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THE PRINCIPLE of maximum energy dissipation rate is introduced as an energy criterion for crack dynamics. 
That allows us to explain observed limiting crack speeds in brittle materials, and to complete the crack 
dynamics formulation. The upper limits of the crack speed in perfectly elastic and elastic-plastic bodies 
are obtained. It is found that the theoretical maximum crack speed in an isotropic elastic body (in the first 
mode of crack propagation) is approximately equal to half the shear wave speed. In the case of an elastic- 
plastic body, the criterion is formulated as a maximum plastic strain work per unit time. The self-similar 
problem for the fracture mode III is solved (assuming the plastic zone to be narrow) and the crack speed 
limit is found as a function of the ratio of loading to yield limit : the plasticity decreases the crack speed 
limit and the latter tends to zero with the yield limit. The comparison of these theoretical results with some 
experimental data shows that under ordinary conditions crack propagation appears to conform to the 
“maximum dissipation rate” process. 

1. INTRODUCTION 

CONSIDER AN ELASTIC BODY under given external forces. A dynamic problem is 
completely defined if the boundary of the body, the boundary and initial conditions 
are given. However, in a fracture, the boundary is not known in advance : an additional 
part of the boundary is formed by the crack propagation, and this process is outside 
the elasticity framework. If we want to consider the problem on the macrolevel, we 
need a criterion to obtain the speed and the trajectory of the crack-to obtain the 
crack velocity as a vector. 

The energy criterion for fracture consists of the comparison of two quantities : the 
macroscopic energy release G caused by a crack propagation (in elastostatics-the 
energy release under a crack position variation) with the surface energy (GRIFFITH, 
1920) or an effective surface energy (IRWIN, 1948; OROWAN, 1955). 

A dynamic problem of crack propagation along a given trajectory can be solved if 
the effective surface energy is constant or, in any case, is a function of the crack speed. 
In this case, the use of the energy criterion, in principle, allows the crack speed to be 
obtained as a function of time. However, the experimental data show that it is 
impossible to believe that the effective surface energy is constant during the entire 
process and, what is more, it is difficult to identify some kind of stable connection 
between the effective surface energy and the crack speed. 

Really, the crack propagation process is usually characterized by two periods: in 
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the first of them, the crack velocity increases and the energy release per unit arca is 
almost constant; in the second period, the crack speed is constant but the energy 
release increases. It is clear that the classical energy criterion is not valid for the second 
period of the crack propagation. 

Numerous experimental results which concern the crack speed limits in brittle 
materials are well known. A survey of brittle crack speed was presented by RAVI- 
CHANDAR and KNAUSS (1984). This survey is very important for us and it is shown 
in Table I. Here v is Poisson’s ratio, L’-, is the shear wave speed and cxK is the Rayleigh 
wave speed. The references of the original papers can be found in the paper by RAVI- 
CHANI>AR and KNAUSS (I 984). 

The results show that the crack speed (under ordinary conditions) does not achieve 
the Rayleigh wave speed cK. The experimental values of the crack speed limits only 
equal about half this speed. These results contradict any model based o,n a speed- 
independent fracture energy [this case was considered by FRELJND (197&)], or any 
model with a bounded fracture energy. One can see also from the experimental results 
by RAWCHANDAR and KNAUSS (I 984) that the crack speed after an acceleration stays 
constant under a strongly variable stress intensity factor. In this period the crack 
propagation looks like a process which is independent of the energy flux into the 
propagating crack tip. 

Branching is often pointed out as the cause of the crack speed limitation in brittle 
materials. Some experimental data seem to contradict this as RAW-CHANDAR and 
KNAUSS (1984) noticed. Indeed, under certain conditions during the constant speed 
propagation phase (not above 0.4%,) there is no evidence ofcrack branching. Taking 
this phenomenon into account it is possible to suppose that the branching is not a 
reason for the crack speed limitation but it is an effect of this limitation. Branching 
arises if the energy release is so high that not all this energy can be absorbed in a 

