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ABSTRACT 

A composite structure consisting of doubly periodic moderately wavy layers under tension is considered. 
The periodic cell of the composite is represented by two layers of different materials, but having the same 
arbitrary initial shape. As opposed to theories with full homogenization, the thickness of the periodic cell 
with respect to its length is not assumed to approach zero in the analysis. The influence of this structural 
parameter is shown to be especially significant if the material of one of the layers is much weaker than the 
other. 

Using a geometrical nonlinear Cosserat rod model to describe the layers, we take into account extension, 
flexure and shear deformation in the layers. The problem is reduced to a boundary value problem for a 
scalar nonlinear ODE of second order for the rotational degree of freedom. The determination of the 
deformed shape of the layers, as well as the relation between the elongation of the periodic cell and the 
applied tension force is then reduced to nonlinear quadratures. For the case of small initial waviness, an 
analytical solution is obtained for an arbitrary initial shape of the layers. For moderate initial waviness, 
numerical results are presented relating stress, strain and amplitude of waviness. The influence of material 
and structural parameters is investigated and discussed. 0 1997 Elsevier Science Ltd 

Keywords : A. microstructures, B. layered material, B. finite deflections, 8. Cosserat continuum. 

1. INTRODUCTION 

We investigate the problem of uni-axial extension of a plane doubly periodic structure 
consisting of curvilinear elastic layers with periods 2L and H in the X- and Y- 
directions, respectively (see Fig. 1). Here His the thickness of the double layer packet 
which consists of two layers of different thicknesses and material properties but having 

the same arbitrary initial shape. 
Wavy composites have attracted great attention in recent times. Such composites 

can possess significant nonlinear properties [see Luo and Chou (1990)]. Because of 
the geometrical nonlinearity, they fall within the class of materials having a high level 
of strain energy under extension [see Cherkaev and Slepyan (1995)]. In particular, we 
note that these nonlinear features can be especially important in dynamics where even 
an inextensible layer can accumulate energy. 

Historically, the investigation of plane finite deformations of fiber-reinforced 
materials originated with studies of incompressible constrained materials [see Adkins 
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Fig. 1. Wavy 

I I 

composite in the initial configuration. The periodic cell is represented by 
packet with constant Y-thickness H and XE [-L, L]. 

the double 

(1956), Pipkin (1977), Pipkin and Rogers (1971) and Spencer (1972)]. The composite 
material was treated as a homogeneous continuum under constraints imposed by 
curvilinear fibers (or cords). The first articles modeling the nonlinear behavior of 
wavy composites where the material properties of the matrix as well as of the fibers 
are taken into account and where no hypothesis of fiber inextensibility is made, appear 
to be those of Chou and Takahashi (1987) and later Luo and Chou (1988, 1990). 
These articles are based on laminate theory where, as a main assumption, the segments 
of material are assumed to behave as straight composite laminae (with specified 
properties, obtained experimentally). However, having different orientations, the 
laminae then have different responses to a given stress field. By adding the defor- 
mations of the pieces contained in an X-period of the wavy composite, one then 
obtains the “macro” strain. Another approach is based on a homogenization asymp- 
totic technique of singular perturbation for PDEs with highly oscillating coefficients. 
Such a treatment of the hear problem in the framework of linear elasticity was 
represented by Skoller and Hegemier (1995). 

A significant aspect of the behavior of wavy composites is the influence of the H/L 
structural parameter. Physically, this influence corresponds to taking into account the 
flexural rigidity of the layers. We note that this parameter does not appear in any 
straight-laminate based theory where only volume concentrations are present [see 
Chou and Takahashi (1987) and Luo and Chou (1988, 1990)]. In the singular per- 
turbation asymptotic technique [as in Skoller and Hegemier (1995)] this parameter is 
also absent in the standard first term approximation of the asymptotic series. 

With the purpose of formulating the corresponding theory of such a composite we 
use here a nonlinear Cosserat rod model to describe the layers. Application of linear 
classical rod theories to wavy composites is not new, [for example, Feltman and 
Santare (1994), in their study of the forming of thermoplastic composites with wavy 
fibres, used linearized beam-column theory with an additional simplification that the 
fibers are inextensible]. However, the application of the nonlinear Cosserat rod theory 
to wavy composites, as far as we know, has not been considered. In this present study, 
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Fig. 2. Deformation of Cosserat layer. The shaded areas represent material elements in the initial con- 
figuration (with radius vector r, and orientation d,) and in the deformed configuration (with radius vector 

r and orientation d) 

X :0 1 x 

Fig. 3. Deformation of the double layer packet. Solid line represents the common cross-section in the initial 
configuration and rotated cross-sections of the two layers in the deformed configuration. The two segments 
of the material elements belonging to the two layers rotate through angles 0, and O,, respectively. Due to 

Y-periodicity, the upper and the lower ends of the cross-section have the same x-coordinate. 

each layer is represented by its reference curve described by a position vector in the 
deformed configuration and by the rotation of the cross-section attached to the 
reference curve (see Fig. 2). Hence, in the X-Y plane, three independent degrees of 
freedom exist for the cross-section element of any layer of the packet : two translational 
and one rotational. The deformation of the double layer packet is shown in Fig. 3. 
Thus this Cosserat model takes into account extension, flexure and shear deformation 
in the layers. The importance of taking shear into account immediately follows from 
the waviness and periodicity of the considered structure, as shown in Fig. 3. Note 
that in the case when one layer is much stiffer than the other, the deviation between 
the tangent vector and the normal vector to the deformed cross-section can be 
significant in the weak layer. 
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Using the layer interface continuity conditions as well as the periodicity conditions, 
we write relations between the radius vectors of the layers and between the angles of 
rotation of each layer, as well as the relation between distributed forces in the layers 
(which are due to the interface traction forces). We then show that the entire packet 
can be described as a one-dimensional continuum governed by the three independent 
degrees of freedom mentioned above. The equilibrium equations corresponding to 
the translational degrees of freedom can be easily integrated, resulting in a relation 
independent of the specific constitutive equations of the layers. The third degree of 
freedom, related to rotations, is represented by an auxiliary angle from which the 
angles of rotation of each of the layers of the cross-section can be determined. An 
approximate relation for the distributed moments in the layers is proposed ; using this 
relation, we write the basic equation for the rotational degree of freedom. It is worth 
noting that the present model is valid for the full range of material properties of the 
layers ; for example, in two possible extremal cases : if one layer material is much 
weaker than the other, the packet behaves as a single curvilinear layer consisting only 
of the stiff layer ; if the materials of the layers are the same, the analytic expression and 
the results are seen, within the accuracy of the theory, to degenerate to a description of 
a homogeneous continuum. 

The problem is finally reduced to a boundary value problem for a scalar nonlinear 
ODE of second order for the above mentioned auxiliary angle. The calculation of the 
angles of rotation, calculated via this angle, is significantly simplified if the parameter 
H/L is small. In this case the ODE becomes singular and we show that the auxiliary 
angle is determined (asymptotically) as a solution of a transcendental equation. The 
determination of the deformed shape of the layers as well as the relation between the 
elongation of the periodic cell and the applied tension force is then reduced to 
nonlinear quadratures. 

An analytical solution of the problem for the case of small, but arbitrary, initial 
waviness is also presented. Numerical results of the problem under a prescribed 
moderate initial waviness are given for different relations of the Young modulus of 
the layers and various values of the H/L structural parameter. A qualitative analysis 
of the results is presented. 

For small values of H/L, the resulting stress-strain curves given by Chou and 
Takahashi (1987) are in good agreement with our results. However, we show that, as 
expected, for increasing values of the parameter H/L, the flexural behavior assumes 
greater importance and the overall behavior changes significantly, particularly if the 
material properties of the layers differ strongly. 

We mention here a restriction imposed by the proposed model, namely that neither 
the shear nor the elongation of the materials can be too large. This large shear 
can possibly arise if the stiffnesses of the layers differ greatly under a low volume 
concentration of the weak layer. In this case we would observe a large shear in this 
layer leading to a large deviation between the tangent vector and the cross-section in 
the layer. As a result, the geometrically nonlinear-but physically linear-model 
would not be valid. Note that in the opposite case, which is of more practical 
importance, i.e. when the volume concentration of the stiff layer material is small, 
this effect does not appear and the model is appropriate. 

While the investigation is in the framework of a geometrically nonlinear Cosserat 
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model using linear constitutive equations, the approach is, however, quite general 
and is equally valid for nonlinear constitutive equations. 

