=2+!

(mode I);

l(.)= lII(.)=
(
0− i.
0 + i.

)!
(mode II): (101)

It follows (see Eqs. (88) and (92)) that

Arg L∗=0 (.=0); |lI; II(.)|=1;

Arg lI(.)= − �(1=2 + !)sign . (mode I);

Arg lII(.)= − �! sign . (mode II): (102)

Using the Cauchy-type integral (63) for both functions, L∗ (L∗=L(|.|¿ 1) and lI; II(.)
one obtains the asymptotes for mode I:

L+ ∼ L0R2(0− ik)!; L− ∼ L0
R2
(0 + ik)−!−1;

R2I = exp

[
1
�

(∫ 1

0

Arg L(.) + �(!+ 1=2)
.

d.+
∫ ∞

1

Arg L(.)
.

d.

)]
(103)
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and for mode II:

L+ ∼ L0R2(0− ik)!−1=2; L− ∼ L0
R2
(0 + ik)−!−1=2;

R2II = exp

[
1
�

(∫ 1

0

Arg L(.) + �!
.

d.+
∫ ∞

1

Arg L(.)
.

d.

)]
; (104)

where

L0 =

√
32V 211√
3T

(mode I); L0 =

√
32V 21∗

2

3
√
3T

(mode II): (105)

4.3.4. Supersonic speed
Using the same procedure one obtains (see Eqs. (89) and (93))

L+ ∼ L0R3; L− ∼ L0
R3
(0 + ik)−1;

L0 =

√
32V 21∗

1√
3R00

(mode I); L0 =

√
32V 21∗

2

3
√
3R00

(mode II);

R00 = 41∗
11

∗
2 + (1 + 122)

2 (106)

and

R3 = exp

[
1
�

(∫ 1

0

Arg L(.) + �=2
.

d.+
∫ ∞

1

Arg L(.)
.

d.

)]
: (107)

4.4. The energy release

It can be seen that for h+ = r−=0 the second condition in Eq. (66) is not satis-
2ed, while the 2rst condition is satis2ed in the sub-Rayleigh region, 0¡V ¡cR, for
both modes and in the intersonic region, c2¡V ¡c1, for mode II. In other cases the
macrolevel-associated solution does not exist. Consider both favourable cases.

4.4.1. Sub-Rayleigh crack speed
In the considered sub-critical case, the global (macrolevel) energy release rate is

de2ned by the macrolevel asymptote of the solution. The nondimensional energy release
rate is de2ned as a limit:

G= lim
p→∞p2Q−(−ip)Q+(ip): (108)

This formula is valid for both the local (microlevel) and the global (macrolevel) energy
release rate. The diDerence lies in the expressions for Q±. In the considered case of a
zero wavenumber, exponent 
 in Eq. (66) is negative and only the 2rst term in each
of expressions (70) remains. Formula (108) de2nes the local energy release rate as

G0 =Q2(0)=L2hq
2
h=L20q

2
hR

2
1: (109)
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The global energy release rate, G, is represented in terms of the long-wave asymp-
totes of Q±(k) (k → 0). Referring to Eqs. (70) and (94)–(96) we have the macrolevel
solution

Q+ ∼ Lhqh

L+(k)(0− ik) =
qh√
0− ik ; Q− ∼ LhqhL−(k)

0− ik =L20qh(0 + ik)−3=2;

Q(�) ∼ qh√
��

(�¿ 0); Q(�) ∼ L20qh

√
−2�=� (�¡ 0) (110)

and the global energy release rate is

G=L20q
2
h: (111)

Thus the energy release ratio is
G0
G
=R2

1: (112)

Note that R16 1 since Arg L(0+i.V; .)6 0 as shown in Section 2.3. From the physical
point of view, this inequality is a manifestation of the dissipative waves which carry
a part of the global energy release away from the crack. This ratio for modes I and
II together with that for mode III is shown in Fig. 6 of Part I of the paper (Slepyan,
2001a).

4.4.2. Mode II intersonic crack speed
The asymptotes (k → 0) of solution (110) for the considered intersonic case are

(see Eq. (104))

Q+ ∼ qh(0− ik)−!−1=2; Q− ∼ qhL20(0 + ik)
−!−3=2 (113)

with the originals

Q(�) ∼ qh
�−1=2+!

6(1=2 + !)
(�¿ 0); Q(�) ∼ qhL20

(−�)1=2+!