“fracture process zone”. 
Another result should be found in a “weakly bonded plane” in which the energy 

absorption is strongly limited. It was pointed out by RAW-CHANDAR and KNAUSS 

Material Authol 

GlXSS Bowden 0.22 0.42 0.51 
Edgerton 0.22 0.43 0.47 
Schardin 0.22 0.47 0.52 
Anthony 0.22 0.60 0.66 

Plexiglas Cotterell 0.35 0.54 0.58 
Paxson 0.35 0.58 0.62 
Dulaney 0.35 0.58 0.62 

Homalite- 100 Beebe 0.31 0.31 0.33 
Kobayashi 0.345 0.35 0.38 
Dally 0.31 0.35 0.38 
Smith 0.31 0.38 0.41 
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(1984) and investigated experimentally by LEE and KNAUSS (1989). In this case, the 
crack speed peaks at the Rayleigh wave speed. 

Taking into account these experimental results one can see that under ordinary 
conditions of crack propagation in a homogeneous material, the upper limit of energy 
absorption is high enough. In this case, the crack speed can be constant during a long 
period of crack propagation because the energy release-the energy absorption per 
unit area-can increase. In contrast with this, the case of a weakly bonded plane 
corresponds to a low limit under which the energy absorption cannot increase, and 
the crack speed is forced to tend to its theoretical limit. 

So, the crack propagation process essentially depends on the distance between the 
upper limit of energy absorption and the lower limit-the surface energy. Use of the 
speed independent fracture energy is justifiable if this distance is small enough, and 
the classical energy criterion becomes indefinite if the distance is not small. 

Interesting results have been obtained recently by FINEBERG et al. (1991, 1992). 
They discovered an almost regular roughness structure of the crack surfaces and high 
frequency oscillation of the crack speed in polymethylmethacrylate. These phenomena 
(the non-regular roughness was observed earlier repeatedly) arise when the crack 
speed is high enough, especially when the crack speed peaks at its limit. The energy 
release is almost constant when the crack speed increases, and it increases when the 
averaged crack speed is constant (when it is equal to the crack speed limit: about 
0.5~~). The fact that the energy radiation is an effect of the crack speed oscillation 
was pointed out by RICE (1978) and SLEPYAN (1978). A periodical variability of the 
sizes of the fracture process zone as a result of crack speed oscillations was pointed 
out by BOTSIS and CHUDNOVSKY (1987). 

Another reason for the effective surface energy increase is the influence of the 
structure of the medium. Recent developments in crack propagation is elastic period- 
ically structured media such as chains, lattices, composite materials and rock joints 
by SLEPYAN (1981, 1990), KULACHMETOVA et al. (1984), MICHAILOV and SLEPYAN 
(1986) demonstrate a number of effects which cannot be discovered using the classical 
model of non-structured solids. The energy radiation from the front of the fracture is 
the most important phenomenon. It can be heat transfer, sound emission or high 
frequency seismic oscillations depending upon the scale of the structure. This energy 
outflow essentially depends on the crack speed and increases without bound if the 
crack speed tends to the critical value. Based on exact solutions these results are valid 
for a wide range of periodic structures. Numerical results were found by WEINER and 
PEAR (1975). 

The experimental and theoretical results show that the effective surface energy is 
formed in a brittle material under influences of some “micro” factors such as the 
structure of the medium, the roughness of the crack surfaces and the crack velocity 
oscillation. All these factors cause a radiation-high frequency waves which carry 
energy from the crack. The roughness increases the crack surface area, and this 
phenomenon also increases the effective surface energy. The roughness and the crack 
velocity oscillation, in their turn, depend on the structure of the medium and on 
macrolevel factors such as the energy release (G) and the averaged smooth crack 
speed (v). Thus, we have here the coupled problem of the interaction of macro- and 
micro-processes. 
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From this point of view investigations of problems are important in which micro- 
mechanisms of energy absorption (during the macro-micro energy transfer) are taken 
into account. However, the classical energy criterion has a fundamental weakness. 
FirstIy, the energy consumption is unstable under the above mentioned phenomena. 
Secondly, it is unstable under a small change of the material structure. [The simplest 
example of this kind of instability is given in the paper by SLEPYAN (1984). In that 
example, the process is considered in which a thread falls to a rigid plate. If the 
bending rigidity of the thread is equal to zero all kinetic energy flows into the moving 
contact point. However, if the thread has any positive value of the bending rigidity 
all kinetic energy is carried away by high frequency bending waves, and there is no 
energy fiux into the contact point.] LastIy, the classical energy criterion is not sufficient 
for the crack dynamics formulation, as is discussed in the next section To overcome 
these difficulties, the principle of maximum energy dissipation rate is introduced as 
an energy criterion for crack dynamics. 

