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Abstract

A square-cell lattice is considered consisting of point masses at its knots connected by

linearly elastic bonds of nonzero density. Steady-state crack propagation is studied. A general

relation between the knot mass and the bond mass is assumed; however, a detailed analytical

examination is made for the material-bond lattice with no concentrated masses. It is assumed

that the crack divides the bond in half, and the broken bonds remain in the lattice structure. In

this model, the fracture energy of the bond is ignored, and hence the local fracture energy of

the lattice is zero. The classical formulation in terms of critical stresses is accepted. The

macrolevel energy release does exist. The macrolevel energy release rate as a function of the

crack speed is found and compared with that for the massless-bond lattice of the same

averaged density. While in the main, the dependencies for these two models are similar, there

are some essential differences. For the lattice with no concentrated masses this function

appears discontinuous. There exists a region where the crack speed is insensitive to the

variation of the macrolevel energy release rate. The admissible regions of the crack speeds for

the considered two lattice models differ greatly. For the massless-bond lattice this region is

rather wide, while for the other it is very narrow. Mathematically, it is of interest that some

details of the factorization depend on whether the ratio of the crack speed to the wave speed is

rational and, if so, whether it can be represented as a ratio of two odd numbers.
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1. Introduction

Analytical solutions for crack dynamics in lattices obtained during last two
decades are based on the model where point masses are connected by massless bonds
(see Slepyan, 1981, and the following works summarized in Slepyan, 2002). This
structure can be considered as related to a regular atomic lattice or as a discrete
model of a continuous material with a periodic structure. However, with some of the
latter applications in mind, a lattice with material bonds of nonzero density looks
more adequate. In particular, in such a model, all the lattice mass can be assumed
uniformly distributed as the network mass.
This limiting structure can be interpreted, in particular, as a simplest model of a

porous material or a material becoming porous in a vicinity of the growing crack tip.
It can also be considered as a model of a fibre-reinforced composite or a fabric.
Besides, independently of possible applications, it is of interest to compare these two
types of discretization: the lattice of point masses and the network of distributed
masses. In this paper, the lattice is considered for a general relation between the knot
mass and the bond mass, while detailed examination is made for the lattice with no
concentrated masses.
In connection with the fracture energy relations discussed below, we note that for

a lattice as a mechanical structure there exist two types of the local fracture energy.
We can distinguish the fracture energy of the bond as the effective surface energy
required for its break, and the local fracture energy of the lattice as the energy
disappearing with the bond disintegration. The bond length is assumed much greater
than its thickness. In this case, for a regular material the effective surface energy of
the bond is negligible relative to its limiting strain energy, and the former is ignored.
In this sense, there is an essential difference between the problem formulation for

the massless and material-bond lattices. Since the broken massless bonds possess no
energy, their strain energy accumulated just before the break can be considered as
the local fracture energy of the lattice. The broken bonds do not take part in the
lattice dynamics any more, and the local fracture energy is irreparably lost. The
global (macrolevel) energy release corresponding to the continuous approximation is
spent in part on this breakage. The remaining part is the crack-speed-dependent
energy of the structure-associated waves excited by the moving crack. The main goal
of the lattice studies was to obtain the local-to-global energy release ratio as a
function of the crack speed or, in other words, to obtain the crack-speed-dependent
dissipation as the difference between the macrolevel energy release rate and the local
fracture energy.
In the case of the material-bond lattice, it is important where the crack cuts the

bonds. For simplicity it is assumed here that it divides the bond in half. In the
formulation below, it is taken into account that both parts of the broken bond
remain in the lattice structure. Thus, since there is no bond disintegration now, there
is no local fracture energy of the lattice. This is in contrast to both the massless-bond
lattice and a homogeneous-material model. Considering the material-bond lattice we
thus return to the classical formulation of fracture in terms of critical stresses.
However, the macrolevel energy release remains nonzero in this case as well. Now,
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the main goal is to find how the crack speed depends on the macrolevel energy
release rate and the critical stresses. In this connection, note that the local fracture
energy for the massless-bond lattice can also be expressed in terms of the critical
stresses since such a bond, in contrast to the material bond, is uniformly stressed.
To elucidate the difference in the local behavior of these two models, first consider

the lattice-network without concentrated masses. After the moment when the bond
breaks, relaxation step waves propagate to the knots, and then each part of the bond
oscillates with a decreasing amplitude. This, in particular, influences the stress level
in the middle of the next bond in the crack line. We now make a thought experiment:
we redistribute the mass between the bonds and knots, while the bonds retain their
elastic properties. As the ratio of the knot mass to the bond mass increases, the bond
mass decreases, the oscillation frequency of the broken bond increases unboundedly,
and the concentrated masses at the knots become insensitive to these oscillations.
The only fact that remains important is that the broken bond does not connect the
knots any more. So, in the massless-bond limit, the bond behaves as though it
instantly disappears from the lattice when it breaks. Its limiting strain energy does
not belong to the lattice any more. Thus this energy plays the role of the local
fracture energy of the lattice. In contrast, in the case of the material bonds, their
influence on the lattice dynamics may be essential at least during a period of time. In
this latter case, it is reasonable to retain the broken bond in the lattice structure.
Doing so and neglecting the surface energy associated with the bond fracture we
come to the lattice model possessing no local fracture energy. The difference in
fracture of the massless-bond and the material-bond lattices is illustrated in Fig. 1,
where the square-cell lattices are shown intended to model anti-plane shearing.
In addition, from the dynamic behavior point of view, the material-bond lattice