6(3=2 + !)
(�¡ 0): (114)

The global energy release rate can be calculated as a limit (s′ → 0) of the corre-
sponding work of the force (see Eq. (67))

q= − qh(2a+s′)� exp(a+s′�)H (−�); (115)

where for the considered case �=1=2− !. The work is

G= lim
s′→+0

∫ 0

−∞
q
dQ(�)
d�

d�=L20q
2
h lim
a+ s′→+0

(a+s′)−2!: (116)

There exists a special case, V =
√
2c2, where !=0 and the solution is of the

square-root type. In this case,

Q(�) ∼ qh=
√
�� (�¿ 0);

Q(�) ∼ qhL20
√
−2�=� (�¡ 0) (117)

and

G0 =Q2(0)=L2hq
2
h=L20q

2
hR

2
2;

G0=G=R2
2 (V =

√
2c2) (118)
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Fig. 9. The local-to-global energy-release ratio, G0=G, for the intersonic crack speed: (1) 7=10−3;
(2) 7=10−6; (3) 7=10−9.

with

R2 =R=exp
(
1
�

∫ ∞

0

Arg L(.)
.

)
: (119)

The magnitude of R2 for V =
√
2c2 can be found in Fig. 9 (it corresponds to the

crossing point of the curves). Thus, in this special case, the energy release ratio, G0=G,
is 2nite, otherwise, G= +∞.
The in2nite work required for the intersonic crack propagation is, however, a char-

acteristic of the macrolevel solution. This solution for the x-, y-plane can be found if
one considers the problem on the macrolevel, that is in the framework of the homo-
geneous model. In terms of the scalar potential, 8, and the out-of-plane component of
the vector potential,  , the solution is

8=AI(�+ i/1y)!+3=2;

 =B(−�− 1∗
2y)

!+3=2H (−�− 1∗
2y);

B=A
1 + 122
21∗

2
cos�!; (120)

where A is an arbitrary constant. The displacements are

ux =
98
9x +

9 
9y ; uy =

98
9y − 9 

9x : (121)

It can be easily seen that this solution satis2es the corresponding wave equations
as well as the homogeneous conditions at the upper half-plane boundary, y= + 0:
�yy =0 (−∞¡�¡∞); �yx =0 (�¡ 0); ux =0 (�¿ 0).
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Note that the same result can be obtained as a proper continuation of the long-wave
asymptote of the macrolevel-associated lattice solution (114) from y=0 to y¿ 0.
The total energy Lux in the shear wave represented by potential  is in2nite and this

results in the in2nite global energy release rate. In the special case where V =
√
2c2,

the shear wave disappears (see Eq. (120) with 122 = −1) and the global energy release
rate becomes 2nite.
The macrolevel-associated lattice solution diDers from this on the microlevel: a 2nite

part of the energy is taken away as the local energy release and, in addition, a 2nite part
is carried away by a high-frequency dissipative wave considered below. The existence
of the macrolevel-associated solution with a nonzero local energy release suggests the
existence of an inhomogeneous 2nite-energy-release-ratio solution for any intersonic
speed. This question is considered in the next section.

4.5. Mode II intersonic crack speed. Inhomogeneous problem

Consider Eq. (65) with the load

q= − q0(27)1=2−! exp(7�)H (−�);

qF = qF−= − q0(27)1=2−!

7+ ik
; (122)

where 7 is a small positive number. We can rewrite the right-hand side of Eq. (65) in
the following form:

C =
(

1
L−(k)

− L+(k)
)

qF =C+ + C−;

C+ = [L+(i7)− L+(k)]qF; C−=
[

1
L−(k)

− L+(i7)
]
qF: (123)

It follows that

Q+ =
C+
L+

; Q−=C−L−: (124)

Since 7 is assumed to be small, we may use the asymptotic expressions (104) for
L+(i7) and write

L+(i7) ∼ L0R27!−1=2 (0¡7�1): (125)

The local energy release rate is as before

G0 = lim
k→i∞

(−ik)2Q2
+ ∼ L20q

2
0R

2
2: (126)

The global energy release rate can be calculated using the Parseval equality. Taking
into account Eqs. (104) and (122)–(125) we 2nd

G ∼ 1
2�

∫ ∞

−∞
[dQ(�)=d�H (−�)]F qF(k) dk

= q202
1−2!72−2!