2. FORMULATION OF THE PROBLEM 

2.1. The initial geometry and boundary conditions 

We consider an infinite composite material composed of a slightly curvilinear 
(“wavy”) double layer structure (Fig. 1) which undergoes extension in the X-direction. 
In the initial configuration each layer has the same period 2L in the X-direction and 
the set of two layers is periodic with period H in the Y-direction. We shall refer to 
each layer as the a-layer (a = 1,2), and to the set of the two layers as the double 
layer packet or, more briefly, as the packet. The cross-sections of each a-layer, lying 
perpendicular to the X-axis are assumed to have a constant thickness in the Y- 
direction, H,, such that the thickness H of the packet is 

H=H,+H2. (2.1) 

Layers in the packet differ by their material properties and by layer thicknesses. 
Assuming the packet to be slender (H c 2L) we shall apply rod theory to each layer. 

In this model, the interfaces between the layers in the initial configuration are 
specified to have the same shape, 

Y = Y,(x), Y,(x) = Y,(X+2L), (2.2) 

where Y,,(X) is a given function expressed in Lagrangian coordinates. This function 
therefore represents a template curve which, when shifted in the Y-direction, defines 
the interfaces. 

We assume further that Y,,(X) is an even function with zero slope at X = 0 and 
X = L, i.e. 

dye(O) dYo(L) o 

Y,(x)= Y,(-x), dX=dX= f (2.3) 

By virtue of the periodicity in X, and the properties (2.3), a solution to the problem 
can be obtained by investigating a given cell, 0 d X d L, - CD d Y < GO. 

Due to application of a tension force to the material in the X-direction, the material 
undergoes deformation with displacements in the X- and Y- directions. We denote 
the position vector at any point in the deformed configuration by x = xi+yj. 

Corresponding to the applied extension and periodicity of the structure, we impose 
the following boundary conditions (Fig. 2) : 

i. x(0, Y) = 0, x(L, Y) = 1, (2.4) 

where 21 is the period of the deformed cell. 

ii. The shear stress along the lines x = 0 and x = 1 (corresponding to X = 0 and 
X = L) vanish. (We observe that this condition is consistent with (2.3).) 
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We further assume that : 
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iii. The surface of the corresponding real body (at “large” 1 Yl) is traction free. For 
the periodical structure considered, it follows that the corresponding forces are 
zero, i.e. Jhcyydx = JAa,,,dx = 0. 

In addition to determining the average traction along the line X = L. as a function 
of the imposed extension, B = (I/L) - 1, the material parameter and the geometrical 
parameters, we wish to determine the shape of the deformed packet. 

2.2. Kinematical hypotheses 

In this section we introduce several kinematical hypotheses which allow us to create 
a rather simple model of the wavy composite, also taking into account the bending 
rigidity of the layers. Specifically : 

(1) We assume, as in common rod/shell theories, that the deformation of the layer 
cross-section is plane (hypothesis 1). 

(2) We assume that the midlines of the layers deform identically (hypothesis 2). This 
leads to significant simplification of the model ; this hypothesis seems to describe 
the true picture of the deformation rather well. Note that such an assumption is 
implicitly made in any theory based on a laminate approach. 

(3) We do not determine the thickness of the deformed layers but assume that the 
thickness ratio is invariable in the process of deformation and is equal to the 
volume fraction ratio (hypothesis 3) ; this hypothesis leads to a relation between 
angles of rotation of the layers. 

The above hypotheses, as well as the force hypothesis 4, lead to a consistent 
phenomenological model of the wavy composite. 

We represent each two-dimensional layer as a rod described by the position vector 
t in the deformed configuration (and r,, in the initial configuration) to its reference 
curve and by a rotation of the “body-particle” attached to the reference curve (Fig. 
2). The body-particle has (in the X-Yplane) three independent degrees of freedom : two 
translational and one rotational. The rotational degree of freedom can be described by 
the rotation of the director, d : 

where 
d = P(O)d,, (2.5) 

( cos e -sin8 
IV) = sin B 

cos 6 ) 

is the plane rotational tensor, 8 is the angle of rotation, and where & and d, 
representing the director in the initial and in the deformed configurations, respectively, 
are each unit vectors attached to the body-particle as shown in Fig. 2. This model, 
representing the simplest (nonlinear) model which takes flexure, axial extension and 
shear into account, is a Cosserat model [see Antman (1972, 1994) and Eliseev (1 SSS)]. 

In considering the kinematical interface condition, we adopt the usual assumption, 
namely (kinematical) hypothesis 1: cross-sections of each a-layer remain plane and 
rotate through an angle 0, (a = 1,2), as defined by the attached directors d,. 
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Noting that the initial shape of all the reference curves is the same, we choose the 
middEe curve of a layer as its reference curve. We further choose the initial arc length 
S along the template curve (2.2) 

S = X(1 + (dY,/dX)2)“2dX 
s 

(2.6) 
0 

as the Lagrangian coordinate for all the layers ; thus we write rOa = r,,(S), do, = do,(S), 
ra = r,(S), d, = d,(S) and 8, = e,(S) where c1 = 1,2 for the double layer packet (Fig. 
3). Note that the intersection of a given line X = const. with the interface curves (f,,, 
I, and I-,) and with the reference curve corresponds to the same value S along these 
lines (Fig. 3). In particular, X = 0 and X = L correspond to S = 0 and SL, where the 
value SL can be calculated by (2.6). 

The initial tangent vector is then the same for both layer curves in the packet, i.e. 

’ =r’ -_t r. I 02- 07 (2.7) 

where (. .)’ denotes d(. .)/dS, and where to is the tangent vector to the initial layer 
reference curve. 

It is convenient to choose 

dOo,=j (a= 1,2) (2.8) 

for all body points in both layers. Then due to (2.5) we have 

d, = - sin 0,i + cos f3J. (2.9) 

We note that the director, (2.8), associated with the cross-section, is not orthogonal 
to the initial tangent vector; it lies in cross-sections which initially are cut by lines 
X = const. 

Upon deformation of the packet, the initial interface curves fk (k = 0, 1,2) map to 
the deformed interface curves Yk (k = 0, 1,2) (Fig. 3). However, due to the periodicity, 
the boundaries of the packet y. and y2, must necessarily have the same shape. Fur- 
thermore, due to the Y-periodicity on the packet interface, points (lying on To, I,) 
which have the same X-coordinates in the initial configuration have the same X- 
coordinates in the deformed configuration (Fig. 3). This leads us to (kinematical) 
hypothesis 2 : 

r;(S) = r;(S) E r’(S), (2.10) 

namely all reference curves deform identically. 
By virtue of the periodicity and the displacement continuity condition at the inner 

interface line, y,, we have (Fig. 4) 

h, tan0, +h2 tane2 = 0, (2.11) 

where h, (a = 1,2) are the projections of the rotated cross-sections in the y-direction. 
We observe that the angles 0, and 0, have different sign and that the values h, and h2 
are unknown. 

In the present investigation, we need not determine h, and h, but we instead assume, 
as an approximation, namely (kinematical) hypothesis 3 : 
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1 

Fig. 4. Traction vectors f,’ (a: = 1,2) (per unit initial length) acting on a-layers at the interface of the 
deformed material elements. Note that due to Y-periodicity, fz = -f; and due to continuity of the traction 

vector, f; = -f:. 

hl HI 01 -=-=_ 
h2 H2 02 ’ 

(2.12) 

where v, and v2 are the initial volume fractions of the layers such that v, + v2 = 1. We 
can then rewrite (2.11) as? 

v, tan@, +v, tan& = 0. (2.13) 

2.3. Distributed loadfactors hypothesis 

The governing rod equilibrium equations are 

Q’+q = 0, M’+r’xQ+m = 0, (2.14) 

where Q and M are the vector force and vector moment acting on a cross-section and 
q and m are distributed load factors, respectively. For the two-dimensional problem 
under consideration, M = Mk and m = mk, where k is a unit vector orthogonal to 
the X-Y plane. Then, using (2. lo), for each a-layer in the packet, we have 

Qi+qa = 0, Mi+k*r’xQ,+m, = 0, c( = 1,2, (2.15) 

where qa and m, now represent the distributed forces and moments acting on each 
layer at the interfaces. Since the layer shapes are known in the initial configuration, 
we write our relations in terms of Lagrangian coordinates; the distributed loads q1 
and m,, appearing in (2.15), are therefore expressed per unit initial length. 

t Note that if the initial layer shape is only slightly curvilinear, then the angles of rotation are small, 
except for one case, namely where the stiffnesses of the layers differ greatly and the volume concentration 
of the weaker layer is very small. For example, let layer number 1 be the weaker layer with small volume 
concentration, U, << 1. (The limit case of this situation is a curvilinear crack.) Then from (2.13), we have 
18,l >> IQ; however, since for this case the interaction between layers is clearly very weak, the angle O2 of 
the stiff layer approaches the angle of rotation of a free layer and, for an initial shape having only slight 
curviness, O2 is necessarily small. Thus, the relation (2.13) remains valid for moderate or large values of 8, 
where 6, can be considered as a function of Oz. Furthermore, since for this case, 19, is small it can be 
approximately determined by linearization of the rod differential equation with respect to the angle. 



