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Abstract

Discrete and homogeneous models of a structured material are considered to resolve di0culties
in the analysis of dynamic phase transition. The discrete model is a chain consisting of particles
connected by massless bonds, while the continuous model is represented by a partial di3erential
equation with higher than the second order of coordinate derivatives. The macrolevel constitu-
tive law is represented by a bi-linear stress–strain relation, such that the transition from the 5rst,
sti3er phase to the second one is irreversible. Solutions of two types, macrolevel-associated and
microlevel, are derived. The 5rst type of solution is characterized by a macrolevel feeding wave
(the wave delivering energy to the phase-transition front is of a zero wave number), while the
microlevel solutions correspond to a nonzero feeding wave number. Subsonic, intersonic and
supersonic phase-transition waves are described. For the homogeneous model it is shown that
the contradiction between the limiting stress and energy criteria, inherent for the macrolevel
formulation of the problem, is eliminated if and only if the phase transition does not concern
the highest-order modulus. Total structure- and speed-dependent dissipation, as the energy car-
ried by microlevel waves away from the phase-transition front, as well as parameters of each
dissipative wave are determined. For the fourth-order partial di3erential equation, the existence
of the Maxwell type, dissipation-free, subsonic phase-transition wave is shown. In this case, the
microstructure plays the role of a catalyst. Common and distinctive properties of the discrete
and homogeneous models are discussed. c© 2001 Elsevier Science Ltd. All rights reserved.
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Fig. 1. The bi-linear stress–strain diagram. The lines pass through the origin and the point �∗; �∗ (the 5rst
phase) and the point �−0 ; �

−
0 (the second phase). The line �+0 ; �

+
0 − �−0 , �−0 represents an example of the

macrolevel description of the phase transition. For a given point �−0 ; �
−
0 the starting point �+0 ; �

+
0 cannot be

de5ned using only macrolevel considerations.

1. Introduction

Consider a two-phase material with the stress–strain diagram shown in Fig. 1.
Macrolevel considerations provide no unique answer regarding the transition path from
the sti3er branch of this diagram to the softer one. This inde5niteness was reAected in
di3erent formulations of the problem of wave propagation in such a material (Galin
and Cherepanov, 1966; Grigoryan, 1967; Slepyan, 1968, 1977; Slepyan and Troyankina,
1969). Uniqueness can be achieved in the framework of a structured material model
where the total structure- and speed-dependent dissipation as the wave resistance to
the phase transition can be determined. To describe the related phenomena two types
of such models have been studied: a higher-order-derivative (HOD) formulation for an
elastic continuum (see Truskinovsky, 1994, 1997; Ngan and Truskinovsky, 1999, and
the references therein), and a discrete chain model (Slepyan and Troyankina, 1984,
1988; Slepyan, 2000; Balk et al., 2001a, b, an analysis for a discrete bi-stable chain
in statics is represented in Puglisi and Truskinovsky, 2000).
Along with the dissipation as the energy transfers from the macrolevel to the micro-

level, the structured models permit microlevel solutions which have no analogue on
the macrolevel. In this connection, we classify the solutions according to the type of
feeding wave delivering energy to the propagating phase-transition front.
We call the macrolevel-associated solution one that corresponds to a macrolevel

feeding wave, that is the wave of a zero wave number. This solution di3ers from the
macrolevel solution by the existence of propagating or=and exponentially decreasing mi-
crolevel waves of a nonzero wave number. The propagating microlevel waves, carrying
energy away from the front, are called here the dissipative waves. The dissipative wave
is placed ahead (behind) the phase-transition front if its group velocity is higher (lower)
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than the phase velocity. The macrolevel-associated solution can be considered as an im-
proved macrolevel solution. In contrast, the microlevel solution is characterized by a mi-
crolevel feeding wave of a nonzero wave number. Such wave is placed ahead (behind)
the phase-transition front if its group velocity is lower (higher) than the phase velocity.
Both the discrete chain and the HOD model are considered in the present paper. A

comprehensive analysis of the macrolevel-associated and microlevel solutions is repre-
sented. The paper is organized as follows.
To show insu0ciency of the purely macrolevel formulation of the problem we start

with the macrolevel solution. This formulation can be completed with a phase-transition
criterion; however, the criterion as a limiting stress in the 5rst phase (see Fig. 1) is
in contradiction with the energy criterion following from the same diagram. The only
way out of this di0culty is to consider the inAuence of the microstructure.
Next, we consider a discrete chain consisting of particles connected by massless

bonds with the force–strain diagram as in Fig. 1. A steady-state phase-transition wave
is considered, that is the strain of any bond is assumed to be the same function of time
but with a shift corresponding to a constant time-interval between the phase transition
of the neighboring bonds. A general solution is derived using the continuous Fourier
transform of this function and the Wiener–Hopf technique.
In terms of the Fourier transform, a long-wave approximation of the solution coin-

cides with that for a homogeneous body, while nonzero real singular points correspond
to the microlevel feeding and dissipative waves. In this way, both the macrolevel-
associated and microlevel solutions with the corresponding dissipative waves are an-
alyzed. The macrolevel-associated phase-transition wave velocity is bounded by the
sound velocity, that is the macrolevel wave velocity, in the second (softer) phase. So,
only a subsonic phase-transition wave can exist in this case, while an intersonic wave
can exist in the case of a microlevel solution. Note that we use terms subsonic, inter-
sonic and supersonic for the speed lower than the sound velocity in the second phase,
between the sound velocities in the 5rst and the second phases and higher than the
sound velocity in the 5rst phase, respectively.
Then we return to the macrolevel solution uniqueness of which is achieved with

the expression for the speed-dependent total dissipation obtained as a result of the
macrolevel-associated formulation. Two examples as the phase transition under an im-
pact and a spontaneous phase transition are considered.
Possible con5gurations of the feeding and dissipative waves are de5ned by dispersion

dependences for the uniform wave guides corresponding to one and another phase. Such
dependences, especially for a fast phase-transition wave, can be approximated by means
of higher-order derivatives introduced in the two-phase macrolevel wave equation. It
is of interest to compare these, discrete and HOD, approaches. In this connection, the
latter is considered in more detail.
We consider a model where the strain energy is represented as a quadratic form in-

cluding the 5rst and the higher-order derivatives, while the corresponding moduli can
be di3erent in the di3erent phases. First, it is shown that the contradiction between
the limiting stress and energy criteria is eliminated if and only if the phase transi-
tion does not concern the highest-order modulus. This allows one to satisfy interface
conditions concerning continuity and discontinuity of generalized strains. The use of
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the same technique as for the chain leads to a solution in which these conditions are
satis5ed automatically. A fourth-order partial di3erential equation for the two-phase
continuum is considered in more detail. Macrolevel-associated subsonic and microlevel
intersonic and supersonic solutions are derived. In particular, the subsonic solution
represents the Maxwell type, dissipation-free phase transition where only exponentially
decreasing microlevel waves exist but not the propagating ones. In this case, the mi-
crolevel plays the role of a catalyst. It helps to overcome the energy barrier spending
no energy.
The results show that the HOD model possesses both the macrolevel-associated and

microlevel types of the solutions as well as the discrete chain. It can be expected that
an increase in the order of the equation can lead to the conversion of the results for a
given nonzero speed. However, there exist some unavoidable distinctions between these
models. In particular, in the HOD model, in contrast to the discrete chain, the mani-
festation of the dynamic ampli5cation factor with its inAuence on the phase-transition
wave speed (Slepyan, 2000) cannot be revealed.
The present paper is a continuation of the previous one (Slepyan, 2001) mainly

devoted to the feeding and dissipative waves in dynamic fracture of a square-cell lattice.
Although the present paper as part II is independent of it, acquaintance with the 5rst
part is desirable for better understanding of the common phenomena and analytical
technique. Note that some of the notation used in these two parts is di3erent.

2. Macrolevel solution

At the beginning, we consider a homogeneous, nonstructured, two-phase material. As
shown below, equations and other relations following from this model are not su0cient
for the determination of a unique solution. The missing condition can be represented
as a phase-transition criterion; however, there are di0culties in the formulation of such
a criterion in the framework of this model. The situation is similar to that for fracture,
but in the case of the phase-transition wave it is more evident: it is clearly seen that
such a wave cannot exist without excitation of the microlevel.
Consider a plane wave propagating in a two-phase homogeneous material with the

following stress–strain relation (Fig. 1):

�=E� (the 5rst phase);

�= �2E� (the second phase); (1)

where E is the elastic modulus in the 5rst phase, 0¡�¡1 and the 5rst-to-the-second
phase transition occurs when the stress, �, 5rst reaches the critical value

�= �∗: (2)

We assume that the phase-transition front, x=X (t), propagates with the speed Ẋ = v¿0
[in general, v= v(t)], while the material is in the 5rst (the second) phase ahead (behind)
the front. In this model, the displacement, u(x; t), satis5es the one-dimensional linear
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wave equation (di3erent for x¿X and x¡X ):

u′′ − 1
c2

Mu=0 (x¿X );

u′′ − 1
�2c2

Mu=0 (x¡X ); (3)

where primes and dots denote derivatives with respect to the coordinate, x, and time,
t, respectively, c=