2. INDEFINITENESS OF THE CRACK VELOCITY UNDER THE CLASSICAL ENERGY 
CRITERION 

There is an additional essential difficulty in the crack dynamics foundation. As a 
matter of fact, the classical energy criterion is not sufficient in principle. One can see 
that, taking into account the fact that crack velocity is a vector. This vector, being 
normal to the crack edge, has two components but at the same time, we only have 
the scalar criterion. Moreover, in the general case of a three-dimensjona~ body we 
have a set of possible distributions of the velocity at the crack edge. Thus, there is a 
set of vectors which satisfies the energy criterion in a two-dimensional problem, and 
a set of distributions of the vectors---in a three-dimensional problem. 

The energy release as a function of the instantaneous crack velocity vector, or as a 
functional of the instantaneous distribution of this vector, is unknown. Assume, only 
to demonstrate the above phenomenon, that in a two-dimensional problem on the 
microlevel, the energy release G, modulus of the instantaneous velocity zlM = IVY j and 
its direction-angle 8 (Fig. I) are connected by the equation [we use the approximate 
relationship between the energy release and straight-line crack speed by FREUND 

(199Wl 

G = f(t) cos 0 = 2y = const > 0, 

where S(t) is a function of time t and I:* is a critical speed. Thus, we assume that the 

FIG. 1. Crack velocity as a vector. 
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classica criterion is valid on the microIeve1. Let us assume that at a moment r = lo, 
(1) is satisfied by values : uM = ao(O < t‘,, < u*), 8 = 0. Then, (1) is satisfied by a 
couple uM, f3 if this couple satisfies the relation 

( ) 1-s case= l-3, 

from which one can see that 

This iude~niteness may be a reason for instability of straight-line crack propagation, 
a reason for roughness of crack surfaces, and, lastly, a reason for the experimental 
data disagreement with the theoretical predictions. In any case, the classical energy 
criterion gives us no possibility to define the crack velocity if the crack trajectory is 
unknown in advance. 

From (1) it follows that 

161 d 6,,, = arccos f’l:, . 

Let the angle 0 be a variable value which satisfies this inequality : 

8 = emax cos cot, 

where t is time and w is frequency. The projection of the velocity E’&~ on the crack 
direction on the macrolevel (averaged direction B = 0) is 

0, (t) = VM cos 8 = v* 2Y 
cot? (6,,, cos wt) - - 

1 
. 

Assuming the function S(t) tends to infinity when t tends to infinity we have 

u+(t) - u* cos E cos ut . ( ! 2 

The crack speed limit on the macrolevel is the averaged speed 

This example shows that the crack velocity indefiniteness under the classical energy 
criterion on the microlevel may lead to the crack speed limitation on the macrolevel. 
At the same time, the energy release on the macrolevel which can be obtained by 
changing DM to 2) and taking d = 0 in formula (1) increases unboundedly 

G N f(t) I- ; r 0.528f(t). 
( ) 

Under these conditions of indefiniteness it is natural to suppose that the crack 
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velocity on the macrolevel---the averaged smooth velocity--obeys an extremal prin- 
ciple. It is possible to suppose the principle of maximum energy dissipation rate is in 
force--the principle of the maximum rate of macro-micro energy transfer. This 
principle is assumed, and itsconsequences are examined in relation to the experimental 
results. 

