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Abstract. Localization of shear under high-speed penetration is shown to be
accompanied by initiation of a melting wave. Transient, self-similar and steady-
state problems of heating and melting of the material under idealized conditions
of penetration are studied, and the role of plastic hardening is examined. A
critical value of the discontinuity in the velocity in the shear bend is found: the
melting wave arises independently of the hardening modulus if the discontinuity
exceeds this point. Resistance to shear in the melting wave is shown to decrease
drastically. This ensures the separation of the flow jets from the surrounding
material. Thus, the plastic jet model of penetration is justified.

1 Introduction

1.1 Hydrodynamic models of penetration

Well-known hydrodynamic models of penetration have a half-century history and
take their origin from the work of Birkhoff et al. (1948), where penetration is
considered as a collision of two jets of ideal fluids. In this model, the penetra-
tion velocity follows immediately from the Bernoulli equation. Allen and Rogers
(1961) and then Alekseevskii (1966) and Tate (1967) introduced into this equa-
tion the so-called flow strength parameters to take into account the strength of
the projectile and target materials. A comprehensive historical review and analy-
sis of potentialities of these models, their advantages and drawbacks can be found
in Zukas (1990).
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Such a model permits the penetration depth and the projectile erosion to be
determined. At the same time, it provides no way for determining the crater
geometry and the mushrooming radius of the projectile. In this connection, a
version of the hydrodynamic model has been elaborated by Slepyan (1978) for
describing the movement of a rigid projectile or an ideal fluid jet in a deformable
medium. The flow of the materials is assumed to exist only within an area of a
finite, current radius, which is determined together with the other parameters of
the process based on a given strength parameter of the target and the current
velocity of the penetration. The surrounding material is assumed to be at rest.

This model can be used for an estimation of the resistance to the movement,
the mushrooming radius of the projectile (for the fluid jet), and the size of the
crater created. However, in the case of plastic materials such a hydrodynamic
model cannot be used immediately. First, this model does not take into account
energy loss in plastic deformation of the backward jets. Second, the conditions
which allow interaction between the ideal jets and the surrounding immobile
material to be neglected have not been established.

In the present paper, the latter problem is considered. It is shown that for
high-speed penetration, localization of shear as a discontinuity in the flow of the
material leads to initiation of a melting wave. Resistance to shear in the melting
wave drastically decreases, and this results in separation of the flow jets and the
surrounding, immobile material with negligible shear stresses in the interface.
This allows the plastic jet model to be justified.

As to the energy loss in the backward jets, we only note here that the plas-
tic work can be determined based on the scheme of proportional strain of the
materials, which allows this work to be defined in terms of the initial and final
parameters of the flow present in the hydrodynamic model formulation. This
leads to the modified Bernoulli equation valid for plastic jets, and finally, to the
closed system of governing equations.

1.2 Localization of shear

As is known, instability of a uniform plastic strain can arise under dynamic shear
and this manifests itself in shear bands in thermoplastic solids (Recht, 1964;
Anand et al., 1986; Barta, 1987; Molinary and Clifton, 1987; Wright and Walter,
1987, 1996; Meunier et al., 1992; Bai and Dodd, 1992; Gioia and Ortiz, 1996).
Scores of works are devoted to measurement and description of initiation and
propagation of the localized shear bands under various conditions. In such a
band, local temperature is shown to rise by several hundred degrees (Hartley,
1987; Marchard and Duffy, 1988; Zehnder and Kallivayalil, 1991; Bai and Dodd,
1992; Zender and Rosakis, 1992a,b; Zhou et al., 1996a,b). It can increase with
the rate and duration of the shear, and under certain conditions this may lead
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to melting of the material (Marchard and Duffy, 1988; Nicolas and Rajendran,
1990; Zhou et al., 1996a). Our goal is to derive an estimation of (a) the conditions
which give rise to the melting, and (b) the resistance to shear in the melting wave.