√
E=� is the sound velocity in the 5rst phase and � is the material

density.
A general solution to this problem can be expressed in terms of four arbitrary func-

tions as
u= u+1 (x − ct) + u+2 (x + ct) (x≥X );
u= u−1 (x − �ct) + u−2 (x + �ct) (x≤X ): (4)

Here and below the superscript ‘+’ (‘−’) is used for functions with the support at
x¿X (x¡X ). If the argument is not shown explicitly this means that x=X+0 (x=X−
0), for example, (u′)+ = lim u′(x; t) (x→X +0). For the determination of the functions
in (4) and the speed, v, one has to introduce conditions behind and ahead the front,
for example, [u′1(x−ct)+u′2(x+ct)]− =const; u+2 (x+ct)= 0. Further, one can use the
matter and momentum conservation laws which for small strain lead to the following
relations:

v= c

√
�− − �+
�−=�2 − �+ ;

Pu̇= u̇ − − u̇ + = − �− − �+
�v

: (5)

A phase-transition criterion can play the role of the last condition; however, the use
of the criterion (2) as

�+ = �∗ (6)

in the framework of the homogeneous material model is questionable.
To see the contradiction, consider the energy release rate, G, at the moving phase-

transition front. In this connection, we note that it is independent of a rigid-body
velocity, and we can assume the particle velocity ahead the front to be zero. One has

G=
(�+)2

2E
− (�−)2

2E�2
− �(Pu̇)2

2
− �−Pu̇

v
; (7)

where the 5rst and the second terms represent the strain energy per unit length ahead
and behind the front, respectively, the third term is the kinetic energy per unit length
behind the front and the last term is the energy Aux as the work of the internal force
behind the front during the period 1=v. It follows that

G=
1− �2

2
E�+�−; (8)

where �= u′ is strain. In Fig. 1 the corresponding area is shaded.
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Fig. 2. The discrete chain.

At the same time, the energy barrier, G0, between the phases (see Fig. 1) is

G0 =
1− �2

2
E�2∗ (�∗ =

�∗
E
): (9)

The di3erence

G − G0 =
1− �2

2
E (�−�+ − �2∗); (10)

is the lost energy which is positive if criterion (6) is used. Indeed, as follows from
Eqs. (5) and (6) for V = v=c¡�¡1

�−�+ − �2∗ =
1− �2
�2 − V 2 �

2
∗¿0: (11)

We have no way but to conclude that this energy is spent on the excitation of the mi-
crolevel. Thus, in the formulation of the criterion, additional stress �M contributed from
the microlevel should be taken into account, that is criterion (6) should be rewritten as

�+ + �M = �∗: (12)

However, in the framework of the homogeneous material model, it is impossible to
determine the role of the microlevel. Consideration of a structured material model is a
way out of this di0culty. Such a model can allow to 5nd a unique macrolevel solution,
the corresponding structure-associated dissipation and, in addition, microlevel solutions
which have no analogue on the macrolevel. A discrete chain considered below is a
simplest example of such a structured material model. In the following, the sum in
Eq. (12) is denoted by �+, while the macrolevel part of it is denoted by �+0 ; this also
concerns other parameters of the wave, such as the particle velocity and strain.

3. Discrete chain

3.1. Formulation

Consider a chain consisting of point particles of mass M , connected by massless
elastic bonds each of the length a, Fig. 2. The force–elongation relation for any intact
bond is

pm=K�m; �m= um+1 − um; (13)

where pm; �m and K are the force, the bond elongation and its sti3ness, respectively;
the subscript m corresponds to the bond connected the particles numbered by m and
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m+1. For a long wave the chain corresponds to an elastic rod with the elastic modulus
E= aK=A and density �=M=Aa, where A is the cross-sectional area.

At the moment when the bond elongation, �m, 5rst reaches the critical value

�m=�∗; (14)

the sti3ness K drops and becomes �2K :

pm= �2K�m; 0¡�¡1: (15)

Equalities (13) and (15) reAect the two possible phases of the bond state. Note that
this transition is assumed to be irreversible. Dynamics of a reversible two-phase chain
is considered in Balk et al. (2001a, b).
A phase-transition wave propagating with a constant speed, v¿0 is studied, that is the

time-interval between the phase transition of neighboring bonds, a=v, is assumed to be
a constant. At any time t there exists a particle, let its number be m, such that vt≤ am
and vt¿a(m− 1). It is assumed that the chain is in the 5rst (the second) phase ahead
(behind) this particle. Note that the speed of a long wave ahead the phase-transition
front is c=

√
E=�=

√
Ka2=M , while the speed behind the front is �c. The particle

velocities and the bond elongation are assumed to be 5nite at in5nity. Under these
conditions the variables can be represented as functions of �=(x − vt)=a=m − vt=a.
Note that such representation does not concern the particle displacement which can
also depend on x ± ct (�¿0) or x ± �ct (�¡0).

3.2. Derivation of the governing equation

The dynamic equation for a particle is

M
d2um
dt2

=K{�m[1− (1− �2)H (−�)]− �m−1[1− (1− �2)H (1− �)]}+ q1m;

�m= um+1 − um=�(�)= u(�+ 1)− u(�); (16)

where q1m= q
1(�) is an external force introduced for convenience in an initial stage of

the considerations. Comparing the equations for particles m and m+1 one obtains the
following equation for �(�):

V 2 d
2�
d�2

= �(�+ 1)[1− (1− �2)H (−�− 1)]+�(�−1)[1− (1−�2)H (−�+ 1)]

−2�(�)[1− (1−�2)H (−�)] + q(�); (17)

where q(�)= [q1(�+ 1)− q1(�)]=K; V = v=c.
Under the causality principle (see Slepyan, 2001) the Fourier transform leads to the

equation

h(k)�+ + g(k)�− = qF(k)= q+ + q−;

h(k)= 2(1− cos k) + (0 + ikV )2; g(k)= 2�2(1− cos k) + (0 + ikV )2; (18)
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Fig. 3. The dispersion relations: the 5rst (1) and the second (2) phases. The inclined line corresponds to a
value of the speed V = =k. Zeros of the functions h(k) and g(k) are shown.

where the subscript ‘+’ (‘−’) means the right (left) side Fourier transform and the
notation (0± ikV ) means the limit as

0± ikV = lim
s→+0

s± ikV: (19)

We thus obtain the governing equation as

L(k)�+ + �− =
qF(k)
g(k)

; L(k)=
h(k)
g(k)

: (20)

Functions h(k); g(k) and L(k) have the following asymptotes:

h(k) ∼ (1− V 2) (0 + ikV ) (0− ikV ) (k→ 0; V¡1);

h(k) ∼ (V 2 − 1) (0 + ikV )2 (k→ 0; V¿1);

g(k) ∼ (�2 − V 2) (0 + ikV ) (0− ikV ) (k→ 0; V¡�);

g(k) ∼ (V 2 − �2) (0 + ikV )2 (k→ 0; V¿�);

L(0)=
1− V 2

�2 − V 2 (V¡�; V¿1);

L(k) ∼ (1− V 2)(0− ik)
(V 2 − �2) (0 + ik)

(k→ 0; �¡V¡1);

L(±∞)= 1: (21)

The corresponding dispersion relations,

 (k)≡ kV = h=2|sin k=2| [h(k)= 0];

 (k)= g = 2�|sin k=2| [g(k)= 0]; (22)

are represented in Fig. 3.

3.3. Zero points of the functions h(k) and g(k)

Both the feeding and dissipative waves are associated with zero points of the func-
tions h(k) and g(k) and the determination of these points is a necessary step in the
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study of the problem. For V¡1, in addition to the point k =0, the function h(k) has
one, three or more pairs of simple zeros at k �=0: k = ± h1;±h2; : : : ;±h2l+1, where
number l decreases as V increases. In particular

l=0 for V¿V0 ≈ 0:2172: (23)

There is no such points for V ≥ 1. The zeros h$ ($=1; 2; : : :) form an increasing se-
quence h1¡h2¡ · · ·¡h2l+1. Under certain values of the speed, two neighboring zero
points can unite; in the following, however, simple zeros are assumed unless otherwise
noted. The function h(k) has the following representation in a vicinity of a zero point:

h ∼ const[0 + i(k − h2$−1)] (k→ h2$−1);

h ∼ const[0− i(k − h2$)] (k→ h2$): (24)

These representations are in agreement with the corresponding relations between the
group, vg, and phase, v, velocities of the waves corresponding to the dispersive relations
(22)

Vg¡V (k = h2$−1); Vg¿V (k = h2$); (25)

where

Vg =
vg
c
=

d 
dk
; V =

v
c
=
 
k
;  2 = 2(1− cos k): (26)

The function Arg h(k) is a piecewise constant. In accordance with the representations
in Eq. (24), while the increasing variable k passes a zero point of h, Arg h(k) exhibits
a jump as

%Arg h= � (k = h2$−1); %Arg h= − � (k = h2$): (27)

We can put Arg h(0)= 0. Then for V¡1

Arg h=0 [h2$−2¡k¡h2$−1; (h0 = 0)]; Arg h= � (h2$−1¡k¡h2$);

Arg h= � (k¿h2l+1); Arg h(−k)= − Arg h(k); (28)

while for V ≥ 1

Arg h= � (k¿0); Arg h= − � (k¡0): (29)