differs by a finite wave speed. In the case of the lattice with no concentrated masses,
this is reflected, in particular, in discontinuity of the dependence of the macrolevel
energy release rate on the crack speed. It is of interest that there exists a range of the
Fig. 1. Two lattice models with the crack at mo0: (a) The massless-bond lattice; the broken bonds

disappear (they do not influence the lattice dynamics). (b) The material-bond lattice; the broken bonds do

not leave the structure.
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energy release where the crack speed remains constant as it is insensitive to the
variation of the external action.
Mathematically, for the uniform-density network problem it appears that some

factorization details depend on the ratio of the crack speed to the wave speed. They
depend on whether the ratio is rational and, if so, whether it can be represented as a
ratio of odd numbers.
2. Force–displacement relations for the bond

In this section, we establish connections between the tensile force and
displacements at the bond ends. The results will further be used in the formulation
of the dynamic equation for the material-bond lattice. Consider a lattice consisting
of point masses, M, at its knots connected by linearly elastic bonds of nonzero
density, R ¼ const40; as the mass per unit length. The bond length and stiffness are
taken as the corresponding units. So, the wave speed in the bond is c ¼

ffiffiffiffiffiffiffiffi
1=R

p
; and

the bond obeys the wave equation

q2uðx; tÞ
qx2

�
1

c2
q2uðx; tÞ

qt2
¼ 0. (1)

Here the displacements, u, and the x-axis are directed along the bond. The
nondimensional tensile force in the bond Tðx; tÞ ¼ eðx; tÞ; where e is the strain. In
terms of the Laplace transform on t with parameter s

uLðx; sÞ ¼ A sinhðsx=cÞ þ B coshðsx=cÞ. (2)

For the bond, 0oxo1; it follows that

uLðx; sÞ ¼ coshðsx=cÞ �
coshðs=cÞ

sinhðs=cÞ
sinhðsx=cÞ

� �
uLð0; sÞ þ

sinhðsx=cÞ

sinhðs=cÞ
uLð1; sÞ.

(3)

The nondimensional tensile forces are

TLð0; sÞ ¼
quLð0; sÞ

qx
¼

s=c

sinhðs=cÞ
½uLð1; sÞ � coshðs=cÞuLð0; sÞ�,

TLð1; sÞ ¼
quLð1; sÞ

qx
¼

s=c

sinhðs=cÞ
½coshðs=cÞuLð1; sÞ � uLð0; sÞ�. (4)

We also need a solution of Eq. (1) with the boundary conditions as the
displacement at x ¼ 0 and the tensile force at x ¼ �1

2
(these points correspond to the

line of the lattice knots nearest to the crack, and to the crack line, respectively); it is

uLðx; sÞ ¼ ftanh½ð1=2Þs=c� sinhðsx=cÞ þ coshðsx=cÞguLð0; sÞ

þ
ðc=sÞ sinhðsx=cÞ

cosh½ð1=2Þs=c�
TLð�1=2; sÞ,



ARTICLE IN PRESS

L.I. Slepyan / J. Mech. Phys. Solids 53 (2005) 1295–1313 1299
TLðx; sÞ ¼ ðs=cÞftanh½ð1=2Þs=c� coshðsx=cÞ þ sinhðsx=cÞguLð0; sÞ

þ
coshðsx=cÞ

cosh½ð1=2Þs=c�
TLð�1=2; sÞ. ð5Þ

So

TLð0; sÞ ¼ ðs=cÞ tanh½ð1=2Þs=c�uLð0; sÞ þ
TLð�1=2; sÞ

cosh½ð1=2Þs=c�
(6)

and

uLð�1=2; sÞ ¼
uLð0; sÞ

cosh½ð1=2Þs=cÞ�
� ðc=sÞ tanh½ð1=2Þs=c�TLð�1=2; sÞ. (7)
3. Equations for the square-cell lattice

The square-cell lattice is intended to model anti-plane shear (mode III); however, a
hypothetic plane deformation with only vertical displacements—with the same
formulation and results—can also be assumed. The latter viewpoint is used when it is
more convenient; for example, when displacements and forces are shown in a plane
figure. Note that in the long-wave approximation the lattice represents a continuous
elastic medium whose shear modulus is equal to one, the density is equal to M þ 2R;
and the wave speed is c0 ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0 þ 2

p
; where M0 ¼ M=R:

Initial positions of the lattice knots are defined by rectangular coordinates X ;Y
with X ¼ m ¼ 0;�1; . . . and Y ¼ n ¼ 0;�1; . . . : The crack line is at Y ¼ �1

2
; Fig. 1.