A theoretical treatment of the process of strain localization with initiation of
a melting wave requires knowledge of the dependence of stresses on the high-level
strain, strain rate and temperature. As far as we know, there are no sufficient
data concerning such a dependence, and the considerations below are necessarily
based on an idealized formulation. In particular, a linear hardening is assumed.
However, it is shown that a critical value of the jump in velocity in the shear bend
does exist: the melting wave arises independently of the hardening modulus if
the jump exceeds this point.

2 Temperature in the localized shear band

To justify the acceptability of a corresponding idealized formulation, we begin
with the analysis of the role of strain hardening in heating of the material by
dynamic plastic shear.

First of all let us introduce parameters of the material used in calculations
and estimations:

density ρ = 8 · 103 kg/m3,
critical shear stress (equal to half the yielding limit) τ0 = 2.5 · 108 N/m2,
hardening modulus k which varies in the calculations,
coefficient of viscosity µ = 10−2 Ns/m2,
heat capacity c = 5 · 102 Nm/(kg oK),
heat conductivity λ = 50 N/(s oK),
melting point Θ = 1.8 · 103 oK and
latent heat of melting L = 2.5 · 105 Nm/kg.

Using these constants the natural units are introduced as

length-unit l0 = 2
√

λµ/(ρcτ0) ≈ 4 · 10−8 m

time-unit t0 = µ/τ0 = 4 · 10−11 s, the corresponding
speed-unit d0 = 103 m/s and
temperature-unit θ0 = τ0/(ρc) = 62.5 oK.

2.1 One-dimensional transient problem of heating

In our problem, heating and melting of the material are induced by a given,
tangential particle velocity, v0 , at the boundary of a half-space of a thermoplastic
material and the propagation velocity of this external action, b. These velocities
are assumed to correspond to the above-mentioned jump in velocity in the shear
bend and its propagation during the penetration.
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Consider a half-space, x > 0, of a rigid-plastic material under antiplane dy-
namic shear and under the following conditions. Shear stresses are assumed to
correspond to a linear hardening:

τ = τ0 sign
∂w(x, t)

∂x
+ k

∂w(x, t)

∂x
, (1)

where w denotes displacements directed along a normal to x; τ0 and k are positive
constants. In the considered uncoupled problem, where τ0 and k are assumed
to be independent of temperature, the dynamic equation of motion is the one-
dimensional wave equation:

∂2w(x, t)

∂t2
− a2

∂2w(x, t)

∂x2
= 0, a2 =

k

ρ
, (2)

where a is the wave speed.
It is assumed that the work of plastic strain transfers into heat totally, that is,

a small part of such work going into energy of micro-strain is neglected. Taking
the work of plastic strain into account, the Fourier equation is assumed to govern
heat conductivity over the half-space as

ρc
∂θ(x, t)

∂t
− λ

∂2θ(x, t)

∂x2
=

∂U(x, t)

∂t
, (3)

where U is the plastic strain energy density per unit volume.
The initial and boundary conditions are as follows:

w =
∂w

∂t
= 0, θ = θ0 = const (t = 0, x > 0)

v ≡
∂w

∂t
= v0, N = −λ

∂θ

∂x
= 0 (x = 0, t > 0). (4)

Here N is the heat flux. This formulation leads to the solution

U =
v0

a

(

τ0 +
kv0

2a

)

θ = θ0 +

(

τ0v0

ρca
+

v2
0

2c

)

[

1 − exp(αt)erfc(
√

αt)
]

= θ0 +
1

c

(

τ0v0√
kρ

+
v2
0

2

)[

1 −
2

π

∫

∞

0

exp(−αtz2)

1 + z2
dz

]

, (5)

where α = ρca2/λ = kc/λ and

erfc(y) = 1 − erf(y) =
2√
π

∫

∞

x
exp(−z2) dz
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Figure 1: Temperature vs. time at v0 = 1250 m/s and various hardening modules

It can be observed that temperature increases monotonically with time, as
fast as α is large, and tends to the limit

θ = θ0 +
τ0v0

ρca
+

v2
0

2c
(6)

if k > 0. Otherwise, if k = 0

θ = θ0 +
2τ0v0√
πλρc

√
t. (7)