3. FORMULATION OF THE CRITERION 

Let G be the energy reiease per unit area of a dynamic crack, let N be the energy 
ffux into the crack edge (also per unit area) : N = Gz:, and let M be the excess of the 
energy flux : M = (C-2y)c, where 1’ is the effective surface energy for a quasistatic 
growth of the crack, I? = Iv/, v is the crack velocity. Taking into account the above 
mentioned dynamic fracture phenomena assume that at each given moment the crack 
velocity as a vector distribution corresponds to the maximum energy dissipation 
rate----the maximum excess of the total energy flux into the propagating crack edge 
per unit time. We also use the Griffith’s (or Irwin-Orowan’s) criterion but only as the 
lower boundary of the energy release per unit area. So, we assume that the distribution 
of the crack velocity vector v is defined by the requirement 

where contour I- is the crack edge, a is the path along r. The second inequality 
corresponds to Griffith’s criterion as a lower boundary of energy release. 

Thus we have the variational problem for the instantaneous crack velocity dis- 
tribution. Of course, it is possible, in principle, to find this distribution only if the 
energy release as a functional of prior crack motion, and as a function of instantaneous 
crack velocity distribution, is known. 

Consider a two-dimensional problem. In this case we may omit the integration 
symbols in relations (3). Now the Griffith (or Irwin-Orowan) criterion follows from 
(3) as the lower boundary of energy release per unit area. Really, M(v) < 0 ifG -C 2;?, 
1’ > 0. In this case ~~~~0) = Mnt2,rr and the crack does not propagate. fn the opposite 
case when L’ > 0 the principle gives us the equations 

The energy release G, and hence energy flux N, are functionals of v as was noted 
above, but they also depend on the instantaneous velocity v, and just this velocity is 
meant in the equations (4). 

Consider the equations 
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FIG. 2. The extremai crack speeds : (5) is satisfied by D = L‘,,~ and (6) is satisfied bye= 

and 

aN 0 -.= 
au . (‘3) 

Equation (5) is satisfied by D = vM, and (6) is satisfied by v = UN. Assume the energy 
flux N is a convex smooth function of the instantaneous speed v [that is what it is for 
a straight crack under ordinary conditions, as in the book by SLEPYAN (1990)]. Then, 
as one can see in Fig. 2, vdd -=z uN. However, u .u tends to uN if the energy flux N increases. 
Really, the energy flux N can be represented (see Section 4) in the form N = ~(~?)~(~), 
and (6) follows from criterion (5) if g(t) -+ iw. Thus, we see that uN is the crack speed 
limit, and to obtain this limit it is possible to use (6) for the total energy flux into the 
propagating crack tip. [Using this equation as well as the second equation (4) for 
example (I) (change ru to u) we obtain the speed limit u = 0.5u”, and the direction 
on the macrolevel 0 = 0.1 

Here we call “dissipation” the excess of the energy transfer from the macro to the 
microlevel : the energy flux from the elastic body to the crack (assuming it is smooth) 
with the exception of the surface energy flux 27~~. All factors such as the structure of 
the medium, the roughness and the crack velocity oscillations are assumed to belong 
to the microleve! as well as the energy radiation from the crack under the influence 
of these factors. I-Iowever, it is possible to obtain a “longwave” radiation on the 
macrolevel in a transient problem. This “macroscopic” radiation in contrast to the 
microscopic one is automatically described by the solution to the macro~roblem. 

At the same time it is impossible to identify an exact boundary to separate the 
macro and microlevels but it is in the usual run of difficulties in similar foundations. 

The extremal dissipation principle was used earlier by NIKOLAEVSKIJ (1987) for the 
investigation of some aspects of crack growth in a visco-elastic material but without 
any variation of the crack velocity. A somewhat different formulation of the above 
principle for the two-dimensional case was given by SLEPYAN (1992). 

We also consider crack propagation in an elastic-plastic body. In this case the rate 
of the plastic strain energy is required to be maximum. 