Displacements of the knots are denoted by wm;nðtÞ:
Consider the dynamic equilibrium of a knot

M d2wm;n=dt2 ¼ Tmþ;n þ Tm�;n þ Tm;nþ þ Tm;n�, (8)

where Tmþ;n; . . . ;Tm;n� are the forces acting on the considered mass from the right,
from the left, from above and from below, respectively. Note that such a force, say
Tmþ;n; is formed by the displacements of the considered knot, m; n; and the next one,
m þ 1; n: The influence of the latter on the former comes with a delay corresponding
to the period of the wave propagation along the bond. Mathematically, it directly
follows from the dependencies obtained in the previous section.
Using relations (4), where x is now considered as the local coordinate, we obtain

(n40 or no� 1)

M0ðs=cÞ2wL
m;nðsÞ ¼

s=c

sinhðs=cÞ
½wL

mþ1;nðsÞ þ wL
m�1;nðsÞ þ wL

m;nþ1ðsÞ þ wL
m;n�1ðsÞ

� 4wL
m;nðsÞ coshðs=cÞ�, ð9Þ

where Rs40: In terms of the discrete Fourier transform on m, this equation becomes

M0ðs=cÞ2wLF
n ðs; kÞ ¼

s=c

sinhðs=cÞ
wLF

nþ1ðs; kÞ þ wLF
n�1ðs; kÞ

�
�wLF

n ðs; kÞ½4 coshðs=cÞ � 2 cos k�
�
. ð10Þ
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Denote

S ¼ M0ðs=cÞ sinhðs=cÞ þ 4 coshðs=cÞ � 2 cos k (11)

and represent for nX0

wLF
n ðs; kÞ ¼ Aln. (12)

From Eq. (10) it can now be found that

l ¼ ð1=2Þ½S �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4

p
� ¼

2

S þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4

p . (13)

In this expression, the square root is assumed positive for S42: In this case, 0olo1
and wLF

n ! 0 when n ! 1: For S2o4 this function is complex with jlj ¼ 1:
Analytic continuation of the square root function from S42 to So� 2 leads to
change of its sign; hence �1olo0 for So� 2 and wLF

n ! 0 ðn ! 1Þ in this case as
well.
Further consider the equation with respect to wLF

0 ðs; kÞ: It follows from Eq. (4)
that

wLF
0 coshðs=cÞ � wLF

�1 ¼
sinhðs=cÞ

s=c
TLF
0 , (14)

where T0 is the tensile force in the bond �1oYo0 at the knot n ¼ 0 (Y ¼ 0), Fig. 2.
Referring to Eqs. (6) and (14) we now can represent Eq. (10) in the form

M0ðs=cÞ2wLF
0 ðs; kÞ ¼

s=c

sinhðs=cÞ
fwLF

1 ðs; kÞ � wLF
0 ðs; kÞ½3 coshðs=cÞ � 2 cos k�g

� ðs=cÞwLF
0 ðs; kÞ tanh½ð1=2Þs=c� �

TLF
1=2ðs; kÞ

cosh½ð1=2Þs=c�
. ð15Þ
Fig. 2. The forces. (a) The tensile force in the lower bond at Y ¼ n ¼ 0; T0; acting on the lattice knot

n ¼ 0 from below. (b) The tensile force in the bond at Y ¼ �1
2
; T1=2; acting on the upper half of the lower

bond from below.
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This and the relation wLF
1 ¼ lwLF

0 yield

wLF
0 ðs; kÞ ¼ �TLF

1=2ðs; kÞ
c

s
sinh½ð1=2Þs=c�

ffiffiffi
r

h

r
� 1

� 	
(16)

with

hðs; kÞ ¼ S � 2 ¼ M0ðs=cÞ sinhðs=cÞ þ 4½coshðs=cÞ � 1� þ 2ð1� cos kÞ,

rðs; kÞ ¼ S þ 2 ¼ M0ðs=cÞ sinhðs=cÞ þ 4½coshðs=cÞ þ 1� � 2ð1þ cos kÞ. (17)

Recall that T1=2 is the tension force at y ¼ �1
2
[in terms of the previous section, it is

equal to Tð�1
2
; tÞ], while w0 is the displacement at y ¼ 0: The use of Eq. (7) allows

wLF
0 to be expressed through the displacement at y ¼ �1

2
; we call the latter w� since

the corresponding original function is zero on the crack continuation. At the same
time, TLF

1=2 is assumed to be zero at the crack; we call it Tþ: In the corresponding
conversions [with the use of Eq. (7)], the equation is neither multiplied nor divided by
zero at k ¼ s ¼ 0; this is important to justify the validity of the homogeneous
solution obtained below. The following governing equation is obtained:

Tþ þ Lðs; kÞw� ¼ 0 (18)

with

Lðs; kÞ ¼
s

c
coth½ð1=2Þs=c�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hðs; kÞ

rðs; kÞ

s
. (19)

Note that M0ðs=cÞ2 ¼ Ms2 and in the limit, c ! 1 ðR ! 0Þ; we obtain the
corresponding relations for the lattice with massless bonds. In this case, Eq. (18) with

Lðs; kÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hðs; kÞ

rðs; kÞ

s
; hðs; kÞ ¼ Ms2 þ 2ð1� cos kÞ; rðs; kÞ ¼ h þ 4 ðc ¼ 1Þ

(20)

is valid for both w�ðs; kÞ for y ¼ 0 and w�ðs; kÞ for y ¼ �1
2
: The only difference exists

with respect to wþ : wþa0 ðY ¼ 0Þ; wþ ¼ 0 ðY ¼ �1
2
Þ:
4. The steady-state problem