Wavy composites under tension 1365 

Similarly we denote the actual traction vectors (per unit of the initial length) which 
act upon the upper and lower interface of each cc-layer, respectively (Fig. 4), i.e. along 
the initial curves To, r,, and r2, by f,’ (5’) and f;(S) (a = 1,2). 

Due to the Y-periodicity, in the vertical direction, the tractions at the upper and 
the lower side of the packet must satisfy the relation 

fi’(s) = -f;(s). (2.16) 

Moreover, within the packet, the required traction continuity condition is clearly 

f?(s) = -f:(s). (2.17) 

The distributed loads, therefore, are given by 

q*(s) = C(S)+f;(S), 

Q,(s) = f:(S)+f;(S) = -(f:(S)+f;(S)h 

and we arrive at the result 

%(s)+%(s) = 0. 

Adding the two force equilibrium equations together, 

and using (2.19), we have 

(2.18) 

(2.19) 

Using boundary condition ii, namely the absence of a shear force at the cell boundary, 
it follows that Ql(sL) = F,i and QZ(SL) = F,i. Although F, and F2 are unknown, their 
sum, F = F, + F2, is precisely the force acting on a typical packet which can be related 
to the elongation. From (2.20), we therefore arrive at 

(2.21) 

Note that this equation is a consequence of the periodicity and of the traction 
continuity condition. The validity of the relation is not restricted to the case of small 
deformations ; it is equally valid for finite deformations. 

We now seek a relation between the distributed moments m, and m2 which is 
independent of the unknown traction forces at the interfaces. We first observe that the 
total distributed moment m, produced by the traction forces at the interfaces is 
(Fig. 4) 

b-4 
m =----x(f,t-f;), I 

2 cos 0, 
nosum(a = 1,2). (2.22) 

Due to the periodicity condition and the traction continuity at the interface, we have 
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f:-f; =f,‘-f,- SSg, 

so that 

hA 
m il =-xg, nosum. 

2 cos 8, 

Representing g as 

g = g.4 +s,L 

and taking into account (2.9) we arrive at 

h, 
m, = - -(gx +g, tan 0,) no sum. 

2 

Here mar = m,k. We now adopt the following as (force) hypothesis 4 : 

for all small and moderate 19,, from which 

m, 9x -_= -- 
h, 2 ’ no sum’ 

We then arrive at the critical approximate relation 

which, by (2.12) becomes 

m&K) m2 (s) --= 
h, hz ’ 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

v2ml = vlm2. (2.30) 

Using (2.30), we now multiply the moment equilibrium equation (2.15) for the first 
layer by v2 and the equation for the second layer by v, ; upon subtracting the resulting 
expressions, we obtain 

v,M;-v2M; +k.r’x(v,Q,-v,Q,) = 0. (2.3 1) 

The force equilibrium equation (2.21) (two scalar equations), the moment equation 
(2.3 1) and the angle compatibility relation (2.13) are thus four equations for the four 
unknowns : the deformed shape r’ and the two angles 8, and 8,. 

Alternatively, we note that since there exists a relation between the angles, the 
displacement of the double layer packet has one rotational and two translational 
degrees of freedom ; equations (2.21) and (2.3 1) can then be considered as three scalar 
equations describing these degrees of freedom. 

2.4. The constitutive equations 

We represent the layers by means of an elastic geometrical nonlinear rod model 
under flexure, axial extension, and shear [see Eliseev (1988)]. The constitutive equa- 
tions, applied to each a-rod, are 
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AI, = c,&, Q, = b,T,, no sum (a = 1,2), (2.32a, b) 

where c, denote the flexural rigidities, 0, are the angles of the director rotations, 
defined by (2.5), and where the strain vectors 

F, = r’ - P(d,)t,, (2.33) 

represent axial extension and shear deformation. Note that, here, we have used (2.7) 
and have invoked hypothesis ii, (2.10), i.e. r’ is the common derivative of the radius 
vector to the deformed reference curves of the two a-rods. The symmetrical tensors 
b, are determined by the initial rigidity tensors B, as 

b, = P(OJB,P(BJT, no sum (a = 1,2), (2.34) 

where B, = B,(S) are symmetrical and positive definite tensors : 

B, = B;, e*B,e > 0, for alle: Jel = 1. (2.35) 

In accordance with our formulation, we choose to represent the rigidity tensor by 

B, = H,(E,i 0 i+ G,j @ j), no sum, (2.36) 

where Em and G, (a = 1,2) are the effective Young’s modulus and shear modulus of 
the or-layer. Note that this representation differs from the usual one [see Eliseev 
(19fW1, 

B, = A,(E& 0 t,, + G,no @ n,), no sum, 

where A, is the area of the cross-section perpendicular to t,,. The differences with 
(2.36) lie in the difference of the principal directions of the tensors. This difference 
can be schematically illustrated as the difference in the orientations of the body-points 
at the reference line : the body-points are initially oriented normally to the reference 
line [Fig. 5(a)] ; in our model the body-points in each layer have the same initial 

do= no d, = j 

0 x ‘0 X 
(4 @I 

Fig. 5. Variant representations of the initial orientation of material elements 
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orientation in the y-direction [Fig. 5(b)]. Further, we adopt the standard rod theory 
representation for the flexural rigidity? 

H:E, c a =-- nosum (a = 1,2). 
12 ’ 

(2.37) 

The force equilibrium equations for the packet, (2.21), are then written as 

b,T, +bJ, = A. (2.38) 

3. SOLUTION TO THE SYSTEM OF EQUATIONS 

3.1. The general solution 

Substituting (2.33) in (2.38) we have 

(b, +bz)r’-b,P(81)to-b2P(~,)t, = fi, 

from which 

(3.1) 

r’ =(b, +b*)-‘(A+b,P(8,)to+blP(82)to). (3.2) 

Using (2.34) and the identity PPT = 1 (where 1 is the unit tensor) we can finally write 
this relation as 

r’ =(P(e,)B,PT(B,)+P(~2)B2PT(~2))~‘(~+P(el)BltO+P(e2)B2t0). (3.3) 

We observe that the last expression yields an explicit form for r’ as a function of the 
angles 8, (a = 1,2). 

Let us introduce the angle Sz = R(S) which determines the initial tangent vector to 
to the template curve (2.2) 

to = P(R)i. (3.4) 

Using (2.3), 

n(0) = 0, Q(S,) = 0. (3.5) 

Substituting (3.3) back into (2.33), we obtain the strain vectors r, (a = 1,2) as 
functions of the angles 0,. Making use of (2.32a), equation (2.31) assumes a form 

v,c2e;-v2c,tqf+~,2 = 0, (3.6) 

where 

A,, = k*r’x (v,Q2-vZQI). (3.7) 

Here A,2 depends on the unknowns 0, (a = 1,2). Note that due to (2.21) and since 
v,+v2= l,wehave 

t For rods of constant transverse thickness %, the flexural rigidity is usually defined as c = X3&/12. In 
the present problem, the Y-thickness is constant, and we note the approximate relation Z = cos(R)H,, 
where R is the angle of inclination of the initial rod curve with respect to the X-axis. For small R there is 
no significant difference between this relation and 9 = H,. 
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~,Qz-usQ, = ~~(Qz+QI)-(u, +dQ, = ~,fi-Q, 

and therefore 

A,,(B,,B,;R,F ,...) =k.r’x(v,fi-P(6,)B,PT(8,)r’+P(t’,)B,fO), (3.8) 

where r’ is determined by (3.3). Here ellipses denote symbolically the material con- 
stants of the layers as well as the volume concentrations u, and Q. 

The relation (2.13) can be satisfied identically by letting 

8, = -arctan(v,o), 

8, = arctan(v,o), (3.9) 

where the angle cc) here represents a rotational degree of freedom of the double layer 
packet. 