The function g(k) can be represented as

g(k)= g0(k; V )= �2h0(k; V=�) [h0(k; V )= h(k)]: (30)

This allows one to determine zeros of g(k) in terms of the zeros of h(k). In particular,
for V¡�, in addition to the point k =0, the function g(k) has one, three or more
couples of simple zeros at k �=0: k = ±g1;±g2; : : : ;±g2d+1, where number d decreases
as V increases. In other respects, similar statements concerning the zeros of g(k),
Arg g(k) and the phase and group velocities are valid as for the function h(k).
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3.4. Factorization

One now can see that Arg L(k)= 0 for k2¡g21 and k2¿h22l+1, and it is zero or
negative in the segment g1¡k¡h2l+1. Further,

RL(−k)=RL(k); IL(−k)= − IL(k) (31)

and

Ind L(k)=
1
2� [Arg L(+∞)− Arg L(−∞)]= 0;

L(±∞)= 1; |ln L(−k)|= |ln L(k)|; Arg L(−k)= − Arg L(k): (32)

This allows the following factorization valid for V¡� and V¿1:

L(k)=L+(k)L−(k) (33)

with

L±(k)= exp
(
± 1
2�i

∫ ∞

−∞

ln L(()
(− k d(

)
; (34)

where Ik¿0 for the functions marked by the subscript ‘+’ and Ik¡0 for the functions
marked by the subscript ‘−’. In this factorization, L+ has neither singular nor zero
points in the upper half-plane k, while L− has no such points in the lower half-plane
[the half-planes include the real axis if in Eq. (19) Rs¿0]. This means that 1=L+ and
1=L− are regular in the corresponding half-planes as well as L+ and L−.
As follows from de5nition (34) equalities (31) are valid for the functions L±(k) as

well as for L(k). The function L+(k) [L−(k)] incorporates the zeros of h(k) and g(k)
with Vg¿V [Vg¡V ] as its zero or singular points, such that

L+(h2$)= 0; L+(g2$)=∞;
L−(h2$−1)= 0; L−(g2$−1)=∞: (35)

The functions L±(k) have the following limits:

L±(k)→ 1 (k→ ± i∞); L±(0)=

√
1− V 2

�2 − V 2R
±1 (36)

with

R=exp
(
1
�

∫ ∞

0

Arg L(()
(

d(
)
: (37)

Note that for V¿1, Arg L(k)≡ 0 and R=1.
Proceeding from Eq. (28) and the corresponding relations for g(k) which, in com-

mon, describe piecewise constant Arg L(k), we can also represent R as

R=
l∏

$= 1

h2$
d+1∏
$= 1

g2$−1

(
l+1∏
$= 1

h2$−1

d∏
$= 1

g2$

)−1( 0∏
$= 1

=1

)
: (38)
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In the following, another form of factorization (33) will also be used. We represent
the function L(k) as

L(k)=
H+(k)H−(k)
G+(k)G−(k)

S(k); (39)

where for V¡�

H+(k)=
l∏

$= 1

[
1 +

(
h2$

0− ik

)2]
; H−(k)=

l+1∏
$= 1

[
1 +

(
h2$−1

0 + ik

)2]
;

G+(k)=
d∏

$= 1

[
1 +

(
g2$

0− ik

)2]
; G−(k)=

d+1∏
$= 1

[
1 +

(
g2$−1

0 + ik

)2]
(40)

for �≤V¡1

H+(k)=
l∏

$= 1

[
1 +

(
h2$

0− ik

)2]
; H−(k)=

l+1∏
$= 1

[
1 +

(
h2$−1

0 + ik

)2]

G+ =G− =1 (41)

and for V ≥ 1

H+ =H− =G+ =G− =1: (42)

Under this de5nition of the function S(k), it satis5es the conditions listed in Ap-
pendix 1 (A.1). This allows one to factorize this function using the Cauchy-type integral
(34) with the result

S(k)= S+(k)S−(k); S+(k)= S−( Rk) (43)

and on the real k-axis

S+(k)=
√
S(k)ei#; S−(k)=

√
S(k)e−i#; (44)

where #(k) is a real function of k [#(0)= 0 if S(0) is a nonzero constant]. Thus

L+(k)=
H+

G+
S+; L−(k)=

H−
G−

S− (45)

with

S+(i∞)= S−(−i∞)=L+(i∞)=L−(−i∞)= 1: (46)

It can be seen that representation (45) de5nes the same asymptotes for L±(k)
for k→ 0 (V¡�) as in Eqs. (36)–(38). This type of factorization can be used for
the range �¡V¡1 as well as for the determination of waves of a nonzero wave
number.
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We now can determine L± asymptotes (k→ 0) for the intersonic speed, �¡V¡1.
Using Eqs. (21) and (41) (also see Appendix 1) one can 5nd

S ∼ 1− V 2

V 2 − �2
[
2l+1∏
$= 1

h2$

]−1

[(0− ik) (0 + ik)]2l+1;

S± ∼
√

1− V 2

V 2 − �2
[
2l+1∏
$= 1

h$

]−1

(0∓ ik)2l+1 (47)

and

L+ ∼
√

1− V 2

V 2 − �2
l∏

$= 1

h2$

[
l+1∏
$= 1

h2$−1

]−1

(0− ik);

L− ∼
√

1− V 2

V 2 − �2
l+1∏
$= 1

h2$−1

[
l∏

$= 1

h2$

]−1

(0 + ik)−1: (48)

3.5. General homogeneous solution

The governing equation (20) can now be expressed in the following form:

L+�+ +
�−
L−

=+; +=
qF(k)
g(k)L−

: (49)

In this equation, qF(k) is considered as the Fourier transform of a given external
force, and for the determination of two unknowns, �+ and �−, only one step remains:
to represent the right-hand side of this equation as a sum of terms which can be marked
by ‘+’ and ‘−’ separately. In the following, we consider homogeneous solutions which
correspond to q(�)= 0. However, + must be nonzero; otherwise no nontrivial solution
corresponds to Eq. (49). To resolve this conAicting problem we have to depart from
the causality principle regarding the product g(k)L−, thus allowing an energy Aux from
in5nity. We come to the equation for +:

qF(k)= g(k)L−+=0: (50)

Nontrivial solutions of this equation correspond to zero points of the coe0cient g(k)L−,
namely, k =0; k = ± h2$−1 and k = ± g2$. In a vicinity of such a point

g(k)L− ∼ const k2 (k→ 0; V¡� or V¿1);

g(k)L− ∼ const k (k→ 0; �¡V¡1);

g(k)L− ∼ const(h2$−1 ∓ k) (k→ ± h2$−1);

g(k)L− ∼ const(g2$ ∓ k) (k→ ± g2$): (51)
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Accordingly, a general solution of (50) is

+ = C0-(k) + C00-′(k)

+
l+1∑
$= 1

[C+
2$−1-(k − h2$−1) + C−

2$−1-(k + h2$−1)]

+
d∑

$= 1

[C+
2$-(k − g2$) + C−

2$-(k + g2$)] (52)

for the ranges V¡� and V¿1, while

+=C0-(k) +
l+1∑
$= 1

[C+
2$−1-(k − h2$−1) + C−

2$−1-(k + h2$−1)] (53)

for the intersonic speed, �¡V¡1. Here the coe0cients, C0; : : : ; C2$, are arbitrary con-
stants, - is the Dirac delta-function and -′ is its derivative.
Further, we can use an analytical representation of the delta-function as

-(k − k0)= -+(k − k0) + -−(k − k0) (k0 = const);

-+(k − k0)= 1
2�

1
0− i(k − k0) ; -−(k − k0)= 1

2�
1

0 + i(k − k0) (54)

which gives us the required separation.
A general solution of Eq. (49) which leads to a real result can now be represented

as

�+ =
2�
L+
++; ++ =C0-+(k) + C00-′+(k) + A+ + B+;

A+ =
l+1∑
$= 1

[C2$−1-+(k − h2$−1) + C2$−1-+(k + h2$−1)];

B+ =
d∑

$= 1

[C2$-+(k − g2$) + C2$-+(k + g2$)];

�− =2�L−+−; +− =C0-−(k) + C00-′−(k) + A− + B−;

A− =
l+1∑
$= 1

[C2$−1-−(k − h2$−1) + C2$−1-−(k + h2$−1)];

B− =
d∑

$= 1

[C2$-−(k − g2$) + C2$-−(k + g2$)] (55)
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for the range V¡�,

�+ =
2�
L+
++; ++ =C0-+(k) + A+;

A+ =
l+1∑
$= 1

[C2$−1-+(k − h2$−1) + C2$−1-+(k + h2$−1)];

�− =2�L−+−; +− =C0-−(k) + A−;

A− =
l+1∑
$= 1

[C2$−1-−(k − h2$−1) + C2$−1-−(k + h2$−1)] (56)

for the intersonic speed, �¡V¡1, and

�+ =
2�
L+
++; ++ =C0-+(k) + C00-′+(k);

�− =2�L−+−; +− =C0-−(k) + C00-′−(k) (57)

for the supersonic speed, V¿1.
The ‘feeding functions’, +±, incorporate terms corresponding to (a) zero-wave num-

ber waves, that is C0- and C00-associated terms, (b) nonzero-wave number waves with
vg¡v (C2$−1-terms) and (c) nonzero-wave number waves with vg¿v (C2$-terms). The
feeding wave associated with the coe0cient C2$−1 is placed ahead the phase-transition
front, while the C2$-wave is placed behind the phase-transition front. This 5nds con-
5rmation in the above relations. Indeed, for �+ C2$-terms give no wave with g2$ as
the wave number since k = g2$ is a zero point for 1=L+. Similarly, for �− C2$−1-terms
give no wave with h2$−1 as the wave number since k = h2$−1 is a zero point
for L−.