Further consider the corresponding steady-state problem where the tensile force
and displacement at Y ¼ �1

2
depend on Z ¼ m � vt only. Here v ¼ const is the crack

speed, and the crack is at Zo0: The solution to this problem is considered under the
causality principle (see Slepyan, 2002), that is, it is considered as the limit of
the solution to the corresponding transient problem with zero initial conditions.
In the latter problem, the variables depend on Z and t, where t ! 1: In the
following, a homogeneous problem for YX� 1

2 is studied with the boundary
conditions at Y ¼ �1

2

w ¼ 0 ðZ40Þ; T ¼ 0 ðZo0Þ. (21)
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Note that the first equality is a consequence of the assumed symmetry: wðZ;�Y �

1Þ ¼ �wðZ;Y Þ; while the latter is the condition for a free crack.
The required Fourier transform of the steady-state equation can be obtained from

the double transform of the transient equation by the substitution s ¼ s0 þ ikv; s0 !

þ0 (see Slepyan, 2002, Section 3.3.2). Namely, consider the double convolution,
Fðt;mÞ; of the linear operator Lðt;mÞ and a function f ðt;mÞ

Fðt;mÞ ¼
X1
n¼�1

Z 1

0

Lðt � y;m � nÞf ðy; nÞdy. (22)

The double transform, the continuous Laplace transform on t and the discrete
Fourier transform on m with the parameters s and k, respectively, leads to the
product

FLDðs; kÞ ¼ LLDðs; kÞf LDðs; kÞ. (23)

Represent m ¼ Zþ vt (Z ¼ m � vt) and consider t and Z as new independent
variables. It is important that Z is a continuous variable for any m. We assume that
for any Z the limits exist as

f ðZÞ ¼ lim
t!1

f ðt; Zþ vtÞ; FðZÞ ¼ lim
t!1

Fðt; Zþ vtÞ. (24)

We now consider the continuous Fourier transform of these limiting functions (the
transform is marked by the superscript F). The statement is valid that

FFðkÞ ¼

Z 1

�1

FðZÞeikZ dZ ¼ lim
s0!0

LLDðs0 þ ikv; kÞf FðkÞ. (25)

So, we have the governing equation (18) with

L ¼ Lðs0 þ ikv; kÞ ¼ Mðs0 þ ikvÞQðs0 þ ikv; kÞ,

Mðs0 þ ikvÞ ¼
s0 þ ikv

c
coth½ðs0 þ ikvÞ=ð2cÞ�,

Qðs0 þ ikv; kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðs0 þ ikv; kÞ

rðs0 þ ikv; kÞ

s
(26)

and

hðs0 þ ikv; kÞ ¼ M0½ðs
0 þ ikvÞ=c� sinh½ðs0 þ ikvÞ=c� þ 4 cosh½ðs0 þ ikvÞ=c�

� 2 cos k � 2; rðs0 þ ikv; kÞ ¼ h þ 4. ð27Þ

Eq. (18) can be resolved using the Wiener–Hopf technique. First of all,
the function Lðs0 þ ikv; kÞ must be factorized, that is, represented as L ¼ LþL�;
where Lþ has no singular points and zeros at IkX0; while L� has no such points
at Ikp0: Note that the function L has no such point on the real k-axis if s040
and hence the required factorization is not forbidden. Further note that for v40
the function M in Eq. (26) has such points only above the real axis: Ik ¼ is0=v;
this function thus belongs to L�: So, the only problem is the factorization of the
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function Q that has such points in the both half-planes (but not on the real axis
if s040).
For any M0X0 and s040 the statement is valid that

Q240 if IQ2 ¼ 0. (28)

At the same time, for M040; Q2ð�1Þ ¼ 1: So, when k runs from �1 to 1; the
function Q2 runs on the complex plane along a closed contour that leaves the origin,
Q ¼ 0; in the outer domain. It follows that

IndQ2 ¼ IndQ ¼ 0 ðM040Þ. (29)

For M0 ¼ 0; if Q is a periodic function, that is, if V ¼ v=c is a rational number, the
inequality (28) evidences that lnQ is also a periodic function (with the same period as
Q). These statements are essential for the factorization of the function.
4.1. The lattice with concentrated masses, M40

In this case,

Qðs0 þ ikv; kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðs0 þ ikv; kÞ

rðs0 þ ikv; kÞ

s
! 1 ðk ! 1Þ; IndQðkÞ ¼ 0 (30)

and we can represent

Lþ ¼ Qþðs
0 þ ikv; kÞ; L� ¼

s0 þ ikv

c
coth½ðs0 þ ikvÞ=ð2cÞ�Q�ðs

0 þ ikv; kÞ,

Q�ðs
0 þ ikv; kÞ ¼ exp �

1

2pi

Z 1

�1

lnQðs0 þ ixv; xÞ
x� k

dx
� �

, (31)

where Ik40 for Sþ and vice versa.
The functions Q� have the following asymptotes:

Q�ð0þ ikv; kÞ�
1� ðM0 þ 2Þv2=c2

4

� 	1=4

R�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0� ik

p
ðk ! 0Þ,

Q�ðs
0 þ ikv; kÞ ¼ Q0 ¼ 1 ðk ¼ �i1Þ (32)

with

R ¼ exp
1

p

Z 1

0

ArgQð0þ ikv; kÞ

k
dk

� 	
½ArgQð0; 0Þ ¼ 0�. (33)

For s0 ¼ þ0 the function h ¼ hð0þ ihnv; hnÞ is real. Consider a point, k ¼ hn; where
a plot of h crosses zero: for a small real e; hðihnv þ e; hnÞhðihnv � e; hnÞo0: This point
corresponds to a jump of the argument of h by p (with the increase of k). Then the
argument does not vary until the next point where h change its sign. Denote hn ¼ hþ

n
if the jump is positive (the argument increases); otherwise, hn ¼ h�

n : In a regular case,
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this means that qh=qka0 and

hn ¼ hþ
n if

qhð0þ ihnv; hnÞ

qk
Ihðs0 þ ihnv; hnÞo0,

hn ¼ h�
n if

qhð0þ ihnv; hnÞ

qk
Ihðs0 þ ihnv; hnÞ40, (34)

where s040: Clearly, these considerations are valid for the function r as well.
For the subcritical speed region, 0ovoc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0 þ 2

p
; in a vicinity of k ¼ 0;

Arg hð0þ ikv; kÞ ¼ Arg rð0þ ikv; kÞ ¼ 0: It now follows that the relation in Eq. (33)
can be represented as

R ¼
Y
n

h�
n rþn

hþ
n r�n

 !1=2

, (35)

h�
n and r�n are positive zeros of hð0þ ikv; kÞ and rð0þ ikv; kÞ; respectively. For M040
the number of these zeros is finite. Note that the points are meant where the function
crosses zero; for example, a zero of an even order is not taken into account since it
does not influence the argument.

4.2. The lattice without concentrated masses, M ¼ 0

In this case, the functions Q and lnQ are periodic for any rational number
V ¼ v=c: The period is T ¼ 2pN; where N is such a minimal integer that NV

is integer. For example, if V ¼ 0:24 ¼ 6
25

then N ¼ 25: Here, for the required
separation of �-parts of a periodic function, it is convenient to use the periodic
version of the Cauchy type integral in the form (see Eatwell and Willis, 1982;
Slepyan, 2002)

f � ¼ �
1

4piN

Z pN

�pN

f ðxÞ cot½ðx� kÞ=ð2NÞ�dx ð�Ik40Þ. (36)

The factorization follows as Q ¼ QþQ� with

Q�ðs
0 þ ikv; kÞ ¼ exp �

1

4piN

Z pN

�pN

lnQðs0 þ ixv; xÞ cot
x� k

2N
dx

� �
ð�Ik40Þ.

(37)

Q�ð0þ ikv; kÞ�
1� 2V2

4

� 	1=4

R�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0� ik

p
ðk ! 0Þ,

Q� ¼ Q0 ¼ exp
1

2pN

Z pN

0

ln jQð0þ ixv; xÞjdx
� �

ðIk ¼ �i1Þ,

R ¼ exp
1

2pN

Z pN

0

ArgQð0þ ixv; xÞ cot
x
2N

dx
� �

. (38)
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The same statements concerning Arg h and Arg r, as in the case M40; are valid here.
It now follows that

R ¼
Y
n

sin½h�
n =ð2NÞ� sin½rþn =ð2NÞ�

sin½hþ
n =ð2NÞ� sin½r�n =ð2NÞ�

 !1=2

. (39)

It is of interest that if v=c is a ratio of two odd numbers, then Q0 ¼ 1: This follows
from the fact that, in this case, jQð0þ iðk þ pNÞv; k þ pNÞj ¼ 1=jQð0þ ikv; kÞj:
Lastly, the function M is

M ¼ M� ¼
s0 þ ikv

c
coth

s0 þ ikv

2c
! 2 ðs0 þ ikv ! 0Þ,

M� ! 1 ðk ! �i1Þ. (40)
5. Solution

There exists a macrolevel-associated solution of the homogeneous Eq. (18)
(s ¼ 0þ ikv) corresponding to remote forces driving the crack. It is

TþðkÞ ¼
CLþ

0� ik
; w�ðkÞ ¼

C

ð0þ ikÞL�

, (41)

where the constant C reflects the existence of these forces; it is defined below in terms
of the global energy release rate. From this and the above obtained asymptotes it
follows that the tensile force at the moment when the bond breaks, Tðþ0Þ ¼ T c; and
the macrolevel energy release rate, G, are

Tðþ0Þ ¼ T c ¼ lim
k!i1

ð�ikÞTþðkÞ ¼ CQ0 ðZ ¼ þ0Þ,

G ¼ lim
p!0

p2TþðipÞw�ð�ipÞ ¼
1
2

C2R2, (42)

where the formula used for the energy release rate can be found, for example, in
Slepyan (2002, p. 27). Finally,