Due to the boundary conditions (2.4) along the material lines X = 0 and X = L, 

these material lines remain vertical in the process of deformation and consequently 
rotations necessarily vanish. We therefore arrive at the boundary conditions 

l!&(O) = 0, &(S,) = 0, LY. = 1,2, (3.10) 

and hence, from (3.9), we obtain 

o(0) = 0, C&s,) = 0. (3.11) 

Using (3.6) and (3.9), we finally write the governing equation as 

D2(0)+A12(0;n,F )...) = 0, (3.12) 

where 

02(o) = (c,u,arctan(v,o) fc,v,arctan(v,o))“. (3.13) 

Here 

;i,&o;Q,F ,...) =A,,(O,(co),Or(~);Q,F ,... ). (3.14) 

Thus, (3.12) which represents the final governing equation of the problem, is a 
nonlinear ODE of second order subjected to the boundary conditions (3.11). 

Note that for the case of equal volume concentrations, zi, = vz = l/2, the relation 
between the angles 8, and 0, is simplified : 

8, = -02, 
1 

ifv, =v2 =-, 
2 

(3.15) 

and equation (3.6), together with the boundary conditions (3.10), takes the simpler 
form 

~(c~+c,)S;+~,*(e?;~,F,...) = 0, ‘b(O) = 0, ‘A@,> = 0. (3.16) 

Here 

&2(02;R,F ,...) =A,z(-Oz,Bz;Cl,F ,... ). (3.17) 
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Upon determining the angles, we can then calculate r’ by (3.3) and, by integration, 
find the new shape of the packet. In particular, the relation between the actual half- 
period I of the packet with respect to the x-coordinate and the applied average 
extensional load F is given by 

SL 
1= 

s 
i - r’(el, e2 ; R, F, . . )dS. (3.18) 

0 

3.2. The limit case of the homogeneous material 

It is of interest to discuss the limit case, namely where the layers consist of the same 
material, in which case the composite behaves as a homogeneous material. In this 
case, under tension in the X-direction, the solution is represented by constant stress 
and strain fields and no rotation along any vertical lines can occur. We now dem- 
onstrate that our general analysis leads directly to this physical state. 

We first note that the initial rigidity tensors B, are proportional to the volume 
concentrations u, (a = 1,2). Let B, be the rigidity tensor of a rod with Y-thickness, 
H, H = H, + Hz. Since the material in both layers is the same, we have 

B, = v,B,, B2 = v,Bo. 

Thus, owing to the constitutive relation (2.32), (2.33) and (2.34), 

(3.19) 

Q, = W,, b, = u,P(B,)BoPT(B,), r, = r’-P(B,)to, no sum. (3.20) 

Now, in principle, one can construct r’ by (3.3) and, using (3.8) and (3.9), obtain A,2 
given by (3.14). 

This process leads to rather complex algebraic manipulations and a detailed inves- 
tigation of the resulting nonlinear ODE. Instead, let us assume that the problem for 
the homogeneous material has a unique solution, namely as mentioned above, that 
no rotations occur at any points and that the resulting stress and strain fields are 
constant. We then need only show that 

O,(S) = 0, t&(S) = 0, foranyS (3.21) 

are a solution to the homogeneous problem. To satisfy (3.6) we require, in this case, 
that 

k*r’x(v,Q,-u,Q,) = 0. (3.22) 

Noting that P(0) = 1, the unit tensor, and using (3.19))(3.21), we have 

r, = r2 = r/-to, 

Q, = ulQo, Q2 = 02Qo, whereQo = BOG-'-to). 

Thus we obtain 

v,Qz-vzQ, = 0, 

and hence (3.22) is satisfied. 

(3.23) 

(3.24) 
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Let us now consider the displacement field. Noting again that zi, + u2 = 1, due to 
(2.21) and (3.23) we have 

B,(r’-t,) = Fi. (3.25) 

In passing, we observe that (3.3) leads to this same result. Since t,, = rb and 

u = r-r0 (3.26) 

defines the displacement vector of a reference line, from (3.25) we have 

u’ = FBg’i. (3.27) 

Since the materials of the layers are the same, E, = E2 = E, G, = G2 c G, and since 
B. = B, +B,, using (2.36), we obtain 

B, =H(Ei@i+Gj@j), H=H,+H2, (3.28) 

or 

B;’ = H-‘(E-Ii @ i+G-‘j @ j). (3.29) 

Since F = Ho0 and q, = EE,,, where q, is the only component of the unidirectional 
constant stress field, c = o,,i 0 i, and s0 denotes the E,, component of the strain tensor 
produced by the stress field, 

F= HE&,,. (3.30) 

Substituting (3.29) and (3.30) into (3.27) we have 

u’ = b$. (3.31) 

Note that u’ = du/dS, and since dX = cosQdS, we can write (3.31) as 

(3.32) 

Comparing this solution with the displacement field under unidirectional tension in a 
homogeneous isotropic elastic body, we observe that it differs from the exact 

expression for u, by terms of order .sO R*, which for JR1 K 1, are of the third order. As 
we shall show in the analytical solution (of Section 4), the geometrical nonlinearity 
in behavior which appears if the layers have significantly different properties, is only 
of second order, i.e. 0’. Thus, we achieve sufficient accuracy in the homogeneous 
problem. 

We note, however, the absence of shrinking of the material in the Y-direction due 
to the elongation in the X-direction, i.e. uy z 0 in solution (3.32). This defect of our 
theory is to be expected since in the rod theory as developed here, we have neglected 
the degree of freedom representing thickness changes. 

3.3. The limit case H/L + 0 

It is known that the mathematical theory of homogenization of periodic structures 
can be formulated in terms of the asymptotical behavior of a solution if the size of 



1372 A. CHISKIS et al. 

the structural element approaches zero [see Bensoussan et al. (1988)]. In our case this 
corresponds to the limit H/L * 0. 

Since the flexural rigidities (2.37) are to the third degree with respect to H and the 
stiffness matrices B, (LY. = 1,2) (2.36) are to the jkst degree, upon introducing a 
nondimensional arc length, s”= S/SL~ [0, 11, we can write (3.6) in the following 
nondimensional form : 

1 H2d2 -- 0 E2 

12 L dS”2 
( “‘“:E,+E, --e,+uiv:& @ 

1 1 2 

)O + 3 *~,2(&,&;Q~,...) = 
L E,+E2 

o 

’ 

(3.33) 

where 8, and e2 are related by (2.13). Here we have used the obvious relation between 
stress r~ and the force F = Ha, and 

K2(tLe2;fi,a,. ..) =H-1A12(e1,02;n,H0 ,... >. (3.34) 

Since A,, is a homogeneous function in H of first degree, we observe that II,2 depends 
only on a and not on H; note too that S,/L - 1. 

The ODE (3.33) is clearly singular since the small parameter H/L is attached to the 
highest derivative. Thus, except near the ends S = 0 and S = S,, we can expect the 
solution to behave as a solution of the system defined by the transcendental equation 

and (2.13)t. 

I112(e,,e2;R,a ,...) =o (3.35) 

It is also known from the general theory of singular equations that one can formally 
expect the existence of boundary layers if the solutions of (3.33) and (2.13) are 
incompatible with the boundary conditions of the equation. However, we now show 
that the boundary conditions (3.10) are compatible with the system (3.35) and (2.13) 
and hence the solution of (3.35) and (2.13) approximates the solution in the entire 
interval S = [0, S,]. Specifically, we require that Al2 vanish at S = 0 and S = S,. To 
demonstrate this we need only show that 

and 

Q,(O) = - i, Qa(SL) = - i, (a = 1,2), (3.36) 

r’(0) = - i, r’(S,) = - i, (3.37) 

since this then guarantees that the vector product (3.7) is zero. Here, the symbol 
6‘ = _ ” means “parallel to”. 

We first substitute 0, = 0 and e2 = 0 into (3.3). Since at the boundaries t,, = i, we 
arrive at (3.37). Using the same value for 8, and e2 together with the relation of (3.37) 
and making use of (2.33)-(2.36), we arrive at (3.36). 