3.6. Macrolevel-associated solution

3.6.1. General results
A solution corresponding to a zero feeding wave number, that is the solution asso-

ciated with the coe0cients C0 and C00 is:

�+ =
1
L+

[
C0

1
0− ik

+ C00
i

(0− ik)2

]
;

�− =L−

[
C0

1
0 + ik

− C00
i

(0 + ik)2

]
; (58)

where C00 = 0 for the intersonic speed, �¡V¡1.
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For V¡� the contribution of the point k =0 (see Eq. (36)) is a piecewise linear
solution as

�+
0 (�)=

1
R

√
�2 − V 2

1− V 2 (C0 + iC00 �) (�¿0);

�−
0 (�)=

1
R

√
1− V 2

�2 − V 2 (C0 + iC00 �) (�¡0): (59)

In this solution, to satisfy the requirement of limited elongation we put C00 = 0.
Since �(�) is continuous, the constant C0 can be determined using the phase-transition
criterion (14). One has (see Eqs. (58) and (36))

�(0)= lim
k→ i∞

[− ik�+(k)]=C0 =�∗: (60)

Thus

�+
0 =

1
R

√
�2 − V 2

1− V 2 �∗; �−
0 =

1
R

√
1− V 2

�2 − V 2�∗: (61)

3.6.2. Macrolevel energy release and total dissipation
In addition to this piecewise uniform moving state, there exist sinusoidal and ex-

ponential decreasing waves; nonzero real and complex singular points of �± (58) are
their wave numbers, respectively. However, the jump in the macrolevel piecewise uni-
form component of the particle velocity, associated with the zero wave number, can be
calculated without paying regard to these waves since the total dissipation is already
taken into account in expressions (61). As follows from the momentum conservation
law and (61) the jump is

Pu̇ 0 = u̇−0 − u̇+0 =
a(p+

0 − p−
0 )

Mv
= − �∗Vc

R

1− �2√
(1− V 2) (�2 − V 2)

: (62)

We now can determine the macrolevel energy release rate due to the phase transition.
The energy release is independent of a rigid-body velocity, and we can assume the
particle velocity ahead the front to be zero. The energy release per cell is then

G=
1
2
K(�+

0 )
2 − 1

2
K(�−

0 )
2 − 1

2
M (Pu̇ 0)2 − a

v
�2K�−

0 Pu̇ 0; (63)

where the 5rst and the second terms are the strain energy per cell ahead and behind
the front, respectively, the third term is the kinetic energy per cell behind the front
and the last term is the energy Aux as the work of the internal force behind the front
during the period a=v. Using relations (61) and (62) one can 5nd

G=
K�2

∗(1− �2)
2R2 : (64)

At the same time, the energy barrier, G0, between the phases is

G0 = 1
2K�

2
∗(1− �2): (65)
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Fig. 4. The energy release ratios for �=1=4 (1), �=1=2 (2) and �=3=4 (3).

The di3erence is the wave resistance, or total dissipation as the energy carried away
from the front by the dissipative waves. Thus R2 is the ratio of these energies

R2 =
G0

G
: (66)

Note that this relation has the same form as the corresponding relation for the crack
in a lattice (Slepyan, 2001).
The dissipative function R=R(V ) can be calculated using its integral (37) or prod-

uct (38) representations. These methods, however, become inconvenient for V → 0. At
the same time, one can 5nd R(0) in a direct way. Indeed, if V =0 then �0(+0)=�+

0 =
�∗; p−

0 =p+
0 (5) and hence

G=
K�2

∗(1− �2)
2�2

; R(0)= �: (67)

The ratio G0=G=R2(V ) for some values of � is represented in Fig. 4.
Such a macrolevel-associated solution does not exist for V ≥ �. For �¡V¡1 this

conclusion follows from Eqs. (58) and (48). In this case, the contribution of the singular
point k =0 is unlimited when �→ ±∞. For V ≥ 1 such a solution does not satisfy the
phase-transition criterion, namely, if �(+0)=�∗ then, in contradiction to the criterion,
�(+∞)=�∗

√
(V 2 − 1)=(V 2 − �2)¿�∗ (see Eq. (36)).

3.7. Chain-based macrolevel solution

The macrolevel formulation (4), (5) can now be completed with a phase-transition
criterion based on the energy release rate (64) for the chain. In the formulation of the



L.I. Slepyan / J. Mech. Phys. Solids 49 (2001) 513–550 529

Fig. 5. The stress–speed dependences for �=1=4 (1), �=1=2 (2) and �=3=4 (3): �+0 =�∗ (a) and
�−0 =�∗ (b).

criterion, we take into account the fact that the solution for the homogeneous material
is none other than a long-wave approximation of that for the structured material, and
the total dissipation should be taken into account in the homogeneous-material solution.
Noting that relation (8) is written for the energy release per unit cross-section area and
unit length, while expression (64) is the energy release per cell of the length a, one has
to substitute E�2∗ (�=�=a) for K�2

∗ in Eq. (64). After this, equating these expressions
for the energy release rate one obtains

�+0 �
−
0 = �2∗�

2R−2: (68)

With the use of this relation, the phase-transition wave, both steady-state and transient,
can be considered in the framework of the homogeneous material model. Note, how-
ever, that in a transient problem, this model is valid if the speed, v, and the 5elds
ahead and behind the front are slow-varying functions of x=a and ct=a.
Relations (68) and (5) lead to the following expressions for �±0 [compare with (61)]:

�+0 =
1
R

√
�2 − V 2

1− V 2 �∗; �−0 =
�2

R

√
1− V 2

�2 − V 2 �∗: (69)

These dependences for several values of � are shown in Fig. 5. It can be seen that not
only �+0 but even �−0 can be lower than �∗.
So, there are three relations, two for stresses (69) and one for the jump of the particle

velocity (5). The 5nal relations required for completion of the problem formulation can
be represented by initial and boundary conditions. Two examples are shown below.
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Fig. 6. The macrolevel phase-transition wave. The material is in the 5rst (the second) phase at x¿vt(x¡vt).

3.7.1. Phase transition under an impact
Consider the homogeneous-material problem for a half-space x¿0 with boundary

and initial conditions as

u̇ 0 = v0 = const (x=0; t¿0); u̇ 0 = �0 = 0 (t=0; 0¡x¡∞) (70)

and assume that the material can show the two-phase behavior under extension (v0¡0;
�∗¿0), or under compression (v0¿0; �∗¡0). If the impact velocity, v0, is high enough
the phase-transition wave can arise (Fig. 6). From Eqs. (5) it follows that

u̇+0 = v0 ±
c
E

√
(�−0 =�2 − �+0 )(�−0 − �+0 ) (71)

for the extension and compression, respectively. At the same time, for the wave prop-
agating to the right ahead of the phase-transition front, the relation

u̇+0 = − �+0 =(�c) (72)

is valid. It follows that

�+0 ±
√
(�−0 =�2 − �+0 )(�−0 − �+0 )= �0; �0 = − �v0c (73)

and using Eq. (69) we obtain the following equation for the phase-transition front
speed:

�2 − V 2 + (1− �2)V
R
√
(1− V 2) (�2 − V 2)

=
�0

�∗
: (74)

This dependence for some values of � is represented in Fig. 7. Note that the ‘impact
stress’, �0, is the true stress if no phase transition arises under the impact.
From Eqs. (74) and (69) it follows that

�0

�∗
=
�−0
�∗

+
(1− �2)V (1− V )

R
√
(1− V 2) (�2 − V 2)

: (75)

Thus, for any positive subsonic speed, |�−0 |¡|�0| and the wave can propagate under
the condition �−0 ¿�

−
min(�), where �

−
min(�)¡�∗ (see Fig. 5b).

In this process, the energy, delivered by the feeding wave propagating behind the
phase-transition front, is spent in the phase transition itself, in the energy Aux associated
with the wave propagating ahead of the front and 5nally in the energy radiated by
dissipative waves which are de5ned by the solution for the chain.
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Fig. 7. The ‘impact stress’–phase-transition speed dependences for �=1=4 (1), �=1=2 (2) and �=3=4 (3).