These dependences are valid when the temperature is under the melting point
(and if it does not influence the resistance to plastic strain as assumed). The main
question is whether the temperature achieves the melting point and how long the
corresponding time of heating is. As follows from these results, the limiting
temperature increases with decrease in hardening, and the limiting velocity, v0,
required for the temperature to achieve the melting point decreases together with
hardening. The critical value v∗ of the velocity v0 is found such that provides
temperature of the melting point independently of hardening. Under the above-
mentioned parameters, v∗ = 1225 m/s (for the initial temperature θ0 = 300oK).
If v0 exceeds v∗ only a little, the temperature achieves the melting point very soon,
and it does not matter what hardening of the material is. The characteristic time
is of the order of 4 · 10−9s. In the Fig. 1, dependencies of the temperature on
time are plotted at v0 = 1250 m/s.
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2.2 Steady-state, 2D problem of heating

Consider a space, x, y, z, filled by the rigid-plastic material (1), the same as above,
under the condition at the interface x = 0:

∂w

∂t
= ±v0 H(η) (x = ±0), η = bt − y. (8)

This action is assumed to induce plastic waves propagating with a velocity a < b.
The formulation leads to the solution

θ = θ0 +
2τ0v0

πρcb

[

1 + ν
∫ η

0

K0(νη) exp(νη) dη
]

, (9)

where the Bessel function, K0, and the parameter ν are defined by the relations

K0(x) =
∫

∞

1

exp(−xt)√
t2 − 1

dt, ν =
ρcb

2λ
= 4 · 107 1/m. (10)

Note that for large νη

θ − θ0 ∼
2τ0v0√
πλρbc

√
η. (11)

This result completely corresponds to the above-considered one-dimensional prob-
lem (7).

It can be seen that for the high-speed penetration (when b ≈ 1, 000 m/s or
higher), the distance η where the asymptote (11) is valid is very small [see (9)
and expression (10) for ν]. Thus the 1D formulation of the problem is acceptable
here.

3 Melting wave

3.1 One-dimensional melting wave

Thus the 2D temperature field produced by the shear action, propagating with the
velocity b of the order of 1,000 m/s, approaches closely the 1D field very soon (at
a very small distance from the front of the action, y = bt). The same conclusion
is valid for the melting wave considered below, because the equations for viscous
fluid dynamics (dynamics of the melt-down material) and for heat conductivity
are of the same type and, as is shown below, the wave of particle velocities
propagates even slower than the temperature wave. This allows restriction by the
1D formulation for the melting wave. Note that it is common for the description
of a viscous boundary layer.

Also, as was shown, the temperature achieves the melting point very soon for
any hardening if the velocity, v0, exceeds the critical value v∗. This necessarily

6



results in localization of strain, and this allows, for describing the melting wave,
an idealized rigid-plastic material without hardening to be considered.

With the goal to describe the corresponding melting wave and to find the dis-
tributions of temperature and shear stresses in such a wave, consider the antiplane
problem for a visco-plastic material described below. The same coordinates are
used as in the above-considered 1D problem of heating. So, the particle velocities
v = vz and temperature are assumed to depend on the coordinate x and time t.

The material is assumed to be a rigid-plastic solid if temperature θ < Θ,
where Θ is the melting point, and it is a viscous liquid if θ > Θ . The latent
heat of melting, L, is required to melt it down. The limiting shear stresses in the
material are τ0 for both the solid and liquid states. In the solid state, there is
no strain rate if the stress τ = τxz < τ0, and slip can exist in the plane and in the
direction of the maximal stress if τ = τ0. In the liquid state

τ = µ
∂v

∂x
, 0 ≤ v ≤ v+ ≤ v0, (12)

with a continuous velocity: v+ = v0 (v+ is the limit of v at the boundary from
the right) if τ < τ0 or v+ ≤ v0 if τ = τ0.