Two-dimensional problems for straight cracks are considered below, to obtain the 
crack speed limits. 
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4. THE CRACK SPEED LIMIT IN AN ELASTIC‘ BOW 

Consider the generalized plane problem for a semi-infinite straight running crack 

in an unbounded elastic body (the initial conditions are at zero). As shown by KOSTRO~ 
et al. (1969) the energy flux into the crack tip is 

1 , 

where p is the shear modulus ; 0 -=I 11 < L’? ; L’, and L’~ are the dilatational and shear 
wave speeds; K[, K,, and K,,, are the stress intensity factors for the first, second and 
third fracture modes, respectively, R(c) = 4c+ (I +/I?‘)‘. Expression (7) applies for 
a variable crack speed as well as a constant speed. 

To define the stress intensity factors as functions of the instantaneous crack speed 
we have to use the wave solution for non-uniform crack speed. 

Some historical data concerning this topic are briefly presented. The first solution 
to the non-uniform crack speed problem (r(r) < cz) was obtained by KOSTROV (1966) 
for the third fracture mode. The general solution for plane problem (t’(t) < caK) was 
obtained by FREUND (1972b) assuming external loading is independent of time. The 
solution for loading with general dependence on time was published by KOSTROV 
(I 974) for c(t) < cR, and by KOSTROV (1976) for cR < c(t) < c?. Using the improved 
method SLEPYAN (1974) obtained the general solution for c(r) < cR in a more simple 
and compact form (8). The same method was used by SLEPYAN and FISHKOV (1980) 
for the more general case in which the crack speed may cross the critical values: 
c (’ c , (the general problem for non-uniform speed of the separation point of 
bRduXhary conditions was considered). 

The general solution by SLEPYAN (1974) [see also SLEPYAN (1990)] for the crack 
opening displacement 2u_(x, r) and for the traction distribution G+(x, 1) on the line 
of crack propagation in front of the crack (.u > I(r)) is as follows 

Us = s **[(S+ **(T )H(l(t)-s)], 

d += -P+ **[(S+ **o )H(x-I(f))], (8) 

where S, are functions (distributions) which arise as a result of factorization. 

P, **s, = i?(x)d(r),J is Dirac delta-function, H is unit step function. Stresses (T 
correspond to surface crack loading, and r(t) is the crack tip coordinate; t is time, 
and Y is the axis of crack propagation. The double convolutions such as S, * * LT are 
the double integrals : 

I + 0 

s+ **De 55 S, (x- i’. t - t)a_ (5. z) dr d<. 
0 

The expression for stress intensity factors follows from the second formula (8) (see 
SLEPYAN, 1990, p. 2 12) 
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K= -J2f+(v)[S+(t,x)**a-(f,x>l, (9) 

where the function f+ becomes definite for a definite fracture mode (K = K,, K,, or 
K,,,). The double convolution S, * * 6_ is a functional of prior crack motion, but this 
convolution is independent of the instantaneous crack speed. Therefore we have no 
special interest in it if our aim is to obtain the crack speed limit u. One can find 
expressions for the functionf, (u) in the same book by SLEPYAN (1990), pp. 212-215. 

Here multipliers which are independent of the crack speed are omitted. We have with 
this accuracy 

0 < d(x) = arctan 
(x2 - c:/c:> “2 

4x2(1 -x2)“2-- 
(2x2- I)2 > 

<E 
2 ’ 

where cR is the Rayleigh surface wave speed. The complete expression for K,,, is simple 
enough to give it here [the solution was obtained by KOSTROV (1966)] 

where l(t) is the crack tip coordinate. 
The speed limit v is obtained as a value which satisfies the equation 

The results of calculations of the ratio of crack speed limit to shear wave speed for 
the fracture modes I and II are represented in Table 2. 

The crack velocity limit for fracture Mode III is obtained directly from the equation 