3.7.2. Spontaneous phase transition
Now consider the problem for an initially stressed body with

�0 = �0; u̇ 0 = 0 (−∞¡x¡∞; t=0); (76)

where �0 does not reach �∗. The material is assumed to be initially in the 5rst phase.
We suggest that under a disturbance the phase transition occurs at a point (at a cell

in the case of the chain), say, x=0. If the initial stress is high enough, one can expect
that this disturbance excites two phase-transition waves propagating to the right and to
the left. In this symmetrical process, u̇ 0 = 0 in the second-phase region, |x|¡vt.
Consider the wave propagating to the right. The stresses behind the phase-transition

front, �−0 , is de5ned by (69), while an unloading step wave with the stress �1 should
propagate ahead the front provided the sum,

�0 + �1 = �+0 ; (77)

is in accordance with Eq. (69) as well. In the step wave,

u̇+0 = − �1=(�c); (78)

while u̇−0 = 0. Using Eq. (5) we obtain �1,

�1 = − �−0 − �+0
V

(79)

and the same results as for the impact: relation (73) and further — Eq. (74) respec-
tive V .
This coincidence follows from the fact that the conditions ahead and behind the

phase-transition front in this problem can be satis5ed by the previous solution with
the particle velocity added by the rigid-body speed −u̇−0 . However, in contrast to
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the impact problem, the subcritical initial stress condition must be satis5ed here, and
this requirement looks to be in contradiction with the results shown in Fig. 7. The
contradiction does not exist in the case of the so-called Maxwell transition where no
energy is transferred to the microlevel. In this case, no dissipative wave exists, R=1,
and the condition can be satis5ed for a 5nite range �−min(�)¡�

0¡�∗. As can be seen
below the case R=1 is realized in a homogeneous model described by an equation
of the fourth order (see Fig. 12).

3.8. Dissipative waves

We now return to Eq. (58) with C0 =�∗; C00 = 0. Dissipative waves related to the
macrolevel-associated solution are de5ned as residuals at zero points k = h2$ of L+(k)
and poles k = g2$−1 of L−(k) for k �=0. The inverse Fourier transform leads to the
following results:

�+ =�∗
l∑

$= 1

G+(h2$)√
S(h2$)

l∏
/ �= $

[
1−

(
h2/
h2$

)2]−1

cos[h2$�+ #(h2$)]H (�);

�− = �∗
d+1∑
$= 1

H−(g2$−1)
√
S(g2$−1)

d+1∏
/ �= $

[
1−

(
g2/−1

g2$−1

)2]−1

×cos[g2$−1�+ #(g2$−1)]H (−�); (80)

where the positive function S is represented in Appendix 2 and H is the unit step
function. The total dissipation rate related to these waves as the energy lost on the
macrolevel per unit time is (see Eqs. (64) and (65))

v
a
(G − G0)=

vK
2a
�2

∗(1− �2) (R−2 − 1): (81)

3.9. Microlevel solutions

We now consider the general solution (55)–(57). The feeding functions +± lead to
the feeding waves of nonzero wave number by means of the term A+ for �+ and by
means of the term B− for �−. It can be seen that a microlevel (nonzero wave number)
feeding wave is placed ahead the phase-transition front if its group velocity is lower
than the phase velocity (k = h2$−1), while the wave is placed behind the front in the
case Vg¿V (k = g2$). In the 5rst case, both the subsonic and intersonic regimes of the
phase transition are possible, while only the subsonic regime can exist in the second
case.
We assume that the phase-transition process is going on under one of the possible

feeding waves. A nonzero-wave number feeding wave is de5ned as the residual at the
point k = ± h2$−1 or k = ± g2$ in the inverse Fourier transform. One can 5nd for any
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$ that the feeding wave is

�+(�)=
2

L+(h2$−1)
R[C2$−1 exp(−ih2$−1�)]H (�) (0¡V¡1);

or �−(�)= 2L−(g2$)R[C2$ exp(−ig2$�)]H (−�) (0¡V¡�): (82)

At the same time, the elongation at �=0 is

�(0)= lim
k→±i∞

(∓ik)�±(k)=�∗ (83)

and hence as follows from Eqs. (55) and (56)

RC2$−1 = 1
2�∗ or RC2$= 1

2�∗: (84)

Thus the amplitude of the wave is

L+
$ =

1
|L+(h2$−1)|

√
�2∗ + (IC2$−1)2 or L−

$ = |L−(g2$)|
√
�2∗ + (IC2$)2: (85)

3.9.1. High-speed solution
Consider the range V0¡V¡1 (23). In this case, l=d=0, only two couples of zeros

remain, k = ± h1 and k = ± g1 (g1 = 0 if V¿�), and the only feeding wave can be
represented by the 5rst pair. For k→ ± h1

H− ∼ 2
h1

(k − h1); G− → 1− g21
h21
; H+ =G+ =1;

L+ =
√
S(h1)ei#; S(h1)→ (V − Vg) (h21 − g21)

(1− �2)h21V
: (86)

The feeding wave can now be represented as

�+(�)=L cos(h1�+ 0)H (�); L=

√
�2∗ + (IC1)2

S(h1)
; (87)

where 0 are real constant. This equality evidences that the amplitude of the feeding
wave is bounded from below. At the same time, the necessary condition of the existence
of such wave requires the wave amplitude to be less than the corresponding critical
value, �∗. So, the amplitude must satisfy the inequalities as

�∗√
S(h1)

≤L¡�∗: (88)

It requires

S(h1)¿1; (89)

that is(
1− g21

h21

)(
1− Vg

V

)
¿1− �2; (90)
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Fig. 8. The upper bound for the validity of the high-speed solution (90). The lower bound lies below the
dotted line.

where

2 sin(h1=2)=h1 =V; 2� sin(g1=2)=g1 =V;

Vg = cos(h1=2); g1 = 0 for V ≥ �: (91)

Inequality (90) is satis5ed for a range of V as

Vmin(�)¡V¡Vmax(�): (92)

The upper bound is shown in Fig. 8, while the lower bound lies below the dotted line,
V =V0, i.e. Vmin(�)¡V0.
Thus, the phase-transition front can propagate with an intersonic speed, that is faster

than any wave in the second phase. In this case, the energy required for the phase
transition is delivered by the feeding wave propagating ahead the front. It does deliver
the energy since its group velocity is less than the phase velocity and hence energy
Aux relative to the front is directed toward the front.

3.9.2. Dissipative waves
Dissipative waves for such a microlevel solution are de5ned as residuals at zero

points k = ± h2/ of L+(k) and poles k = ± g2/−1 of L−(k). One can 5nd

�+ =
l∑

/= 1

G+(h2/)√
S(h2$)

l∏
1 �= /

[
1−

(
h21
h2/

)2]−1
h22/

h22/ − h22$−1
�+
/ H (�)

�+
/ =�∗ cos(h2/�+ #) +

2h2$−1

h2/
IC2$−1 sin(h2/�+ #);
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�− =
d+1∑
/= 1

H−(g2/−1)
√
S(g2/−1)g22/−1

g22/−1 − h22$−1

d+1∏
1 �= /

[
1−

(
g21−1

g2/−1

)2]−1

�−
/ H (−�)

�−
/ =�∗ cos(g2/−1�+ #) +

2h2$−1

g2/−1
IC2$−1 sin(h2/�+ #); (93)

where h2$0−1 is the feeding wave number.
Similarly for the feeding wave number g2$

�+ =
l∑

/= 1

G+(h2/)√
S(h2$)

l∏
1 �= /

[
1−

(
h21
h2/

)2]−1
h22/

h22/ − g22$
�+
/ H (�)

�+
/ =�∗ cos(h2/�+ #) +

2g2$
h2/

IC2$ sin(h2/�+ #);

�− =
d+1∑
/= 1

H−(g2/−1)
√
S(g2/−1)g22/−1

g22/−1 − g22$

d+1∏
1 �= /

[
1−

(
g21−1

g2/−1

)2]−1

�−
/ H (−�)

�−
/ =�∗ cos(g2/−1�+ #) +

2g2$
g2/−1

IC2$ sin(h2/�+ #): (94)

In addition to this, in the case of the intersonic range of the speed, the functions
1=L+ and L− have simple poles at k =0 and this leads to ‘dissipative’ waves of zero
wave number. Such waves associated with the feeding wave number h2$−1 (the function
g(k) has no zeros at k �=0 for this range of the speed) have the following expressions
[see Eqs. (48) and (56)]:

�+ =

√
V 2 − �2
1− V 2

l+1∏
/= 1

h2/−1


 l∏
/= 1

h2/



−1

2IC2$−1

h2$−1
;

�− = −
√

1− V 2

V 2 − �2
l+1∏
/= 1

h2/−1


 l∏
/= 1

h2/



−1

2IC2$−1

h2$−1
: (95)

In particular, for V¿V0 [see Eq. (23)]

�+ =2IC2$−1

√
V 2 − �2
1− V 2 ; �− = − 2IC2$−1

√
1− V 2

V 2 − �2 : (96)

Note that these waves exist if the feeding wave amplitude is greater than the minimal
value required for the phase transition (the frequency of the feeding wave which dictates
the phase-transition wave speed is considered as given).
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4. Higher-order-derivative model

To resolve the di0culty in the formulation of the phase-transition problem for a ho-
mogeneous model we have considered the discrete chain. This has led to the determi-
nation of both the energy criterion, as the missing condition in the homogeneous-model
formulation, and the microlevel solutions which have no analogue on the macrolevel.
These results, however, follow from the existence of the wave dispersion associated
with the discrete structure rather than the structure itself. This suggests an alternative
way as the use of a higher-order-derivative (HOD) homogeneous model which also
can represent a wave guide for waves with dispersion. We now consider such a model.