1
2�

∫ ∞

−∞

dk
72 + k2

+ 22−2!71=2−! L20q
2
0

2�

∫ ∞

−∞

(0 + ik)1=2−!

72 + k2
dk
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= 2−2!q207
1−2! + 2−2!

1
�
6
(
3
4
− !
2

)
6
(
1
4
+

!
2

)
cos
[
�
2
(
1
2
− !)

]
7−2!L20q

2
0:

(127)

For small 7 the 2rst term is negligible; thus the energy release ratio is
G0
G

∼ �
6( 34 − !=2)6( 14 + !=2)cos[�=2( 12 − !)]

(27)2!R2
2: (128)

It can be seen in Fig. 9 that the ratio, G0=G, remains 2nite, that is not too small,
in a vicinity of the point V =V∗=

√
2c2 even for very small 7 (7=10−3; 10−6 and

10−9), where the feeding wave and the external load can be referred to the macrolevel
(remind that the length unit is the ‘interatomic’ distance). Thus the lattice model admits
the macrolevel-associated solution for intersonic crack speed in the shear-longitudinal
wave-speed region, while in a cohesive-zone-free homogeneous-material model it exists
only for the single speed, V∗. This diDerence is caused by the fact that, in the homoge-
neous model, the local energy release is possible only in the case of the square-root-type
singularity, while for the shear-longitudinal wave-speed region the singularity is weaker.
In contrast, the local energy release in the lattice, as well as in the cohesive zone model,
is not connected with the singularity of the macrolevel 2eld at all.

4.6. Dissipative waves

The dissipative waves are de2ned as contributions of nonzero singular points of 1=L+
and L− (see Eq. (70)). Each of such waves is located ahead (behind) the crack front
if its group velocity is greater (lower) than the phase velocity. Indeed, as was already
noted, the function L+ (L−) incorporates the wavenumbers with Vg ¿V (Vg ¡V ).
Thus these waves carry energy away from the crack front and can be called the dis-
sipative waves. Consider the sub-Rayleigh (modes I and II) and the intersonic (mode
II) regions.

4.6.1. Sub-Rayleigh crack speed, mode I
It can be seen in Fig. 2 that the function 1=L+ has one nonzero singular point in

a region where, approximately, 0:218¡V ¡ 0:254 and one or more such points for
V ¡ 0:207. These points are of the square-root type, 1=

√
0− i(k − r+), since they

represent zeros of r+. Note that the Rayleigh nonzero wavenumber is a regular point
for 1=L+ and the Rayleigh wave cannot propagate to the right (of course, this also
follows from the absence of a free boundary ahead the crack). In accordance with the
type of the singular point, it decreases asymptotically (far from the crack front) as
1=
√
� (�¿ 0).
The function L− has three or more nonzero singular points for any sub-Rayleigh

crack speed. The corresponding dissipative waves carry energy to the left. A fast-decre-
asing wave corresponds to a singular point of type

√
0 + i(k − r−). It decreases asymp-

totically (at y=0) as (−�)−3=2 (�¡ 0). Note that the fast-decreasing asymptote is true
only on the crack surfaces. For a ray inclined to the crack line, one can expect that the
decrease is of a square-root type (see Part I, Slepyan, 2001a). In addition, for �¡ 0
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there exists the Rayleigh dissipative wave which corresponds to a simple pole of L−(k)
as a singular point of type 1=(0 + i(k − h+). This is a constant-amplitude wave, and
h+ is its wavenumber.

4.6.2. Sub-Rayleigh crack speed, mode II
In this case, the function 1=L+ has one or more nonzero singular points in the region

where V ¡ 0:239, while function L− has such points for any sub-Rayleigh crack speed
(see Fig. 3). All the above discussed properties of the dissipative waves in mode I are
valid for mode II as well.

4.6.3. Intersonic crack speed, mode II
In this region, the function L− has one nonzero singular point for any V , while L+

has no such point (see Fig. 3). Thus there exists only one microlevel dissipative wave
in this case; it carries energy to the left. In addition, as already noted, a macrolevel
shear wave plays an important role in the energy Luxes distribution (excluding the
special case, V =

√
2c2).