G ¼ R
T2
c

2
; R ¼

R2

Q2
0

. (43)

Note that T2
c=2 is the (nondimensional) strain energy of the bond in the case where it

is uniformly stressed by the critical force.
In the static case, v ¼ 0;

Q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
� 1

q
; R ¼ 1 (44)

and

G ¼

ffiffiffi
2

p
þ 1

2
T2
c ¼ ð

ffiffiffi
2

p
þ 1ÞG0, (45)
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where G0 is the critical strain energy of the bond (in statics). This result coincides
with that found earlier for the massless-bond lattice (see Slepyan, 1981, 2002) as it
must. Indeed, the inertia forces do not appear in statics, and hence the mass
distribution is immaterial.
Finally, it should be emphasized that result (43) is obtained using the limit from

the right, Z ¼ þ0: This fact becomes significant for any point of discontinuity of R as
a function of the crack speed. For a given V this means that the result corresponds to
t ¼ m=V � 0 ¼ m=ðV þ 0Þ; that is, it corresponds to the right limit of R: RðV þ 0Þ if
it exists (this also follows from the consideration of waves in the bonds, see Section
8). In particular, this conclusion allows us to give a correct interpretation of the
below results for special points, V ¼ 1

2
; 1
4
: As to the left limit of RðV Þ; it cannot be

obtained so simply since t ¼ m=V þ 0 belongs to the after-the-break time when the
considered tensile force is at zero. Practically, it is defined by the analytically
determined values of R for some discrete points of V approaching the considered one
from the left (see Section 8).
6. Two special points: V ¼ 1
2
; 1

4

At least at these points, for M0 ¼ 0 each of the functions, h and r, can be represented
as a finite product ‘on its zeros’. This allows the required factorization of Q to be
obtained without invoking the Cauchy type integral. These points are of special interest
since the resulting dependence in Eq. (43) has a jump discontinuity at these points (see
Section 8 and Figs. 3 and 4). The straightforward solution for these points also serves to
justify the results obtained by a more sophisticated general method.

6.1. V ¼ 1
2

In this case

hðikv; kÞ ¼ 4 cos k=2� 2ð1þ cosðkÞÞ ¼ 8 cos k=2 sin2ðk=4Þ (46)

and [see Eq. (27); M0 ¼ 0]

hð0þ ikv; kÞ ¼ 16 sinh
0� ik

4
sinh

0þ ik

4
sinh

0� iðp� kÞ

4
sinh

0þ iðpþ kÞ

4
,

(47)

while for the function r we have

rðikv; kÞ ¼ 4 cos k=2þ 4ð1� cos2 k=2Þ

¼ � 4ðcos k=2� cos k1=2Þðcos k=2� cos k2=2Þ ð48Þ

and

rð0þ ikv; kÞ ¼ 16 sinh
0� iðk1 � kÞ

4
sinh

0þ iðk1 þ kÞ

4

� sinh
�iðk2 þ kÞ

4
sinh

�iðk2 � kÞ

4
, ð49Þ
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same averaged density. 3. Continuous elastic material (here R ¼ 1 is the global-to-local energy release

ratio).
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where

k1 ¼ arccos
1�

ffiffiffi
5

p

2
� 4:474071519,

k2 ¼ 2 arccos
1þ

ffiffiffi
5

p

2
� 2:122550124 i. (50)

It follows that

Q2
þðkÞ ¼

sinh½ð0� ikÞ=4�

sinh½�iðk2 þ kÞ=4�
,

Q2
�ðkÞ ¼

sinh½ð0þ ikÞ=4� sinh½ð0� iðp� kÞÞ=4� sinh½ð0þ iðpþ kÞÞ=4�

sinh½ð0� iðk1 � kÞÞ=4� sinh½ð0þ iðk1 þ kÞÞ=4� sinh½ð�iðk2 � kÞÞ=4�

(51)
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and [see Eq. (38)]

Q2
0 ¼ Q2

þði1Þ ¼ eik2=4 � 0:5882298354,

R2 ¼ lim
p!0

QþðipÞ

Q�ð�ipÞ
¼

ffiffiffi
2

p
sin k1=4 � 1:272019649. (52)

Finally

R ¼ ½R=Q0�
2 ¼ 2:162453470. (53)

6.2. V ¼ 1
4

In this case

hðikv; kÞ ¼ 4 cos k=4� 2ð1þ cos kÞ ¼ 4ðz � 4z4 þ 4z2 � 1Þ

¼ 4ð1� zÞð4z3 þ 4z2 � 1Þ; z ¼ cos k=4. ð54Þ
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The zeros of this polynomial are defined as

z ¼ zn n ¼ 2; . . . ; 5; z2 ¼ 1; z3 � 0:4196433776,

z4;5 ¼ �0:7098216888� 0:3031453648 i. (55)