4.1. Some general considerations

Let us introduce the kinetic and strain energies per unit volume as

T =
�u̇ 2

2
;

W =
1
2
[a1(u′)2 + a2(u′′)2 + · · ·+ an(u(n))2]

(
u(n) ≡ dnu

dxn

)
: (97)

The terms which form the strain energy reAect di3erent modes of generalized strain
existing in the model. It is assumed that each of the moduli, a1; : : : ; an, can be di3erent
in di3erent phases

a$=E$ (the 5rst phase); a$= �2$E$ (the second phase);

0¡�$≤ 1; $=1; : : : ; n: (98)

Note that stability considerations result in the inequality
n∑

m= 1

amk2m−2¿0 (99)

for any nonzero real k. In particular, it follows that the 5rst and the last moduli, a1
and an, must be positive, and we have to submit to terms that for any n¿1 the phase
and group velocities (v and vg, respectively) of a sinusoidal wave, exp[i(!t − kx)],
existing in this model, have no upper bounds. These velocities

v =
!
k
=

(
n∑

m= 1

amk2m−2

)1=2
; vg =

d!
dk

=
n∑

m= 2

(m− 1)amk2m−2

×
(

n∑
m= 1

amk2m−2

)−1=2

; (100)

increase unboundedly together with the wave number. This is in contrast to the chain
model where the velocities of such microlevel waves are bounded by the macrolevel
wave velocity, c.
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We now intend to 5nd necessary and su0cient conditions for the energy conservation
law to hold on the microlevel under the phase-transition criterion (2) for a mode of
generalized strain. Let us discuss some points concerning macrolevel and microlevel
relations.

4.1.1. Stresses and the particle velocity jumps on the macro and microlevels
The microlevel dynamic equation

n∑
$= 1

(−1)$[a$u($)]($) + � Mu=0 (101)

resulting from Eq. (97) leads to the same expression for the momentum conservation
law on the microlevel as in Eq. (5) where the stress is now

�=
n∑

$= 1

(−1)$−1[a$u($)]($−1); (102)

such that

� Mu= �′: (103)

At the same time, expression (5) with �0 = a1�0 is still valid for the macrolevel. This
means that the jump in the particle velocity can be di3erent for these two levels.
Along with the stresses � and �0 there exist partial generalized stresses related to

each of the modes forming the total strain energy (97)

�$= a$�$; �$= u($); (104)

where �$ is the corresponding partial generalized strain. Note that $=1 corresponds to
the macrolevel and the subscript ‘1’ denotes here the same as the subscript ‘0’ used
for the macrolevel values.
Further, the matter conservation law results in the relation

Pu̇= u̇ − − u̇ + = v(�+ − �−) (105)

and, since v is the same for both levels, the ratio, Pu̇=P�, is the same as well.
The energy lost in the phase transition for each mode is de5ned by the same way

as for macrolevel (10), namely

(G − G0)$=
1− �2$

2
E$(�−$ �

+
$ − �2$∗): (106)

This follows directly from the stress–strain relation (98).
Finally, we note that the microlevel dynamic equation (101) can also be represented

as
n∑

$= 1

(−1)$[a$�($−1)]($+1) + � M�=0 (�= u′): (107)
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4.1.2. Theorem on the highest modulus
The necessary and su@cient condition for energy conservation on the microlevel

under the phase-transition criterion (2) is that the phase transition does not concern
the highest order derivative, that is the modulus an¿0 is the same in both phases.

At 5rst, we note that energy is not lost in the phase transformation only if each partial
generalized strain, �$, is continuous. This follows directly from Eq. (106) where, in
accordance with the phase-transition criterion, �$(+0)=E$�$(+0)= �$∗; �+$ = �$∗.

Suppose that �n¡1. In this case, the last term in Eq. (107) is

(−1)n[an�(n−1)](n+1) = (−1)n(1− �2n)En-(n+1)(�) + smaller-order singularities

(108)

and this is a noncompensated singular term since the other terms cannot be so singular
[the highest-order singularity which can be introduced by the $-term is -($+1)(�)]. As
can be seen in Eq. (107) this leads to the same singularity in M�= v2�′′ which is in
contradiction with continuity of �= �1. Thus such a solution does not exist and the
continuity of the highest modulus as a necessary condition is proved.
Now consider Eq. (107) with

�n = 1; �(+0)− �(−0)= �′(+0)− �′(−0)

= · · · = �(n−1)(+0)− �(n−1)(−0)=0: (109)

In general, the left part of the equation contains a linear form of generalized functions
-(�); -′(�); : : : ; -(n−1)(�) introduced with the di3erentiation of the discontinuities of both
the moduli, a$; $=1; 2; : : : ; n− 1, and derivatives of the strain, �(n)(±0); �(n+1)(±0); : : : ;
�(2n−1)(±0). For example, for n=2

(a1�)′′ =(1− �21)E1[�(0)-′(�) + �′(0)-(�)];

a2�IV =E2[(�′′(+0)− �′′(−0))-′(�) + (�′′′(+0)− �′′′(−0))-(�)]: (110)

These singularities must be eliminated (since the left part of the equation must be equal
to zero) and this imposes n conditions on the interface discontinuities of the strain
and its derivatives. However, the condition concerning -(�) (but not for derivatives
of it) is satis5ed automatically as follows directly from Eq. (107) and the condition
�′(+0)= �′(−0).
Thus the solution must satisfy n continuity conditions (109) and n− 1 discontinuity

conditions. In addition, there is the phase-transition criterion. So, there are 2n conditions
in total. For example, for n=2 these conditions are

�(+0)− �(−0)= �′(+0)− �′(0)= 0;

�′′(+0)− �′′(−0)= − (1− �21)
E1
E2
�(0); �(0)= �∗; (111)

while the condition

�′′′(+0)− �′′′(−0)= − (1− �21)
E1
E2
�′(0) (112)
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Fig. 9. Dispersion curves for the HOD model with n¿2. The dotted lines correspond to di3erent values of the
phase transition speed: the subsonic (1–3), intersonic (4) and supersonic (5) regimes. Two nonzero feeding
wave numbers correspond to the lines 3 and 4. The low-speed case (1) corresponds to a dissipation-free
macrolevel-associated wave.

is satis5ed automatically. As shown below a nongrowing general solution with �n=1
represents a su0cient number of arbitrary constants to satisfy these 2n conditions and
hence the condition of the theorem is also su0cient.
General solutions to Eq. (107) for �¿0 and �¡0 contain 2n linearly independent

functions each. For a macrolevel-associated nongrowing solution only 2n functions re-
main, namely, macrolevel constants, �−0 and �+0 , and 2(n − 1) functions of nonzero
(real or complex) wave number each. In connection with these microlevel functions,
we note that for a subsonic speed there are even real wave numbers for each solution
(since an¿0) with v¡vg for a half of them and v¿vg for the rest part. Only the
low-group-velocity solutions, vg¡v, can be considered as dissipative waves for �¡0,
while only the high-group-velocity solutions, vg¿v, — for �¿0. Similar conclusion
concerning to the complex-wave number functions is valid: only a half of such func-
tions can be used, namely, only the functions which tend to zero when �→ ±∞ are
acceptable. Thus, the complete solution contains two macrolevel constant and 2(n− 1)
microlevel coe0cients of the microlevel functions, that is 2n arbitrary constants in total.
For a macrolevel-associated solution, one of the constants, �+0 or �−0 , can be consid-

ered as given. So, there are 2n − 1 arbitrary constants and, in addition, the speed, v.
Thus, there is the same number of the arbitrary constants as the interface conditions
together with the phase-transition criterion.
For a microlevel solution, there are 2n arbitrary constants corresponding to dissi-

pative waves and this is su0cient for the 2n conditions to be satis5ed. A feeding
wave should be introduced by its amplitude and frequency, !. This de5nes the speed,
v=!=k. However, in a general case, for n¿2 the corresponding wave number, k, is
not de5ned uniquely (see Fig. 9). Additional considerations can also be required for
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Fig. 10. Dispersion curves for the HOD model with n=2.

the determination of an unknown phase of the feeding wave for V¡�. For example,
the phase can be found using a given relation between the energies delivered by the
macrolevel and microlevel feeding waves which can coexist.
For intersonic and supersonic cases, the number of admissible functions decreases;

it is 2n− 1. So, in this case, the phase of the feeding wave as an additional unknown
is de5ned uniquely.
Thus, the condition of continuity of the highest modulus is also su0cient. Along with

this, there can be more freedom in the subsonic microlevel phase-transition solution
for n¿2.

4.2. Equation of the fourth order

Consider the simplest version of the HOD model with n=2. The steady-state equa-
tions for �¿0 and �¡0 are

(1− V 2)u′′ − E2uIV = 0 (x¿vt);

(�2 − V 2)u′′ − E2uIV = 0 (x¡vt); V = v=c: (113)

The corresponding dispersive relations

 = + =
√
k2 + a2k4 (the 5rst phase);

 = + =
√
�2k2 + a2k4 (the second phase); (114)

are shown in Fig. 10.