5. Microlevel solutions

5.1. General characterization

A microlevel solution is characterized by a feeding wave of a nonzero wavenumber.
It is de2ned by the general solution (70) as well as the above-discussed macrolevel-
associated solution. Both the feeding and dissipative waves are represented in Eq. (70).
The waves of the 2rst type are associated with the explicitly shown singular points
k = r− in the expression for Q+ and points k = h+ in the expression for Q−. They
are characterized by an anomalous location relatively the crack front. To show this,
consider a regular case where both functions h+ and r+ have only simple zeros, that
is, there are no coincident zero points where Vg=V . In this case, the point k = r− is
not a singular or zero point of L+ and the point k = h+ is a regular point of L−. So,
these poles de2ne constant-amplitude waves (denoted as Q+

f and Q−
f )

Q+
f (�)=

qr

LrL+(r−)
exp(−ir−�)H (�);

Q−
f (�)= qhLhL−(h+)exp(−ih+�)H (−�): (129)

In these expressions, in general, qh and qr are assumed to be complex. For k 
= 0
the group velocity, Vg, of the wave with k = r− (the wave is located at the right, ahead
the crack front) is less than its phase velocity, V , whereas Vg ¿V for the wave with
k = h+ located at the left. Because the group velocity is the energy Lux velocity, these
inequalities give evidence that each of these waves carries energy to the crack front
and this is a reason to call it the feeding wave. Note that, under a given crack speed,
not only one but several feeding waves can exist simultaneously. Some of them (with
wavenumbers as r−) are placed ahead the crack front and others (with wavenumber
as h+)—behind the front.
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Also note that relations (129) are valid for a complex feeding wave associated with
a positive zero point, k = h+ or r−. In addition, there exists a similar solution for the
wave associated with the point k = − h+ or −r−. In sum, these solutions represent a
real wave.
Consider, for example, the case where qh is the feeding wavenumber. The real

elongation of the bond at �=0 can be expressed as (see Eqs. (70) and (64))

RQ(0)=R lim
k→i∞

(−ik)Q+(k)=R lim
k→−i∞

(ik)Q−(k)=R(Lhqh): (130)

At the same time, the feeding wave amplitude is

A= |Q−
f (�)|= |qhLhL−(h+)|: (131)

Let the wavenumber, k = h+, the phase velocity, V , and the amplitude, A, of the feeding
wave be given as well as the fracture criterion, RQ(0)=Q∗. These conditions allow
one to determine the constant qh in solution (70), namely, if Lh= |Lh| exp(i/) then
(here / and 1 are real numbers)

qh=
A

|LhL−(h+)|e
i1; cos(/+ 1)=

Q∗|L−(h+)|
A

: (132)

It follows that the amplitude has a lower boundary

Q∗|L−(h+)|6 A¡∞: (133)

In fact, there exists an upper boundary of the amplitude as well. It is de2ned by the
strength of the other bonds of the lattice which have to carry the wave.
In a particular case where two of the zeros unite (in such a resonant point Vg=V ),

solution (129) do not exist since L+(r−)= 0 or L−(h+)=∞. However, a dissipative
wave associated with the united zero points can exist. In this case, such doubled zero
point is split by two simple zeros in the solution: one of them belongs to Q+ (through
L+), while another belongs to Q− (through L−).

5.2. Sub-Rayleigh crack speed

First of all we note that the acoustic and optical dispersion curves represented as
curves 2 and 3 in Figs. 2 and 3 correspond to feeding waves of r−-type, while the
Rayleigh branch as curve 1 corresponds to h+-type. For mode I it can be seen in Fig. 2
that the feeding wavenumber r− can be represented by the longitudinal wave for any
V , except two resonant speeds: V ≈ 0:218 and 0.254, and by the optical-I branch for
any speed. For mode II such wavenumber exists for any speed in both the shear wave
and the optical-II branches (see Fig. 3). Wavenumber h+ exists only for a low speed,
V ¡ 0:122, for both modes. Thus the feeding wave ahead the crack can exist for any
sub-Rayleigh crack speed, while it can be placed behind the crack front if V ¡ 0:122.
In the last case, it is the Rayleigh feeding wave.
The dissipative waves are similar to that for the above-considered macrolevel-

associated solution. In addition, there exists a contribution of the zero point, k =0.
Referring to Eqs. (70), (94) and (95) one can 2nd that this contribution is

Q+ ∼ const
√
0− ik; Q− ∼ const√

0− ik ;
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Q(�) ∼ const
�3=2

(� → +∞); Q(�) ∼ const√
�
(� → −∞): (134)

This asymptote coincides with a super singular macrolevel solution which de2nes a
zero energy release (in total, the corresponding wave does not transfer energy from the
crack). Thus solution (134) describes a part of the 2eld propagating together with the
crack, but not a dissipative wave.