Therefore, no boundary layers exist in the solution and accordingly the solution of 
the system (3.35) and (2.13) is asymptotically valid in the entire interval S = [0, S,]. 
Hence for the case H/L << 1, II,, = 0 [together with (2.13)] yields solutions that are 
valid in the entire interval. 

t On the other hand, introducing o according to (3.9) somewhat simplifies th .Inalysis of the system by 
reducing it to one transcendental equation. 
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4. ANALYTICAL SOLUTION FOR SMALL INITIAL WAVINESS 

4.1. Determination of angles of rotation 

We consider here the case of small initial waviness, i.e., 

\fll << 1. (4.1) 

It is clear that the angles 8, and 8, are then also small. Performing linearization of 

A,*, (3.8), with respect to 8, and Q [where r’ is given by (3.3)], we obtain [see (A.19) 
of Appendix A] 

A,, = -v,u,H((l +E)G~IG,GZ(~~-~,)+(~+~>(E~ -E,)E), 

where, here and below, we use the following notation : 

G = v,G, i-v,Gz, E = v,E, +vzE2, 

@= G-‘@,e, +g&), 

(4.2) 

ga = v,G,, fa = u,E,, nosum(cc = 1,2), (4.3) 

and 

F 

E = = (4.4) 

and where G and E are the “averages” of the shear modulus and the Young’s modulus 
in the simple sense : i.e. < A > = u,A, +u,A, for any constant A. 

Linearization of the relation between 8, and f&, (2.13) leads to 

v,o, +v*& = 0, (4.5) 

which can be satisfied by letting 

8, = -VOW, e2 = vl~. (4.6) 

From (4.3) and (4.6), 

@= u,v,G-‘(G,-Gl)o. (4.7) 

Finally, using (4.2), (4.6) and (4.7), we represent the linearized A&o; 0, E, . . ), 

(3.14), as 

where 

&*(cqR,&,.. .) = -Aw-K,R, (4.8) 

and 

A = ~,~,H((~+E)G-‘G,G~+v,u~G-‘(G~--G,)(E~-E~)E) (4.9) 

& = v,v,H(E, - EI)~ (4.10) 

are constants. It is important to note that A is always positive under extension, E > 0 
[see proof in Appendix (A.6)]. 

Linearizing (3.13) with respect to w, we write (3.12) as 
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where, from (2.37) 
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(v:c* +z$c,)w”-Ao-KJ2 = 0, (4.11) 

(4.12) 

H;E, H;E, c=v:- I2 +“:F. 

Finally, using H, = v,H (a = 1,2) and (4.3) we obtain 

c = v2v2 (v2E2 +VIEl)H3 = +; gg 
I 2 12 12 . 

(4.13) 

Now, R is usually given as a function of X and not of S. The exact relation, via the 
template curve (2.2) is 

dYo(X) tan@) = dX, 

which, in linearized form, is 

n = dYo(X) 
dX 

(4.14) 

(4.15) 

Since 

dS RZ 
-=cosR- l-y, 
dX 

and neglecting the cubic-order terms, we replace w” in (4.12) by (d2cu)/(dX2). 
Assuming now w = o(X) and noting that X = L corresponds to S = S,, we write the 
boundary conditions (3.11) as 

o(0) = 0, o(L) = 0. (4.16) 

The solution of the ODE (4.12) with the boundary conditions (4.16) for arbitrary 
R is 

w(X) = 5 r LG(X, T)LR(T)dT, 

where the Green function G(X, T) is given by$ 

(4.17) 

t In the limit case G,/G, + 0 and E,/L$ + 0, this equation approaches the free rod equation 
czB’; -H2E2.e(lJZ +Q) = 0 for the second layer. 

$ It is clear that G(X, 7) satisfies the equation (d’G)/(dp) -L’G = 0 for X # T for zero boundary 
conditions and that G(X, 7’) is continuous at the point X = T with a jump of the first derivative, 
[(dG)/(dX)] = 1. Thus, G is the Green function for (d*G)/(dp) -A*G = 6(X-T). 
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sinh(kX) sinh[l(l- T)] 

G(X, T) = 
il sinh(ll) ’ 

sinh[A(l- X)] sinh(lT) 

A sinh(ll) ’ 

ifX< T, 

ifX> T, 

137.5 

(4.18) 

with 

1 = (C-‘A)“*. 

Consider the simplest case, where R is sinusoidal : 

(4.19) 

a= -0,sin 7rnL ; 
(“) 

this case corresponds to a cosinusoidal template curve (with small waviness), 

Y, = Aces 7cx (“) ) 

(4.20) 

(4.21) 

where the relation between Q, and the initial cosine amplitude A is 

n, = nA. 

The solution of (4.12) with boundary conditions (4.16) is 

(4.22) 

w(x) = - 
KO 

g+* 

Q2, sin 7cL 
(9 

, 

or in an abbreviated form 

o(x) = -KQ(x), 

where, using (4.9) (4. lo), and (4.13) 

K= 
(Ez - E, )E 

rr2W’o,vzE$+(1+E)G-‘G,G,+u,u,G’(G,-G,)(E,-E,)e 

(4.23) 

(4.24) 

(4.25) 

4.2. Determination of the deformed layers shape 

Expanding (3.3) in a Taylor series with respect to 13, and t12 and using the notation 
of (4.3), we obtain? (see Appendix A.3) 

t Noting that G and E can also be written as G = g, +gz and E =A +f2, for the case,f, CC ,fi and g, << g2. 
(4.26) approaches 

x’= I+&- 
(R+tJz)z 

2 ’ 

y’ = cl+o,. 



1376 A. CHISKIS et al. 

x’ = 1+.5--T --E-‘(f,O, +fie,)*+/qe,,e,>, 

y’ = n+e. (4.26a) 

where /I, representing second order terms, is given by 

B(e,, 6) = E-‘G-’ - ;f,g, + ;f,g2 -g,g2 e: 

+E-'G-' - ;f& + ;fk, -9192 0: 

+E-‘G-‘(-fig2 -hg, +2g1g&e2. (4.26b) 

Here x’ is written to second degree accuracy?, i.e. the remainder is O([O,, e2, Q, E], 3), 
and y’ is written with linear accuracy, i.e. the remainder is O([O,, &, R, E] 2). 

Substituting the relations (4.6) into (4.26), the resulting expressions have the 
structure 

R2 
x’ = l+&- 1 -A,oR+B,02, 

y’=R+A w Y 2 (4.27) 

where A,, B,, and A, are constants which are determined below. Here x’ and y’ are the 
derivatives with respect to S. Since dX = cos(R)dS, we then have with corresponding 
accuracy (quadratic for x’ and linear for y’) 

dx 
hx= 1+s-AA,~Q+B,02, 

J$= R+A,o. (4.28) 

Comparing (4.26a) and (4.27) and using (4.7), we have 

A, = u,zI~G-‘(G~ -G,). (4.29) 

Similarly, using (4.6), 

A, = zI,v2E-‘(E2 -E,). (4.30) 

To calculate B,, we first note that B,d = /I( - u20, up), where p is given by (4.26b). 
Then, after some manipulation, collecting coefficients of m2, we finally obtain 

B, = v,v2E-‘G-’ D2G2;v1G’(~2EL -v,E,)+v,v2(E,G2+E2G,)-GIG2 1 . 
(4.31) 

t We employ the notation O([a;la?. a”,M],N) to designate all terms O(ayla2.. .a>) such that 
Ci”,c(, = N. 
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Once w(X) has been determined by (4.17), we obtain x = x(X) and y = y(X) by 
integration of (4.28) : 

x(X) = s x dx 
- dX, y(X) = const + 

0 dX s 

x dy - dX, 
0 dX 

where we have used the boundary condition x(0) = 0. Note that no boundary con- 
dition exists for y(0) ; the translation in the Y-direction is arbitrary and is not con- 
strained by the force boundary condition. Therefore, generally speaking, the constant 
is arbitrary. Since x and y are coordinates of the deformed template curve, we can 
always assume that the initial template curve (2.2) satisfies 

s 

L 

Y,(X)dX = 0, 
0 

and thus determine the constant by demanding that 

s 

L 

y(X) dX = 0. 
0 

If, in particular, 0(X) is sinusoidal, using relation (4.24) we have 

dx 
dX = 1 +E+(A,K+B,K2)R2, 

g= (1 -A,K)R. 

Performing the integration we obtain 

x(x) = 1 +E+ qqA,K+BxK2) x- ( ) ; 
+$A$+ B,K’) sin 

0 
271 z 

y(x) = (1 -L4A,K)n-‘RoLcos xx 
0 

We observe that the function y(X), 

y=acos 71-, 
0 L 

(4.32) 

(4.33) 

(4.34) 

has the same shape as Y,(X), (4.21), but with different amplitude. From (4.22) and 
(4.33), we then obtain 

a 
- = l-A,.K, 
A 

(4.35) 

which, using (4.25), we can write explicitly as 
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a 
212-‘u,v, g +(I ++!-‘G-‘GIG, 

-_= 
A 2 

n2l2~1~,a2~+(I+~)E-‘G-iG,G2+~,~;E-’G-’(G2-G,)(E,-t.,)~ 

(4.36) 

We remark that this relation for the relative amplitude does not depend on R,,. We 
note, however, that in the above analysis, R, has been considered to be small; for 
moderate Q,, as will be shown by numerical calculations (in Section 5), there exists a 
weak dependence on R,. 