gV(fy2] = 0 

which follows from (7), (11) and (12). We obtain 

TABLE 2. The crack speed limit 

Poisson’s ratio 0 0.1 0.2 0.3 0.4 0.5 

CR/C2 0.874 0.893 0.911 0.927 0.942 0.955 
v/c* (fracture mode I) 0.476 0.492 0.507 0.517 0.520 0.482 
v/c1 (fracture mode II) 0.539 0.568 0.601 0.638 0.674 0.711 
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The theoretical results for fracture mode I are close to the experimental results 
(see Table 1) : the theoretical ratio for glass (c = 0.22) : zl/c3 = 0.51. the averaged 
experimental ratio U/C> = 0.48. The same ratios for plexiglass (V = 0.35) are 0.52 and 
0.57 respectively. The experimental results for Homalite-100 differ from the theoretical 
ones somewhat more (0.52 and 0.35 respectively). Perhaps the decrease of the speed 
limit is the effect of the viscosity and plasticity influence which is not taken into 
account in the theoretical consideration (the plasticity influence is estimated below). 
Note here that a small change of the crack speed (in comparison with the speed limit) 
leads to a smaller (second order) change of the energy dissipation rate. because the 
limit corresponds to nlaximum rate. 

The theoretical results for fracture modes II and III predict higher values of the 
limit crack speed and shear cracks are expected to be faster. This result is confirmed, 
to some extent, indirectfy from data for the shear crack speed. Some results are 
pointed out by BERCIZA and SPUDJCH (1988) using two methods of the natural data 
estimation. It turns out that the shear crack speeds 1’ = 0.7~~ from one method, 
and 1% = 0.8~~ from another, are the most suitable for the natural data description 
(application to the 1984 Morgan I-W, California, earthquake), see also HEATON 
(1990). The theoretical results for shear cracks (see Table 2) correspond to somewhat 
lower speeds : 0.6 < ~/r~: d 0.7. 

To compare the crack motion under speed-independent fracture energy with the 
motion of the same crack under the principle of maximum energy diss~p~~tion rate, 
consider once again. the unbounded elastic body containing a half plane crack. 
Suppose that material is initially at rest, and that time-independent uniformly dis- 
tributed normal loading c. is applied to the crack surfaces at the moment 1 = 0. At 
a moment t = l,, the crack starts, and the loading propagates on the new surfaces of 
the crack. Thus 

G = AH(t)N(/(t)--.u), A = const. 

In general outline, the cracks motions are as follows. In the case ofconstant fracture 
energy, the crack speed increases (t 3 to) and tends to the Rayleigh surlace wave 
speed (curve 1 in Fig. 3). The crack speed under the discussed principle also increases 
at t > f, (curve 2 in Fig. 3) but in contrast with the previous case the crack speed 
tends to the above obtained limit t*,,, (Iine 3 in Fig. 3). 

It should be noted that the above obtained crack speed limits for the infinite body 
are also valid for any homogeneous elastic body. To obtain a proof of this statement, 
it is necessary to take into account the fact that a boundary influence reaches the 
crack tip with some delay, and hence the boundary influence at any given moment 
does not depend on the crack speed at the same moment. Therefore, these boundary 
conditions are not essential if the instantaneous speed variation is used. 

However, the crack speed limit depends on the body model. Consider the solution 
to the dynamic problem for a long rectangular plate being split in half by a wedge 
(FREUND, 1990). The principle of maximum energy dissipation rate leads (assum- 

ing cross-sections obey the beam theory) to extremal speed u = co/d, 1.0 = $$$ 
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FIG. 3. Crack speed based on Griffith’s criterion (I), crack speed based on criterion of maximum energy 
dissipation rate (2), and the crack speed limit (3). 

where E is the Young’s elastic modulus, and p is material mass density (N = 
const(l-n’c;$). 

5. ELASTIC-PLASTIC BODY 

Consider an elastic-plastic problem for fracture mode III. We assume for simplicity 
that the plastic region is a narrow zone in front of the crack-we use the well-known 
foundation by BARENBLATT (1959), DUCDALE (1960) LEONOV (1961) and PANASYUK 

(1968). We consider the self-similar problem for a semi-infinite straight crack in the 
unbounded elastic body (the plasticity appears only in boundary conditions). We 
have the boundary conditions (y = 0) for the half-plane x, y (- cc < x < co, y >, 0) 

fq2 = o_ = [-pH(vt-x)+kH(x-vt)H(wt-x)]H(t) (x < wt). 

u;=u=o (x>wt), (13) 

where z is the third axis, -p = const < 0 is a shear stress which acts on the crack 
surfaces (x < ut), k = const > 0 is the same stress but in plastic zone, w is the velocity 
of the plastic zone front, and u is the velocity of its internal boundary-the crack 
velocity (Fig. 4). The initial conditions are at zero. We also have an additional 
condition : there is no energy flux into the moving point x = wt. 