The flow of the material is represented consisting of two regions separated by
a moving interface. In the first region the material is melt down, it is considered
as a viscous fluid, and the material is rigid in the second region. The temperature
at the interface is equal to the melting point, Θ. At the interface as the melting
wavefront, there is an energy release equal to the latent heat of melting, L. This
energy release is provided by a jump in heat flux, namely,

N− − N+ = ρLW (13)

where N+ and N− are the heat fluxes in front of and behind the moving interface,
respectively, and W is its speed (the speed of the wavefront). At the same time,
the particle velocity, v (in z-direction) is assumed to be continuous at the moving
interface. The temperature at the interface is continuous too.

The process can be divided into three periods. In the first, 0 < t < t1,
temperature θ < Θ, and v = 0. A growing layer of the melt-down material arises
at t = t1. However, in the second period, t1 < t < t2, the velocity of the material
at x = 0 does not achieve the applied velocity v0 (v+ < v0). At last, in the third
period (t > t2), v+ = v0.

Thus consider the half-space, x > 0, filled by a plastic material which is
initially at rest. Under a given particle velocity, v0, at the boundary, x = 0, the
melting wave is expected to arise in the increasing region, 0 < x < X(t), dX/dt ≥
0, where the material becomes a viscous liquid. The equation of motion is valid
as

ρ
∂v

∂t
=

∂τ

∂x
, (14)
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where v(0, t) = v+. Under the linear viscosity relationship (12), where µ = const
(a dependence of µ on temperature is neglected), the velocity obeys the equation

ρ
∂v

∂t
= µ

∂2v

∂x2
(15)

in the region 0 < x < X, where θ > Θ, and the material is at rest for x > X(t).
The Fourier equation is assumed to govern heat transfer over the half-space,

0 < x < ∞:

ρc
∂θ

∂t
− λ

∂2θ

∂x2
= τ

∂v

∂x
= µ

(

∂v

∂x

)2

, (16)

where c and λ are specific heat capacity and thermo-conductivity, acordingly.
These coefficients are considered to be constant as well as µ. The right hand
part of this equation corresponds to the heat production by the work of shear
viscosity stresses in the region 0 < x < X(t). The following additional conditions
are imposed:

the stress or the velocity at x = 0:

τ = τ0 [v(0, t) = v+ < v0] or v(0, t) = v0 [τ(0, t) < τ0], (17)

the velocity at x = X:
v(X, t) = 0, (18)

the heat flow through the boundary, x = 0, if v+ < v0; otherwise, there is no
heat flow at x = 0:

−λ
∂θ

∂x
= τ0(v0 − v+)H(v0 − v+) (x = 0), (19)

temperature at the moving interface

θ = Θ [x = X(t)], (20)

continuity of temperature at x = X:

[θ] = 0 (x = X), (21)

temperature at infinity
θ = 0 (x = ∞). (22)

Thus, for the determination of solutions to these two equations, each of the second
order (one of them is defined in one region, and the other is for two regions) and
the coordinate of the wavefront, X(t), there are seven conditions: Eqs. (17) –
(22) and the energy-release-rate relation (13):

λ

(

∂θ(X + 0, t)

∂x
−

∂θ(X − 0, t)

∂x

)

= ρL
dX

dt
. (23)
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It could be shown that in the third period the fields of stresses and tempera-
ture tend to the corresponding fields for the related self-similar solution. Taking
into account the first and second periods turn out to be very short, it can be
saied that such a self-similar solution gives us an adequate representation of the
melting wave.

3.2 Self-similar solution for the melting wave

In the case when the constitutive equation for the melt-down material (12) is
assumed to be valid independently of the level of stresses, the self-similar solution
exists which satisfies all the equations and additional conditions

v = v(η), θ = θ(η), η =
ρx2

4µt
, t > 0, (24)

In these terms, stresses, the governing equations and the additional conditions
take the form

τ =

√

µρη

t
v′

(

v′ =
dv

dη

)

, (25)

v′′ +

(

1 +
1

2η

)

v′ = 0 (26)

θ′′ +

(

κ +
1

2η

)

θ′ = −
µ

λ
(v′)2, κ =

cµ

λ
. (27)