4.3. Force-elongation relation 

The relative elongation of the packet in the X-direction, 

tT=l--L 
L 

can be also represented as 

(4.37) 

(4.38) 

here ( . . . ) denotes the averaging # = L- ’ 
s 

“f dX. 
0 

The aim here is to obtain B = .?(q or, using (4.4), B = E(E). We first observe that 
dx/dX is a function of E and w. For any arbitrary initial shape of the template curve, 
this problem can then be solved using Green functions given by (4.18). Owing to 
(4.28) and (4.17) we then have 

I = E - A,Z, (E) + B,Z, (E), (4.39) 

where, noting that the Green function (4.18) depends on E via A [see (4.19) and (4.9)], 

I, (E) = $T ; 
L L ss G(T, T)R(T)C2(7”)dTdT, 
0 0 

; 
Z,(E) = $ ; P(T, T)R(T)R(T)dTdT, (4.40) 

where the symmetrical kernel P(T, Y) is defined as 

s 

L 

P(T,T) = G(X, T)G(X, T’) dX. (4.41) 
0 

We observe that the integrals of (4.40) are of second degree in R. 
In the particular case of a cosinusoidal initial shape, due to (4.33) and (4.37), we 

have 
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E(E) = E + $(A,K + &K2) (4.42) 

where K = K(E) is represented by (4.25) and A, and B, are given by (4.30) and (4.31) 
respectively. Here we note that E depends explicitly on the second order of Q. 

Some simplifications of the relations for A,, A?,, B, and K can be achieved in the 
case of equal Poisson’s ratios (see Appendix B). 

5. NUMERICAL RESULTS AND DISCUSSION 

In this section, we first present numerical results for the nonlinear problem for- 
mulated in Section 3 and compare with the approximate analytical solution derived 
in Section 4. 

As a typical case of a wavy composite, we shall assume that the initial shape of the 
template curve is cosinusoidal : 

The initial inclination, Q(X) with respect to the axis X is then 

0(x) = -arctan(?sin (7r$), 

and hence its maximal value is 

R, = arctan $ 
( ) 

(5.1) 

(5.2) 

(5.3) 

Let 

I, = 
s 
‘(1 + (d Y, dX)2)“2dX (5.4) 
0 

denote the original arc length of the layer contained within a typical half-cell 
(0 < X < L). Observing that I, corresponds to pure geometrical straightening of the 
template curve along the X-axis with no axial strain, the corresponding relative 
elongation [see (4.37)] is then 

By integrating (3.16) numerically and using (3.15) (the volume concentrations are 
assumed to be equal, vi = u2 = 0.5), the angles of rotation 8, and e2, are first obtained. 
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Fig. 6. Effect of 

0.6 

0 2 4 6 8 10 12 

z(%) 

Poisson’s ratio on stress-(macro) strain curves for typical values of 
U, = U> = 0.5, KH = 0.05, R. = 30”, Y, = 0.40. 

The x’ and y’ components of r’, determined by (3.3), are then substituted in 

r 
SL 

r 
SL 

x’dS y’dS 

KE = .%/EI; 

Jo Jo 
e=--1, a= __. 

L 2 ’ 
(5.5a, b) 

which, integrated numerically, determines the “macro” strain B and the amplitude a 
of the layers in the deformed state. Note that, in the above, S, = I,. 

Clearly, the initially cosinusoidal template curve (5.1) after deformation is no longer 
purely cosinusoidal ; therefore the term “amplitude” as defined in (5.5b) by the simple 
rule [y(O) -y(S,)]/2, is used here in the loose sense. Nevertheless, this quantity can 
help to describe qualitatively the inner processes of the deformation of the template 
curvet. Note that in the initial state a = A and for a straight template curve a = 0. 

In presenting the results below, we shall consider layer 2 to be the stiffer layer. We 
first show the relation between the stress, 0, and macro strain, E, for several values of 
the Poisson’s ratio of the stiffer layer, v2, and for various ratios of the Young’s moduli 
of the layers, KE, with a given value of the relative thickness of the packet, KH : 

KE = El/E,, KH = H/L. (5.6) 

The corresponding D-E curves are shown in Fig. 6 for material constants$ E2 = 100 

7 It is intuitively clear that the deformed template curve (corresponding to the initially cosinusoidal 
shape) decreases monotonically from y(O) to y(S,), and therefore a = 11~11. Now, the template curve 
evidently preserves the central symmetry with respect to the material point (X, Y) = [5’,/2,y(S,/2)]. Thus 
the amplitude which we have introduced is the maximum value of the functionf(S) = y(s) -y(S,/2) and 
therefore it is, in fact, its L, norm. 

$ Since the plane problem is under consideration, for any given material, E, and Y,, the stiffness matrices 
B, (a = 1,2) are calculated according to the plane strain relations [see, e.g., Little (1973) or Fraeijs de 
Veubeke (1979)] using the effective Young’s moduli and shear moduli 

respectively. 

4 4 

1 -vi and 2(1-v,) 
~ (a = 1,2) (nosum), 
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Fig. 7. Effect of 

Fig. 8. 
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K,, = H/L on stress-(macro) strain curves for some typical values of 
U, = U2 = 0.5, n, = 30”. 

KE = ET/E,; 

0 0.2 0.4 0.6 0.8 1 

u (GPa) 

Amplitudestress curves for typical values of Kz = E2/EI, KH = H/L; t'l = uz = 0.5, % = 30” 

GPa, v2 = (0.10,0.25,0.40), KE = (10, 102, 103, 104) and v, = 0.40; the maximal initial 
angle is taken as R,, = 30”, KH = 0.05, and the volume concentrations are assumed to 
be equal, ui = v2 = 0.5. We observe that the behavior depends strongly on KE but, for 
any given KE, is almost independent of the Poisson’s ratio. Thus, in the further 
investigation we choose the specific values vi = 0.40 and v2 = 0.25 and will concentrate 
our attention on the influence of the parameters KE and Kj,. In choosing a value for 
v, we have been guided from experience that the weaker layer in a composite, i.e. the 
matrix, is usually made of a slightly compressible material such as a polymer. 

Figures 7-10 describe the response of the wavy composite under tension using 
different variables. In each figure, the tension process is represented for typical par- 
ameters KE = { 10, lo*, 104} and KH = {0.01,0.05,0.1}. Figure 7 shows the a-~ curves 
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Fig. 10. The 
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a-e, curves for typical values of KE = E2/E1, KH = H/L; v, = u2 = O&i& 

0, = u* = 0.5, 

= 30". 

in the range GE [0, l] GPa. For values KE = IO* and KE = lo4 the behavior is sig- 
nificantly nonlinear, while for KE = 10 the relation approaches linear behavior. More- 
over, we observe that for KE = 10, the behavior is independent of the parameter KH 
(the curves for several values of KH effectively coincide in Figs 7-10). However, for 
larger values of KE, KE = 10’ and KE = 104, the parameter KH has an increasingly 
greater influence. We observe that for KE = lo4 the a-~ curve approaches that of a 
kink in the vicinity of E x 0.8 for a relatively small value of KH = 0.01 while for 
KH = 0.1 such a kink is completely absent. 

The above behavior, described in Fig. 7, can be explained with respect to the relative 
values of KE and KH. We first recognize that, in general, the flexural behavior of a 
double layer packet, -L < X < L, is dependent on the ratio KH = HfL, i.e. the 
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flexural rigidity of the packet increases with increasing values of &, while as KH + 0 
the packet approaches that of a thin sheet having no flexural stiffness. 

With respect to KE, it is clear in the range [l, co), that as KE decreases, the behavior 
of the medium approaches that of a homogeneous body. (As shown in Section 3.2, 
the derived solution for the behavior of the body approaches that of a single isotropic 
elastic medium as KE -+ 1). Consequently, one should expect &, to have a decreasing 
influence as KE decreases. This is reflected in the linear behavior (independent of KH) 
for a relatively small value of KE, e.g. KE = 10. 

On the other hand, for increasing values of KE (e.g. KE = 104) the composite 
behavior of the medium, by definition, assumes increasing importance and one should 
therefore expect the parameter KH to have a significant influence on the behavior. 