The displacement of the crack surface-half of the crack opening displacement is 
possible to obtain using the first formula (8) for fracture mode III. 

Iit 4t 

FIG. 4. Elastic-plastic problem for fracture mode III. 



where c = c2, symbol *x means the double convolution, the same as above and 6 is 
the Dirac delta function, t;“’ = l/,,/i(r 3 0), t; "2 = 0 (t < 0). 

The representation (14), and the condition that there is no energy flux into the 
point n = WY lead to the equality 

and to the following expression for the crack surface speed 

~=~~j~~~(lir)l:i+arccos(1_2?;i) 

In this case the dissipation rate is the plastic strain work per unit time 

N= 2k 

Using (16) we obtain 

-(c--rc)arccosh(l--?FFi)], 

(f 71 

(18) 

In the self-similar problem framework we can use the principle of maximum N only 
for the averaged speed. The extremal u-value which gives us the maximum work up 
to the moment : max fb Ndr since a variation of u in (18) at the given moment t = t, 
means the same variations at all times 0 < I c t,. In contrast to variation at the 
moment -the “local variation”-.this is a “global variation”. The result below must 

be considered just in this sense. 
There are two limit cases which show a basic tendency. Let A-+ I (k << p). In this 

case 

(19) 

and the dissipation rate is maximum if v = 0. Maximum energy dissipation rate is 
achieved only by the maximum rate of the length of the plastic zone : (WI - ~1) ? ---f cf. 
Thus the crack speed tends to zero with the yield limit. 

The second case corresponds with ;1. --+ CC (p CC k). fn this case 
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FIG. 5. Crack velocity limit in an elastic-plastic body. 
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w+v, N-+- (20) 

This result is the same as above for a perfectly elastic body. Really, if 2 --) co the 
plastic zone appears as a point and the influence of plasticity disappears. Further- 
more the global and the local variations are the same in self-similar elastic problems. 
The results of calculations of v as a function of A using (15), (18) are represented in 
Fig. 5. 

6. CONCLUDING REMARKS 

Two different kinds of variation are used above for the elastic and elastic-plastic 
problems : the local variation-the variation of the instantaneous speed and the global 
variation-assuming the crack speed is independent of time. These variations lead to 
the same results in the considered general and self-similar (k + cc) elastic problems. 
In other cases, however, results can be different. Consider for example the propagation 
of a semi-infinite crack in a homogeneous initially stressed elastic strip (Fig. 6). In a 
steady-state problem total strain energy flows (as a result of unloading of the strip by 
the crack) to the propagating crack tip if the crack speed is lower than the Rayleigh 
wave speed. [This phenomenon was noted by RICE (1968) for some equilibrium 
situations and by FREUND (1990) for the steady-state dynamic problem.] In this case 

/.////“/““““’ 

FIG. 6. Crack propagation in an initial stressed elastic strip. 
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the global variation leads to extremal speed which is as high as possible (but lower 
than the Rayleigh wave speed because the energy release G is a constant. and 
M = (G-2y)v is maximal if u = u,,,~~. However, if we use the local variation we obtain 
the extremal speed the same as above-about half the Rayleigh wave speed (see the 
last part of Section 4). 

The “correct” approach is local but only on the macrolevel, and it seems that the 
difference with the global variation results may somehow influence the process. It may 
lead to speed oscillation. Likely problems including the above elastic-plastic problem 
are required to be examined as non-uniform crack speed problems. 

The above experimental results show that under ordinary conditions the dynamic 
crack propagation looks like any energy absorption process, and obeys the extremal 
principle. It is necessary, however, to stress that the value of the extremal crack speed 
can be changed in the presence of another influence, such as the above mentioned 
weak bond. In such cases the variational principle should be used taking into account 
these additional conditions or restrictions, as was discussd in the Introduction. Such 
kinds of restrictions have to be included in the variational formulation of the criterion. 
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