5.3. Super-Rayleigh crack speed

There are two, longitudinal-wave and optical-I feeding wavenumbers, both of r−-type,
for mode I (see Fig. 2) and two, shear-wave and optical-II feeding wavenumbers of
the same type for mode II (see Fig. 3). Eq. (70) yields the following contribution of
the feeding wavenumber, k = r−:

Q(�)=
qr

LrL+(r−)
exp(−r−�) (�¿ 0);

Q(�)=
qr√−��

exp(−r−�) (�¿ 0): (135)

The 2rst is the feeding wave, while the second is the dissipative one of the same
wavenumber. The total elongation at the crack tip, �=0, from Eq. (70) is as follows:

Q(0)=
qr

Lr
: (136)

Along with the above-mentioned, there exists a dissipative wave associated with another
nonzero singular point. It propagates at �¡ 0. In addition, there is a contribution of
the zero point, k =0. It is (see Eqs. (100))

Q+ ∼ − iqr

r−L0LrR1

1√
0− ik ;

Q− ∼ iqrL0
r−LrR1

1
(0 + ik)3=2

: (137)

This asymptote coincides with the macrolevel super-Rayleigh solution which corre-
sponds to a negative energy release. Consider this case in more detail.
The real parts of these solutions, which correspond to a sum of those for k = ± r−,

are

RQ(0)=
2R(qrLr)

|Lr|2 ;

RQ(�)=
4L0I(qrLr)√
�R1r−|Lr|2

√−� (�¡ 0);

RQ(�)= − I(qrLr)
R1r−|Lr|2L0√��

(�¿ 0): (138)

Note that the last two expressions are diDerent in sign that corresponds to a negative
energy release. This is why the super-Rayleigh regime is not acceptable as a macrolevel
solution. In our case, however, a microlevel feeding wave plays a dominant role in
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delivering energy to the crack, the macrolevel wave is a dissipative wave now, and
from the energy point of view the super-Rayleigh regime is not forbidden.
The relative values of the elongation are

S−=
Q(�)√−�Q(0)

=
2L0I(qrLr)√
�r−R1R(qrLr)

;

S+ = − Q(�)
√
�

Q(0)
= − I(qrLr)√

�r−R1L0R(qrLr)
; (139)

where the function, Lr , obtained using the Cauchy-type integral with a regularization
similar to that used above, is

Lr = lim
.→r−

[
L(0 + i.V; .)√
0 + i(.− r−)

]1=2
exp

[
− 1
2�i

(81 + 82)
]
;

81 =V:p:
∫ r−+1

r−−1

ln[L(0 + i.V; .)=
√
0 + i(.− r−)]

.− r−
d.;

82 = − 1
2�i

(∫ r−−1

−∞
+
∫ ∞

r−+1

)
ln L(0 + i.V; .)

.− r−
d.: (140)

Let us represent Lr and qr as

Lr = |Lr|ei/; qr = |qr|ei1; (141)

where / is a speed-dependent constant de2ned by Eq. (140) and 1 is a free constant
(it depends on the position of the crack front relatively the wave, that is depends on
the ratio |qr|=Q∗; Q∗=Q(0)). Then

S−=
2L0√
�r−R1

tan(/+ 1);

S+ = − 1√
�r−L0R1

tan(/+ 1): (142)

It is clear that one of these ratios, for example the 2rst of them, can be positive. This
demonstrates that the super-Rayleigh solution can exist without crack face interpene-
tration.

5.4. Intersonic crack speed

Contrary to the macrolevel-associated solution, intersonic nonzero feeding wavenum-
bers exist not only for mode II but for mode I as well. As can be seen in Fig. 2, in the
case of mode I, both the longitudinal-wave and the optical-I branches can represent a
feeding wavenumber of r−-type for any speed in this range. These feeding waves are
placed ahead the crack delivering energy from the right since Vg ¡V for both waves.
In the case of mode II, only the optical-II branch remains (see Fig. 3) with a feeding
wavenumber of the same type.
The microlevel dissipative waves are similar to those for the above-considered macro-

level-associated solution. The contribution of the zero point is a fast-decreasing wave.
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5.5. Supersonic crack speed