Having recognized that the parameter KH represents effectively the flexural com- 
ponent of the behavior of the material, for a low value, KH = 0.01, the behavior of 
the stiffer layer approaches that of a thin sheet (having effectively a very low flexural 
stiffness). This leads us to an explanation for the kink-like behavior of the KE = 104, 
KH = 0.01 curve in the neighborhood of 8 z 0.8. 

We first note that for the initially cosinusoidal template curve under consideration 
with R0 = 30”, we have from (5.4) S, = 1.07874L and thus, using (5.5a), 8, 
= 7.874%, which is precisely the neighborhood in which this “kink-like” behavior 

occurs. 
To explain this phenomenon further, let us discuss a limiting case. For KE D 104, 

the interaction of the stiffer layer with the weaker becomes negligible. Thus (with E2 

fixed and KE + co) the extension of the composite can be asymptotically represented 
as the extension of a system of separate curvilinear layers. Now, in general, the 
extension of a curvilinear layer is due to the combination of two different mechanisms : 
straightening as a result of unbending and axial elongation. If KH + 0, then the 
flexural rigidity approaches zero, and hence the response of the layer approaches the 
behavior of a thin sheet as previously mentioned. It is clear that under tension, the 
thin sheet first becomes straight (up to E = E,) and thereafter it elongates. Thus, since 
here the two mechanisms occur sequentially, a kink appears in the G-E curve. For 
finite KH, the extension of the rod is governed simultaneously by its bending rigidity 
and by its axial rigidity ; thus, no sharp kink is present. 

The analogy with the thin sheet can be observed in Figs 8 and 9. We note that the 
ratio a/A is clearly inversely proportional to the “curviness” of the deformed layer, 
since a/A = 0 defines a straight layer in the deformed state. From Fig. 8, we observe 
that in the case KE = lo4 and KH = 0.01, the amplitude initially decreases very rapidly 
under a very small stress, since owing to the low flexural rigidity, unbending of the 
layer occurs with little effort. As KH increases, larger stresses are required to straighten 
the layer. As in Fig. 7, we again observe in Fig. 8 that the a/A versus 0 relation is 
essentially linear for a relatively low KE (KE = 10) and is effectively independent of 

KH. 
Figure 9 shows the behavior of a/A versus E. We observe here that for KE = 10 and 

lo* the relation is quite linear. However, for KE = 104, we note that the behavior is 
nonlinear and changes character in the vicinity of B = E* ; this is due to the change in 
the mechanism of the deformation : the initial elongation is due primarily to unbending 
while the latter is mainly due to the axial elongation. We also show in this figure the 
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behavior of the composite for which one laminate in the packet is inextensible. It is 
clear? that in this case (we assume A/L << 1 and thus a/L << 1) we have approximately 

E= &--Ca’, 

where C is a constant. Since B = 0 and a = A in the initial state, we obtain 

a/A = (1 -E/IE*)“~, (5.7) 

which is a purely geometrical relation. For B Q E* we observe that the curve cor- 
responding to KE = lo4 and &, = 0.01 approaches (5.7) asymptotically which reflects 
the behavior of an inextensible thin sheet. 

Figure 10 shows 
defined as 

the relation between the stress and the average axial strain, a,, 

E, = S/s- 1, (5.8) 
where s is the actual arc length determined according to the relation 
s = i>(r’ - r’) 1/2 dS. In contrast with the a-e curves, the curves in Fig. 10 are linear 
for all values KE and KH. Moreover, the influence of KH is not significant in these 
curves. 

As previously observed in Fig. 7, the stress and strain curve is “quasi” linear for 
all values of KH for relatively small values of KE, say KE < 10. This leads us to 
introduce a normalized macro Young’s modulus E, defined as 

E = d:ldu where E”) = v,E, v2E2 

E’O’ ’ 
-++ 
1-v: 1-v:. 

(5.9) 

Here E”’ corresponds to the macro Young’s modulus for the straight laminate com- 
posite under plane strain, The results are shown in Fig. 11 where we observe a very 
strong dependence of B on both Q, and KE We note that, according to its definition, 
asK,-+l,E-+l. 

A comparison of the results obtained by numerical integration with those given by 
the analytic solution of Section 4 for small initial waviness is shown in Figs 12 and 
13. 

Figure 12 shows very good agreement between the numerical solution and the 
analytical approximation (4.42) for R, = 10” and KE = { 10, 102, 103, 104) ; &, = 0.01. 
Since for such Q. the interesting behavior of the a-.? curves occurs under smaller 
stresses (than in the case when R. = 30”), results are given for values a E [0,0.2] GPa. 

In Section 4 we noted that the relation for a/A, (4.36), is independent of Ro. Since 

t For an inextensible line we have f-r = 1 or x’*+y” = 1. Hence x’ = (1 -y’*)r” x I--$” which, 
upon integration, yields I = S, - 0.5 liLy’*dS. Since S, - I= (8, - B)L, we have 

Representing ~(5) = uJ((s), where f(0) = 1, we arrive at 8,--E = CL?, where C = 0.5L-’ jiLy*dS. If 
[Sy’dS does not change during the deformation process or, in particular, if only the amplitude changes 
but f(S) itself does not change in the process of deformation, then C can be assumed to be a constant and 
therefore it is not actually necessary to calculate C. This case is approximately valid for the initially 
cosinusoidal shape considered here but may be incorrect for an arbitrary initial shape. 
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Fig. 11. Effect of Q, on macro Young modulus for different values of I& = EJE,; u, = v2 = 0.5, KH = 0.05. 
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Fig. 12. Comparison between the numerical solution and analytical approximation for Q, = 10” and typical 

values of KE = E,/E,; u, = v2 = 0.5; K, = 0.01. 

(4.36) is an approximation which was derived assuming C&, to be small, it is of interest 
to investigate the influence of R,, on the a/A-a curves. For KH = 0.01, Fig. 13 shows 
a comparison between the analytical approximation, which as we have mentioned is 
independent of Q,, and the numerical solution for a relatively large value of Q,,, 
R0 = 30”. We observe a slight deviation between the analytical approximation and 
the numerical solution for KE = 10 and KE = 100 and note that this deviation almost 
disappears for large values of KE, e.g. KE = lo3 and KE = 104. 

It is of interest to determine the influence of the volume concentration on the 
behavior. Resulting stress-strain curves, determined from the analytical approxi- 
mation (4.42), are presented in Fig. 14 for an initially cosinusoidal packet with 
R0 = lo”, having material properties E, = 0.1 GPa, v, = 0.25, E2 = 100 GPa, 
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Fig. 14. Effect 
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of volume concentration on stress-(macro) strain curves. Results calculated using analytical 
approximation; KE = IO', KH = 0.01, Q, = lo”, u, = 1 -I+ 

v2 = 0.40, by a family of curves with v2 = {0.05,0.07,0.1,0.3,0.5}, v, = 1 -v2 in the 
range cr E [0,0.2] GPa. We observe that initially (say, u2 = 0.5) the curves are clearly 
nonlinear but rapidly approach linearity (when v2 decreases). Furthermore, we observe 
as expected that the composite material becomes significantly stiffer as the volume 
concentration, u2, of the stiffer layer increases. 

Finally, we compare the results given here with those obtained by Chou and 
Takahashi (1987). We first observe that the parameter KH is absent in Chou and 
Takahashi (1987) as well as in Luo and Chou (1988, 1990). It was implicitly assumed 
in these works that KH + 0. (This parameter is also absent in Skoller and Hegemier 
(1995) where, assuming that KH + 0, the first term of the asymptotic expansion is 
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15. Comparison between numerical results (shown by lines) and results of Chou and Takahashi (1987) 
(marked by points) for different values of KE = &/E, and KH = H/L; I_+ = u1 = 0.5, Cl,, z 32”. 

present). Thus, by neglecting the parameter KH in these works, bending rigidities of 
the layers were not taken into account. 

A comparison between the predicted behavior of our model (shown for different 
values of KH = {O.Ol,O.l, 0.15)) and the results of the incremental analysis of Chou 
and Takahashi (1987) (marked by pointsf) is presented in Fig. 15. (The same material 
properties as in Chou and Takahashi (1987) have been used here, namely 
E, = (0.1, 1.0, lo} GPa, v, = 0.40, E2 = 72.52 GPa and v2 = 0.22; volume con- 
centrations U, = v2 = 0.5 ; maximal initial angle Q,, = arctan(0.171) z 32”.) For rela- 
tively small differences in the material properties of the layers (E, = 10 GPa, 
E2 = 72.52 GPa, i.e. for KE = 7.25), the two solutions are in good agreement for all 
values of Km Note that this result is consistent with our analysis of the results of Fig. 
7, where it was found that KH has apparently no influence on the behavior for relatively 
small Kfi However, in the case of a significant difference in the material properties of 
the layers (E, = 0.1 GPa, E2 = 72.52 GPa, i.e. for KE = 725.2), we observe that the 
results given by Chou and Takahashi (1987) are in good agreement only for small 
values of KH, e.g. KH = 0.01 ; for larger values of KH, e.g. KH = 0.1 and KH = 0.15, a 
significant difference exists in the solutions. 