Further
v = v0 (η = 0), v = 0 (η = Y ), (28)

where the point η = Y corresponds to the wavefront (in the self-similar solution

considered, X(t) = 2
√

µY t/ρ),

ζ =
√

ηθ′ → 0 (η → 0), (29)

N− − N+ = λ(ζ+ − ζ−)

√

ρ

µt
= ρL

√

µY

ρt
(η = Y ), (30)

θ = Θ (η = Y ), θ = 0 (η = ∞). (31)

Equation (26), with conditions (28), leads to the solution

v = v0

[

1 −
erf(

√
η)

erf(
√

Y )

]

(32)

Equation (27) can be represented in the form

ζ ′ + κζ = −
µ

λ
(v′)2√η = −

v2
0µexp(−2η)

πλ
√

ηerf2(
√

Y )
H(Y − η). (33)
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This equation, with conditions (29) and (31), gives us the solution

ζ = −
v2
0µ

λ
√

2π(2 − κ)

erf[
√

(2 − κ)η]

erf2(
√

Y )
e−κη (η < Y )

ζ = −
Θ
√

Y exp(−κη)
√

πerfc(
√

κY )
(η > Y ) (34)

and the temperature field under condition (31)

θ = Θ +
v2
0µ

λ
√

2π(2 − κ)erf2(
√

Y )
I (η < Y )

I =
∫ Y

η
erf
(

√

(2 − κ)η
)

e−κη dη
√

η

θ = Θ
erfc(

√
κη)

erfc(
√

κY )
(η > Y ). (35)

The rest of condition (30) gives us an equation with respect to the wave front
coordinate Y

v2
0

√

2π(2 − κ)Y

erf(
√

(2 − κ)Y )

erf2(
√

Y )
−

Θλ
√

πµerfc(
√

κY )
= LeκY . (36)

Consider two asymptotic cases. The low-velocity case, when v0 → 0, corre-
sponds to the vanishing of the melt-down-material zone: Y → 0. In this case, it
follows from (36) that

Y ∼
√

πµv2
0

2
√

2(Θλ +
√

πµL)
≈ 8 · 10−8v2

0 (v0 → 0), (37)

and at η < Y :

v ∼ v0

(

1 −
√

η

Y

)

, (38)

τ ∼ −
v0

2

√

ρµ

Y t
≈ −

6 · 10−5

√
t

, (39)

θ ∼ Θ. (40)

The high-velocity case (v0 → ∞) corresponds to Y → ∞. In this case, it can
be found that

Y = Y1 − Y2 + o(1), (41)
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where

Y1 = ln A −
1

κ
ln ln A, A =





µv2
0

Θλ
√

2πκ(2 − κ)





1/κ

, (42)

Y2 =
1

κ
ln

[

1 +
√

2π(2 − κ)Y1

L

v2
0

exp(κY1)

]

, (43)

and at η < Y :
v ∼ v0[1 − erf(η)], (44)

τ ∼ −v0

√

ρµ

πt
e−η ≈ −

1.8v0√
t

e−η, (45)

θ ∼ Θ +
v2
0µ

λ
√

2π(2 − κ)

∫

∞

η
erf(

√

(2 − κ)η)e−κη dη
√

η
. (46)

It can be seen that the velocity, v0, of the order of 103 m/s corresponds to
the low-velocity case (Y ≈ 0.08). In this case, the shear stresses comprise only
6% of the yield limit τ0 when t ≥ 10−6 s. As follows from (45), τ increases with
the velocity, however, the ratio τ/(ρv2

0) decreases.
In applying these results to the projectile – target interaction, we assume

that the moment t = 0 corresponds to the beginning of the plastic flow at a
considered material coordinate. Thus, the distance from this initial point can be
measured from the front point of the projectile. This distance can be expressed
as h = v0t. Using the above-mentioned numerical values, it can be found that the
shear stresses fall drastically at the distance of the order of 103 · 10−6 = 10−3 m.
Thus, for a projectile of the length of several cm, the shear resistance in the
localized shear bend can really be neglected.
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