If one defines

cos kn=4 ¼ zn, (56)

then the zeros of hðikv; kÞ are

k3 � 4:550975732; k4;5 � 9:158065424� 1:570428240 i (57)

for Rk40; and the symmetrical points for Rko0: The function hð0þ ikv; kÞ can be
represented as

hð0þ ikv; kÞ ¼ 32
Y5
n¼2

Hn,

H2 ¼ sinhð0� ikÞ=8 sinhð0þ ikÞ=8,

H3 ¼ cos k=4� cos k3=4 ¼ 2 sinh½ð0� iðk3 � kÞÞ=8� sinh½ð0þ iðk3 þ kÞÞ=8�,

H4 ¼ cos k=4� cos k4=4 ¼ 2 sin½ðk4 � kÞ=8� sin½ðk4 þ kÞ=8�,

H5 ¼ cos k=4� cos k5=4 ¼ 2 sin½ðk5 � kÞ=8� sin½ðk5 þ kÞ=8�. (58)

For the function rðikv; kÞ we get

rðikv; kÞ ¼ 4ðcos k=4þ sin2 k=2Þ ¼ 4zð1þ 4z � 4z3Þ. (59)

All zeros of the latter polynomial, z ¼ zn; n ¼ 6; . . . ; 9; are real:

z6 �¼ �0:8375654353; z7 � �0:2695944364; z8 � 1:107159872; z9 ¼ 0.

(60)

As in the previous representation we define

cos kn=4 ¼ zn; n ¼ 6; . . . ; 9. (61)

It follows that for RkX0

k6 ¼ 10:25443220; k7 ¼ 7:375072704; k8 ¼ 1:835637216 i; k9 ¼ 2p.
(62)

The function rð0þ ikv; kÞ can thus be represented as

rð0þ ikv; kÞ ¼ 16
Y9
n¼6

Hn,

H6 ¼ cos k=4� cos k6=4 ¼ 2 sinh½ð0� iðk6 � kÞÞ=8� sinh½ð0þ iðk6 þ kÞÞ=8�,

H7 ¼ cos k=4� cos k7=4 ¼ 2 sinh½ð0þ iðk7 � kÞÞ=8� sinh½ð0� iðk7 þ kÞÞ=8�,
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H8 ¼ cos k=4� cos k8=4 ¼ 2 sinh½ð�ik8 � ikÞ=8� sinh½ð�ik8 þ ikÞ=8�,

H9 ¼ cos k=4� cos k9=4 ¼ 2 sinh½ð0þ iðk � 2pÞÞ=8� sinh½ð0þ iðk þ 2pÞÞ=8�.

(63)

This yields

Q2
þðkÞ ¼

sinh½ð0� ikÞ=8� sin½ðk4 � kÞ=8� sin½ðk5 þ kÞ=8�

sinh½ð0� iðk � k7ÞÞ=8� sinh½ð0� iðk þ k7ÞÞ=8� sinh½ð�ik8 � ikÞ=8�
,

Q2
�ðkÞ ¼

sinh½ð0þ ikÞ=8� sinh½ð0� iðk3 � kÞÞ=8� sinh½ð0þ iðk3 þ kÞÞ=8�

sinh½ð0þ iðk � k6ÞÞ=8� sinh½ð0þ iðk þ k6ÞÞ=8� sinh½ð�ik8 þ ikÞ=8�

�
sin½ðk4 þ kÞ=8� sin½ðk5 � kÞ=8�

sinh½ð0þ iðk � 2pÞÞ=8� sinh½ð0þ iðk þ 2pÞÞ=8�
. ð64Þ

Now

Q2
0 ¼ Q2

þði1Þ ¼ exp½Iðk5 � k4 � k8Þ=8� � 1:177216093,

R2 ¼ lim
k!0

QþðipÞ

Q�ð�ipÞ
¼

sin k6=8ffiffiffi
2

p
sin k3=8 sin k7=8

� 1:579215613. (65)

Lastly

R ¼ ½R=Q0�
2 � 1:341483201. (66)
7. The corresponding massless-bond lattice

For the dynamic case, v40; it is of interest to compare the results for the lattice-
network (43) and corresponding massless-bond lattice of the same averaged density,
that is, the lattice with c ¼ 1 ðR ¼ 0Þ and M ¼ 2: From the corresponding relations
in Sections 4.1 and 5 it follows that

R ¼
Y
n¼1

h2nr2n�1

h2n�1r2n
, (67)

where hnu are the positive zeros of the function hðikv; kÞ; 0ohnphnþ1; while rn are the
positive zeros of the function rðikv; kÞ; 0ornprnþ1 with

hðikv; kÞ ¼ 2ð1� cos kÞ � 2k2V 2; rðikv; kÞ ¼ 2ð1� cos kÞ � 2k2V 2 þ 4. (68)

In these relations, V is the nondimensional crack speed: V ¼ v=ð
ffiffiffi
2

p
c0Þ; where c0 is

the speed of a long wave in the lattice. So, as in the case of the material-bond lattice,
the critical crack speed is v ¼ c0 (V ¼ 1=

ffiffiffi
2

p
).
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8. Discussion

The function RðV Þ for the lattice-network, M ¼ 0; is presented in Fig. 3, curve 1.
It is plotted based on the values of RðV Þ calculated for a discrete set of points where
V is a ratio of two odd integers. Recall that in this case Q0 ¼ 1 and hence R ¼ R2: In
addition, to justify the results, the two values, Rð1

2
Þ and Rð1

4
Þ; calculated in a different

way in Section 6 are taken into account. A good agreement is found:

Rð1=2þ 0Þ � 2:162453470; Rð1=4þ 0Þ � 1:341483201,

Rð69=137Þ � 2:14393716; Rð25=99Þ � 1:340436849. (69)

Also, in this figure, the function RðV Þ is presented for the corresponding massless-
bond lattice, curve 2. The calculations are performed using Maple (with the help of
the Programming Guide by Monagan et al., 2001).
Clearly, in the main, these dependencies are similar. They show an essential

difference between the criteria for the crack initiation, Rð0Þ; and the crack
propagation, RðV�Þ ¼ Rmin; however the corresponding values of the crack speed,
V�; are different: V� � 0:33 ðv=c0 � 0:46Þ for the massless-bond lattice, and V� ¼

0:5 ðv=c0 ¼ 1=
ffiffiffi
2

p
Þ for the other.

The main difference is that dependence 1, in contrast to dependence 2, is
discontinuous. This is a result of the fact that, after each break, step waves propagate
along the material bonds, and the reflection and refraction at the lattice knots
changing the wave amplitude do not change the wave shape. In particular, if V ¼
1
2
� 0 the step waves caused by the bond break reach the middle of the next bond at

the moment of its break (the distance along the bonds is equal to two, while the crack
advance is equal to one). These waves additionally stress the bond, and this leads to a
dramatic decrease in the required macrolevel energy release rate in comparison with
that required for V ¼ 1

2
þ 0: Note that for V ¼ 1

2
� 0 not only the break of the

nearest bond, but all the previous breaks create the discontinuity of the considered
function; however, the number of knots where the wave refracts increases with the
distance, and the wave amplitude decreases. The jump discontinuity at V ¼ 1

2
is

found using the results obtained in Section 6 for some discrete point of V

approaching V ¼ 1
2
from the left. It is found that Rð1

2
þ 0Þ � Rð1

2
� 0Þ � 1:40 ½Rð1

2
�

0Þ � Rð0:4939759036Þ ¼ 0:7591886165�:
The above obtained analytical solution must be admissible in the sense that the

stress in the crack-line bonds must be below the critical value at Z40: This condition
but for any Z also concerns all the bonds outside the crack line; otherwise, the
considered single-line crack propagation does not exist (in this connection, see
Marder and Gross, 1995; Slepyan, 2000). It follows that the branches where R

generally decreases as V increases are inadmissible (see Slepyan and Ayzenberg-
Stepanenko, 2004, pp. 1465–1466). This concerns the left range of crack speed,
0oVoV� [RðV�Þ ¼ Rmin]. For the dependence 1 the region 1

2
oVo0:664 is also

forbidden. In both cases, R ! 1 when V tends to the critical value. [Recall that the
critical crack speed is v ¼ c0 ðV ¼ 1=

ffiffiffi
2

p
Þ:]
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Assume that the horizontal bonds are strong enough, and the crack really
propagates between the two parallel layers of the lattice knots (at Y ¼ �1

2
in the case

of the material-bond lattice without concentrated masses). In this case, the
admissible regions of the crack speed for the considered two lattice models differ
greatly, Fig. 4. Indeed, for the massless-bond lattice such a region is 0:33oVo1=

ffiffiffi
2

p

(0:46ov=c0o1), while for the material-bond lattice without concentrated masses it
consists of a point, V ¼ 1

2
ðv=c0 ¼ 1=

ffiffiffi
2

p
), and a very narrow range,

0:664oVo0:707 ð0:94ov=c0o1Þ:
The fact is of special interest that due to this discontinuity there exists a range of R

corresponding to the fixed crack speed, V ¼ 1
2
ðv=c0 ¼ 1=

ffiffiffi
2

p
Þ: As the (normalized)

global energy release rate increases from the minimal value, from R � 0:76; to R �

1:49 [RðV 1Þ � 1:489860661;V1 � 0:6642335766Þ], the crack speed cannot change its
value, V ¼ 1

2
(for R41:49 it can jump to the right branch of the curve 1, V4V 1). So,

at least in this range, 0:76oRo1:49; the crack speed is insensitive to variation of the
global energy release rate.
Thus, the function RðV Þ was obtained for a series of Va1

2
and for V ¼ 1

2
þ 0: For

V ¼ 1
2
it is not defined uniquely; however, the inverse function, V ðRÞ; in the

admissible range, 0:76oRo1:49; is uniquely defined: V ðRÞ ¼ 1
2
for any R in this

range.
Lastly, we recall that the critical strain energy of a uniformly stressed massless-

bond is equal to the fracture energy of the ‘corresponding’ continuous material. So,
for the massless-bond lattice the inequality RðV ÞX1 is true since the energy
dissipation cannot be negative. However, for the material-bond lattice this inequality
does not hold. Indeed, in this case, the bond is not stressed uniformly at the moment
when the stress at its center reaches the critical value. This is reflected in Fig. 3: in a
range of V, it appears that RðV Þo1; that is, the crack propagation requires less
energy than in the case of the continuous material model. Note that in the
continuous model there is no radiation in the subcritical steady-state regime; hence
the local and the global energy release rates are equal, R � 1; Fig. 3(3).
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