4.2.1. Governing equation
We use here the Wiener–Hopf technique as in the case of the discrete chain. This

allows one to satisfy the interface conditions automatically by equating out-of-integral
terms in the Fourier transform to zero. (These terms reAecting the above-mentioned sin-
gular functions are not present if the singularities are compensated as discussed above.)
We begin from the steady-state equation

D2�IV − [(7 − V 2)�]′′ = q; [7=1 (�¿0); 7= �2 (�¡0)]; (115)
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where the coe0cient D2 =E2 and q is an external force introduced for convenience in
an initial stage of the considerations.
The Fourier transform with no out-of-integral terms is

L1�+ + L2�− = qF (116)

with

L1 = (0 + ik) (0− ik)[1− V 2 + D2k2] (V¡1);

L1 = (0 + ik)2[0− i(Dk −
√
V 2 − 1)][0− i(Dk +

√
V 2 − 1)] (V¿1);

L2 = (0 + ik) (0− ik)[�2 − V 2 + D2k2] (V¡�);

L2 = (0 + ik)2[0− i(Dk −
√
V 2 − �2)][0− i(Dk +

√
V 2 − �2)] (V¿�);

(117)

where the causality principle is taken into account.
We now can represent

L1
L2

=L=L+L−; (118)

where

L+ =

√
1− V 2 − iDk√
�2 − V 2 − iDk

(V¡�);

L+ =
D(0− ik) (

√
1− V 2 − iDk)

[0− i(Dk −
√
V 2 − �2)][0− i(Dk +

√
V 2 − �2)] (�¡V¡1);

L+ =
[0− i(Dk −√

V 2 − 1)][0− i(Dk +
√
V 2 − 1)]

[0− i(Dk −
√
V 2 − �2)][0− i(Dk +

√
V 2 − �2)] (V¿1) (119)

and

L− =

√
1− V 2 − iDk√
�2 − V 2 − iDk

(V¡�);

L− =

√
1− V 2 + iDk
D(0 + ik)

(�¡V¡1);

L− =1 (V¿1): (120)

Eq. (115) can now be rewritten in the form similar to Eq. (49)

L+�+ +
�−
L−

=
qF

L2L−
: (121)

The following considerations are also similar to that used in the case of the discrete
chain. In the following, we consider three possible ranges of the phase-transition wave
speed, V¡�; �¡V¡1 and V¿1.
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4.3. Subsonic speed

In the case V¡�, the product L2L− turns into zero on the real k-axis only at k =0.
Thus, in this case, only a macrolevel-associated solution can exist. For such a bounded
homogeneous solution we can write

L+�+ +
�−
L−

=
C0

0 + ik
+

C0

0− ik
(122)

with the solution as

�+ =
C0

L+(0− ik)
; �− =

C0L−
0 + ik

: (123)

The unknown constant C0 can be determined using the phase-transition criterion. Since
in the HOD model strain is continuous (as well as its 5rst-order derivative), the rela-
tions are valid as

�(+0)= �(−0)= lim
k→±i∞

(∓ik)�±(k)= �∗: (124)

From this and Eq. (119) it follows that C0 = �∗. At the same time, the macrolevel
waves, the feeding wave at �¡0 and the ‘dissipative’ wave at �¿0, are de5ned as
follows:

�(�)= �+0 =
�∗

L+(0)
= �∗

√
�2 − V 2

1− V 2 (�¿0);

�(�)= �−0 =
�∗

L+(0)
= �∗

√
�2 − V 2

1− V 2 (�¡0): (125)

Note that these relations correspond to that in Eq. (69) with R=1.
The feeding wave should be considered as given and this allows one to 5nd the

phase-transition wave speed as

V =

√
�2 − (�∗=�−0 )2

1− (�∗=�−0 )2
: (126)

In these terms,

�+0 =
�2∗
�−0
: (127)

In addition to the macrolevel waves (125), exponentially decreasing waves exist in a
vicinity of the phase-transition front. These wave can be found directly from expressions
(123) as the contribution of the poles k =−i

√
1− V 2=D for �+ and k =−i

√
�2 − V 2=D

for �−

�= �+(1) = �∗

(
1−

√
�2 − V 2

1− V 2

)
exp[− (

√
1− V 2=D)�] (�¿0);

�= �−(1) = − �∗
(√

1− V 2

�2 − V 2 − 1

)
exp[(

√
�2 − V 2=D)�] (�¡0): (128)
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Fig. 11. The dissipation-free phase-transition wave in the fourth-order-derivative model.

Thus the complete solution

�±(�)= �±0 + �±(1) (129)

represents the strain monotonically increasing from �+0 (�→∞) to �∗ (�=0) and then
to �−0 (�→ −∞). In contrast to the macrolevel formulation (3) both the strain, �, and
its derivative, �′, are continuous and there is no loss in energy here. Indeed (see Eq.
(10)),

G − G0 =
1− �2

2
E(�−0 �

+
0 − �2∗)= 0: (130)

In this case, there are no microlevel dissipative waves and hence there is no energy
transfer to the microlevel. At the same time, the microlevel helps to overcome the
energy barrier (�+0¡�∗). Thus the role of the microlevel introduced by the fourth-order
derivative is similar to the role of a catalyst.
An example of a wave is represented in Fig. 11. Note that under the considered

equation of the fourth order, in a vicinity of the moving point x= ct, there exists a
quasi-front where stresses and particle velocities are continuous.
The two examples as the phase transition under an impact and a spontaneous phase

transition considered above have the same solutions in the case of the fourth-order
di3erential equation, however, with R=1. In this latter case, the spontaneous phase
transition is possible in a range

�−min(�)¡�
0¡�∗; (131)

where �−min for several values of � can be found in Fig. 12. The curves correspond
to relation (74) with R=1. Note that in the considered case, the feeding wave is
represented by the unloading wave propagating ahead the phase-transition front. The
wave con5guration for �=3=4; �0=�∗ =0:890 is represented in Fig. 13.

4.4. Intersonic speed

In the case, �¡V¡1, the product L2L− has the following real zeros: k =0 and
±k1 − i0; k1 =

√
V 2 − �2=D. Also we denote k2 =

√
1− V 2=D. We come to the
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Fig. 12. The initial stress–phase-transition speed dependences for �=1=4 (1), �=1=2 (2) and �=3=4 (3)
for the Maxwell-type, dissipation-free phase transition [see Eq. (74) with R=1].

Fig. 13. The spontaneous Maxwell-type phase-transition wave for �=0:75 and �0=�∗ =0:890 : �+0 = 0:730,
�−0 = 0:770, V =0:250.

equation:

L+�+ +
�−
L−

=
C0

0 + ik
+

C0

0− ik
+

C1

0 + i(k − k1) +
C1

0− i(k − k1)

+
C1

0 + i(k + k1)
+

C1

0− i(k + k1)
: (132)

Note that L+(0)= 1=L−(0)= 0 and hence no bounded feeding wave of zero wave
number can exist. We have to put C0 = 0. Thus, there is no macrolevel-associated
solution valid for this range of the speed. The rest solution is a microlevel one; it
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corresponds to the feeding wave number k = k1:

�+ =
[0− i(k − k1)][0− i(k + k1)]

(0− ik) (k2 − ik)

[
C1

0− i(k − k1) +
C1

0− i(k + k1)

]
;

�− =
k2 + ik
0 + ik

[
C1

0 + i(k − k1) +
C1

0 + i(k + k1)

]
: (133)

The inverse Fourier transform leads to the following solution:

�(�)=
(
�∗ − k1

k2
2IC1

)
exp(−k2�) + k1

k2
2IC1 (�¿0);

�(�) = �∗

(
cos k1�− k2

k1
sin k1�

)
+ 2IC1

[
sin k1�− k2

k1
(1− cos k1�)

]
(�¡0);

(134)

where in accordance with criterion (124), 2RC1 = �∗.
In this solution, the feeding wave is that with the wave number k1, while the rest

terms represent the dissipative waves. The feeding wave amplitude

L=

√
1− �2
V 2 − 1

√
�2∗ + (2IC1)2 (135)

as well as its frequency, !, can be considered as given. This can be used for the
determination of IC1 and the phase-transition front speed. The latter is connected with
the frequency by the known relation as

!=Vk1 =Vc
√
V 2 − �2=D (136)

and hence

V =

√√
D2!2

c2
+
�4

4
+
�2

2
: (137)

This equality allows the feeding wave amplitude to be rewritten as

L=
√
1− �2 v

D!

√
�2∗ + (2IC1)2: (138)

In addition, we note that the requirement d�=d�¡0 (�=0) leads to the inequality as

2IC1¡�∗

√
1− V 2

V 2 − �2 : (139)

The same inequality follows from the requirement �+0 = �(∞)¡�∗. So, the solution is
valid if

�∗¡2|C1|¡�∗
√

1− �2
V 2 − �2 : (140)

Thus, for the intersonic case there exists a solution corresponding to the phase-
transition process excited by a sinusoidal (microlevel) feeding wave. In this solution,
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the strain monotonically increases from 2IC1k1=k2 (�=∞) to �∗ (�=0). For given
frequency, !¿0, the lower bound of the feeding wave amplitude is

L=
√
1− �2 �∗v

D!
: (141)

With an increase of the amplitude, the phase-transition front varies its position relatively
the feeding wave in such a way that the phase-transition criterion is still satis5ed.