Microlevel feeding waves can provide supersonic crack propagation. Indeed, the
optical-I branch in the case of mode I and as well as the optical-II branch in the
case of mode II can represent the required wavenumber of r−-type. It follows from
Eq. (70) that the supersonic feeding wave is

Q+ =
qr

LrL+(r−)[0− i(k − r−)]
;

Q+
f (�)=

qr

LrL+(r−)
exp(−ir−�)H (�); (143)

where the wavenumber, r−, satis2es the equation

-3 =
√
6 cos(k=4)= kV (mode I) or

-4 = [2 cos(k=4)2 + 4 sin(k=2)2]1=2 = kV (mode II): (144)

A dissipative wave of the same wavenumber as the feeding wave exists in both
cases. As follows from Eq. (70) it is

Q−=
qr√

0 + i(k − r−)
;

Q(�) ∼ qr√−��
exp(−ir−�) (� → −∞): (145)

The zero wavenumber corresponds to a wave as a constant crack opening displacement
at �¡ 0.

6. Conclusion

Crack propagation in the lattice is considered here as caused by a feeding wave and
accompanied by dissipative waves. Note that the dissipative waves obey the causality
principle which, in its narrow sense, states that the solution should contain only those
waves which carry energy to in2nity. This corresponds to the case where no energy
sources at in2nity are assumed. In a broad sense, this principle allows the waves
which sources are prescribed by the problem formulation. The feeding waves, delivering
energy to the crack tip from a remote source, obey just this broad-sense causality
principle. Also note that the source ‘at in2nity’ means, of course, that it is far removed
from the crack tip in the structure scale.
We call the macrolevel-associated solution that which corresponds to a zero feeding

wavenumber, while the microlevel solution, which has no analogue on the macrolevel,
corresponds to a nonzero feeding wavenumber. The macrolevel-associated homogeneous
solutions exist in two cases: in the sub-Rayleigh region, 0¡V¡cR, for both modes
and in the intersonic region, c2¡V¡c1, for mode II. In other cases, such solutions
do not exist. In contrast, the microlevel solutions exist for both modes in all cases
as sub-Rayleigh, super-Rayleigh, cR¡V¡c2, intersonic and supersonic crack-speed
regions.
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The crack speed is considered as given that corresponds to cutting of the lattice rather
than crack propagation. However, if remote external forces and the fracture criterion
are given, the results allow one to determine the crack speed.
The possible wave con2gurations are de2ned by the dispersion relations (61) and

(62), asymptotic expressions for the factors L± and the conditions concerning the
existence of the macrolevel feeding waves (66). They are found here as steady-state
solutions which satisfy the lattice dynamic equations, the crack faces conditions and
the conditions of symmetry. Also, these solutions correspond to an arbitrary nonzero
critical elongation of the bond (this condition is required to satisfy the criterion of the
bond breaking). So, the results concerning the wave amplitude and displacements can
be expressed through the critical elongation as a coeKcient of proportionality, while
the global energy release, as well as the energy of each wave, is proportional to the
local energy release as the critical elongation energy.
Along with the above-mentioned conditions satis2ed by the solutions, same addi-

tional restrictions can de2ne whether a fracture regime can exist. Indeed, the fracture
criterion must be 2rst satis2ed at the crack front and for the bond on the crack path;
otherwise the steady-state solution cannot be applied to the crack propagation problem.
Further, the solution must be stable. These questions were studied in Marder and Gross
(1995). In particular, it was shown that a crack cannot propagate slowly since the 2rst
condition is not satis2ed, and the steady-state solution is unstable for a fast crack in
the sub-Rayleigh region. Note, however, that these conclusions concern only the elastic
lattice under the critical elongation as a fracture criterion. Also note that a slow crack
can exist in a viscoelastic lattice (see Slepyan et al., 1999; Slepyan, 2000). Next, a
kinematic condition should be mentioned as the prohibition of the crack faces interpen-
etration. These additional restrictions should be taken into account in the examination
of a speci2c problem.
The lattice model has demonstrated some scenarios and phenomena in fracture and

phase transition which cannot be discovered in the framework of a homogeneous model.
It would be interesting to consider these issues using a more realistic lattice model.
Also, an application of the lattice approach to mechanical and electro-mechanical prob-
lems for thin 2lms is seemed to be fruitful.
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