From the above analysis, we may conclude that in order to predict properly the 
behavior for the given problem, one must take the flexural rigidity into account. The 
laminate model, as presented by Chou and Takahashi (1987) as well as by Luo and 
Chou (1988 and 1990), whereby flexural rigidity is neglected, will predict correct 
behavior only for cases where the difference in the material stiffness of the layers is 
not great (KE < 10) and/or where the relative thickness of the packet KH = H/L is of 
the order 0.01. 
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APPENDIX A 

A. 1. Representation of B, and (B, + B,)-’ 

We first represent B, (a = 1,2) and (B, + B,) -’ to second degree accuracy with respect to the 
angles of rotation 0, (a = 1,2). It is convenient to rewrite B,, (2.36) as 

(A.11 

where, using H. = v,H, we have 

h = v,E,, ga = v,G,, nosum. (A.2) 

Thus, owing to (2.34) and (A. l), 

b cos*(g,) +ga sin ‘(&) Cf. -9.) cosW sin(&) 
I 

g. cos ‘(0,) +f. sin ’ (6,) > 
, nosum. * (4.3) 

where “*” denotes a component of a symmetrical matrix. With second order accuracy, we 
obtain 
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b = H fa + @. -f,)e,’ 
? 

( 

cf, -sJem 
* > s,+(fa-s.)e,’ ’ 

no sum. 64.4) 

The inverse matrix, b-’ = @, +b&‘, to second degree accuracy, is then 

b-1 = H-‘E-‘G-1 G+Em’(GD2+D:) -D, 

* > E+G-‘(-ED,+D:) ’ 
(A.5) 

Here we have introduced the notations (note that the subscript Dk means that the term is of 
order k) 

E=.f,+f2> G=g,+g,, 

D, = (fi -s,)e, +U-gzJe2, D, =(f, -s,)e:+(f2-de’. 64.6) 

A.2. Representation of P(B,)B,t, 

Let us denote 

s, = b,P,t,,, nosum. (A.7) 

Since 

P,B,t,, = H 

we have, to second degree accuracy, 

s 
a 

Therefore, we obtain the vector 

> 
, nosum. 

s=s,+s,=H 

f, e, +f202 +gn 

(A.8) 

(A.9) 

(A.lO) 

A.3. Calculation of r’ 

Owing to (3.3) we have 

r’ = bW’(Fi+s). (A. 11) 

We assume E, introduced via (4.4), to be small; i.e. (~1 c 1. Using (A.5), (A.lO), and (AA), we 
write, to second degree accuracy, 

X' = i +e- q -f -l(f,e, +f2e2)n 

1 1 
+E-‘G-‘(- zf,g, + ?f;s2 -m2)e: 

+E-‘G-‘(- ;f2g2+ ;f2g, -g,g2V: 

(A.12) 
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y’ = IR+G-‘(g,O, +g&). 

Note that we neglect the second order term? ED, in the relation for y’. 

A.4. Calculation offorces Qa with linear accuracy 

Owing to (2.32), (2.33) and (A.7), the force Qk is 

Q, = b,[r’-P(f?,)t,,] = bar’-s,, nosum. 

Using representations (A.4), (A.12), and (A.9) we can write 

(A. 13) 

(A.14) 

where 8 has been defined in (4.3). Here ON is shorthand for the notation O([e,, e2, C& E], N) as 
defined in Section 4.2. Thus we obtain, with linear accuracy, 

br’ = H (A. 15) 

which gives 

QI =H 
Q2 = H(-g-~g~~(e,-s,))~ (A.16) 

A.5. Calculation of A, 2 with linear accuracy 

The generalized force factor is 

F = u,Q2 -v2Q, = H 
(U,f2-U2f,)E 

> -9-19,92(e2-u ’ 

(A. 17) 

where we have used u, +u2 = 1. Using (3.7), we then have 

A,2 = k*r’xF=x’F,,-y’F, = -Hx’g-‘glg,(02-0,)-Hy’(u,f2-u2f,)e. (A.18) 

To obtain linear relations with respect to the angles 8,, e2, and CJ, we substitute x’ = 1 +E and 
y’ = R + 0 and using (4.3) arrive at 

A,2 = --v,v,H((1+~)G-‘G,G2(~Z-0,)+(~+B)(E2-E,)~). (A. 19) 

A.6. Proof that A > 0 

We assume that both G, and G, are not zeroes (G, > 0 and G2 > 0). If one of them, say G, 
is zero then, by virtue of (4.9), A = v~v21?E2~ is clearly positive for any E > 0 (stretching force). 

If both G, and G2 are not zeroes, then GIG2 and G are strictly positive. Thus it is clear that, 
to prove that A, defined by (4.9), is positive it is sufficient to show that 

G,G,+~,~)~(G~-GI)(E~-E,) (A.20) 

is non-negative. Substituting E, = 2G,(l +v,) (no sum, c( = 1,2) into (A.20), we arrive at 

TSince E is small, ED, = &[cf -g,)e, +(f2-g#,)] can always be neglected with respect to the 
G-‘&O, +g& term. Note that we cannot make a similar simplification in the relation for x’. 
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G,G~+2~,uz(G~-Gi)(G~(l+~~)-G,(lfv,))> 

which can be represented in the following quadratic form with respect to G, and G2 : 

Q(G,,G2) =aG:+bG:+[l-(a-b)]G,G,, (A.21) 

with the coefficients 

a = 2v,v2(l +v,), b = 2v,v,(l +vz). (A.22) 

It is easy to show that 

U,bE[O, I]. (A.23) 

To show this we note that since vi > 0, u2 > 0 and v, +u2 = 1, the maximum value of v,v2 is l/4 
and is reached at v, = u2 = l/2 ; thus V,V*E [0,1/4]. The Poisson’s ratio is in any case positive 
and no more than lt. Then we observe that a, b are within the bounds (A.23). 

We therefore need only investigate the quadratic form (A.21) under constraints 

G, > 0, Gz 2 0. (A.24) 

Owing to these constraints we cannot use the well-known Sylvester criteria. However, we note 
that the quadratic form (A.21) can be represented as 

Q(G,,Gd =(&G, -~G~)*+[1+2,/iJT;-(u+b)1G,G, 

or 

Since 

Q(G,>G,) =(&G,-,bG,)2+tl-(J---_)21G,G2. (A.25) 

l-(&-J%)‘>0 forany u,bE[O,l], (A.26) 

we observe that the quadratic form Q under constraints, (A.24), is non-negative determinate. 
Hence A is always positive. 

APPENDIX B : CASE OF EQUAL POISSON’S RATIOS 

For the case of equal Poisson’s ratios, the relations for A,, A,, B,r, and K can be simplified. 
Since the Poisson’s ratios in both layers are the same, 

G, G2 -=- 

E, & 

and, in particular, 

from which 

G m- -5 (,X=1,2) 
G E' 

G2 -G, E2 -4 
___=___ 

G E 

As a direct consequence of this relation and the relations (4.29) and (4.30) we obtain A, = A,.. 
Let us denote the relation of the Young moduli in the layers as 

t The “usual” Poisson’s ratio Y E [0,1/2], but in the plane problem it is recalculated as v/( 1 -v) E [0, 11. 
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From (4.29) and (4.30), we then have 

Similarly, after some manipulation, we obtain 

A2 UlU2 

*,= -T+(V,+v,~~2v~~ 

Thus we can write (4.28) as 

dx R2 (Q+Aw)~ + ~1~2 
TX= l+E+y- 2 

(?I* +v,y)2 vy02, 

dy 
dy= R+Aw. 

03.2) 

(B.3) 

(B.4) 

Finally, we write out the relation for K. From (4.25) we have 

K= 
(1 --Y)E 

n2ff2(v2 +u,Y) + Y(~+E) (32 +v v (1-y)’ E’ 

(B.5) 

UIV2 
-- 

12L2 01 +VZY E2 ’ 2v2+v,y 

If Q is sinusoidal, averaging the relation for g, (B.4), and using the relation w = - KSZ, we 
arrive at 

UlU2 

I-(l-AW’+ ~v2+v,y~2 vyK2 . 1 u-3.6) 