4.5. Supersonic speed

As can be seen in Eq. (136), the phase-transition front speed increases with the
frequency of the feeding wave and when the frequency passes a critical value, !=
!1 = c

√
1− �2=D, the phase-transition wave becomes supersonic (V¿1). In this case,

k1 remains to be the feeding wave number (the wave is placed at �¡0 and Vg¿V ),
while a new nonzero wave number, k = ± k2; k2 =

√
V 2 − 1=D, is the dissipative one

(the wave is placed at �¿0 and Vg¿V ).
To derive a solution for this case, one has to return to expressions (117)–(120). As

can be seen on the real k-axis the product L2L− has zero points at k =0 and ±k1 as
in the intersonic case and hence representation (132) is valid in the present case as
well. The Fourier transforms are

�+ =
[0− i(k − k1)][0− i(k + k1)]
[0− i(k − k2)][0− i(k + k2)]

++;

++ =
C0

0− ik
+

C1

0− i(k − k1) +
C1

0− i(k + k1)
;

�− =+−; +− =
C0

0 + ik
+

C1

0 + i(k − k1) +
C1

0 + i(k + k1)
: (142)

The inverse Fourier transform and condition (124) lead to the following solution:

�(�)= (2RC1 + C0) cos k2�+ 2IC1
k1
k2

sin k2�+ C0
k21
k22

(1− cos k2�) (�¿0);

�(�)= 2RC1 cos k1�+ 2IC1 sin k1�+ C0 (�¡0);

�(0)= 2RC1 + C0 = �∗: (143)

Thus, if C1 is given another constant, C0, is de5ned by the last relation.
This solution can receive only conditional acceptance. Indeed, the condition

�(+0)= �∗ ≥ �(�) (�¿0) is satis5ed if we put IC1 = 0. However, the strain is repre-
sented here as a periodic function of � and this shows that it periodically reaches the
critical value ahead the front. To avoid this drawback one can assume a low dissipation
on the microlevel which can lead to a decrease in the wave amplitude with the distance
from the front.
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5. Conclusions

1. On the macrolevel, that is in the framework of the classical homogeneous model,
the material can be in one or another phase, but, without invoking the microlevel,
one cannot retrace the transformation process itself. This is the reason of the above-
mentioned inde5niteness. The discrete chain and the HOD model give one a possibil-
ity to describe the process without any jump in the state. This results in unique-
ness of the solution. In such a model, phase transition is accompanied or caused
by high-frequency (microlevel) waves, and there exists exchange of energy between
macro and micro levels. One can say that the microlevel waves are associated with
‘internal’ degrees of freedom since these waves do not result in macrolevel
displacements.
2. The general strain–speed (61) or stress–speed (69) relations related to the

macrolevel-associated solution are obtained. These relations are based on both the mat-
ter and momentum conservation laws, expressed in terms of the macrolevel, and the
total dissipation found by means of the microlevel considerations. The speed-dependent
‘dissipation function’ R also depends on the microstructure. At the same time, expres-
sions (69) are still valid in a general case where the microstructure inAuence is re-
Aected by this function. Note, however, that such structure of the stress–speed relations
is characteristic only for the bi-linear macrolevel stress–strain diagram (1). In the case
of a general diagram, the incline of the phase-transition path on the stress–strain plane
de5nes the speed just as in the 5rst equality in (5), while the position of this path is
de5ned by the dissipation rate.
3. In a homogeneous material model described by the equation of the fourth order

(113), the Maxwell-type, dissipation-free phase transition is shown to exist. In this
model, relations (69) are valid with R=1 and the microlevel plays the role of a
catalyst. In this case, a spontaneous phase transition in an initially stressed material
can arise.
4. Microlevel solutions with a microlevel sinusoidal feeding wave can exist in both

the discrete chain and the HOD model. In such solutions, the phase-transition front
speed can exceed the sound speed in the softer phase.
5. Possible con5gurations of feeding and dissipative waves are de5ned by wave

dispersion in both phases. The wave dispersion can be introduced by both the discrete
chain and a HOD model of a homogeneous two-phase material. However, these models
possess some distinguish features.
First, any dispersive relation related to the discrete chain or other periodic structure

is a periodic function of the wave number and the corresponding group velocity is
bounded. At the same time, in the HOD model considered in this paper, such relations
cannot be periodic and the group velocity is unbounded: it tends to in5nity together
with the wave number. Note, however, that the bounded group velocity can be obtained
if a higher-order derivative respective time is introduced, such that the HOD equation
is still the wave equation.
Next, for a given frequency of the wave in the discrete chain, each wave number

satisfying the dispersive relation corresponds to the same motion of the particles. This,
however, is not valid for the homogeneous model where di3erent waves can be excited
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by a sinusoidal external action. These di3erences can manifest themselves mainly in
microlevel solutions.
We also note that in the HOD model, in contrast to the discrete chain, the man-

ifestation of the dynamic ampli5cation factor with the related phenomena cannot be
revealed.
At last, a questionable point in the formulation of a HOD homogeneous model is

that the physical grounds as relations between the model and a possible structure are
usually shaded.
6. In the present paper, possible steady-state solutions for dynamic phase transition

in some structured models were derived. For the discrete chain it was assumed that the
motion of each particle is the same (but with the corresponding shift in time). However,
the existence of other types of ordered processes cannot be excluded in advance.
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Appendix 1. Factorization of a positive function

Consider a function, S(k), such that on the real k-axis

Arg S(k)≡ 0; 0¡S(k)= S(−k)¡∞ (k �=0); lim
k→±∞

S(k)= 1;

S(k) ∼ C[(0 + ik) (0− ik)]$ (k→ 0; C =const¿0; $=const): (A.1)

This function can be represented as a product

S = S+S− (A.2)

with

S±(k)= exp
[
± 1
2�i

∫ ∞

−∞

ln S(()
(− k d(

]
; (A.3)

where Ik¿0 for S+ and Ik¡0 for S−. Note that if S(k) is an analytical function
of the complex variable k equality (A.2) implies an analytical continuation of the
functions S±(k) de5ned on di3erent half-planes of k. Otherwise, for S(k) as a function
of the real variable this equality implies a limit of S+(k)S−(k) (Ik→ 0).

For any real k where 0¡S(k)¡∞, that is, at least, for k2¿0, it follows directly
from Eq. (A.3) that

S±(k)=
√
S(k)e±i#;

#=#(k)= − 1
2� V:P:

∫ ∞

−∞

ln S(()
(− k d(: (A.4)

Since S is an even function of k, one can conclude that #(0)= 0 if $=0.
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To 5nd asymptotes of these functions for k→ 0 substitute in (A.3) (= sx and k = ±
is, s¿0; for L±, respectively. One has

± 1
2�i

∫ ∞

−∞

ln S(()
(− k d(=

1
2�

∫ ∞

−∞

ln S(sx)
x2 + 1

dx

∼ lnC
2

+
$
2�

∫ ∞

−∞

ln(0 + isx)
x2 + 1

dx +
$
2�

∫ ∞

−∞

ln (0− isx)
x2 + 1

dx (s→ 0): (A.5)

The 5rst integral can be calculated as a residual at x= − i, while the second one —
as a residual at x= i. As a result, one 5nds

S±(k) ∼
√
C(0 + s)$; S+(k) ∼

√
C(0− ik)$; S−(k) ∼

√
C(0 + ik)$: (A.6)

At the same time,

S± =1 (|k|=∞): (A.7)

Appendix 2. The function S(k) at zero points of h(k) and g(k)

The function S(k) de5ned by Eq. (39) is

S(k)=
G+(k)G−(k)h(k)
H+(k)H−(k)g(k)

: (B.1)

Both the numerator and denominator of this fraction are equal to zero if h(k)= 0
[g(k)= − 2(1− �2) (1− cos k)¡0] or g(k)= 0 [h=2(1− �2) (1− cos k)¿0]. To 5nd
the ratio, one can take into account the following relations (k$ �=0):

g(h$)¡0; h(g$)¿0;

G+(h$)G−(h$)¿0; H+(g$)H−(g$)¡0;

lim
k→ h$

h(k)
H+(k)H−(k)

= h2$V (Vg − V )
2l+1∏
/ �= $

[
1−

(
h/
h$

)2]−1

¡0;

lim
k→ g$

g(k)
G+(k)G−(k)

= g2$V (Vg − V )
2d+1∏
/ �= $

[
1−

(
g/
g$

)2]−1

¡0; (B.2)

where the nondimensional group velocity, Vg = vg=c is

Vg =
d 
dk
; Vg¡V ($=2/ − 1); Vg¿V ($=2/);

 2 = 2(1− cos k) for k = h$;  2 = 2�2(1− cos k) for k = g$: (B.3)
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It follows

S(h$)=
G+(h$)G−(h$)h2$V (Vg − V )

g(h$)

2l+1∏
/ �= $

[
1−

(
h/
h$

)2]−1

¿0;

S(g$)=
h(g$)

H+(g$)H−(g$)g2$V (Vg − V )
2d+1∏
/ �= $

[
1−

(
g/
g$

)2]
¿0: (B.4)
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