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Band gap Green’s functions and
localized oscillations
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2Department of Solid Mechanics, Materials and Systems,
Tel Aviv University, Tel Aviv 69978, Israel

We consider some typical continuous and discrete models of structures possessing band
gaps, and analyse the localized oscillation modes. General considerations show that such
modes can exist at any frequency within the band gap provided an admissible local mass
variation is made. In particular, we show that the upper bound of the sinusoidal wave
frequency exists in a non-local interaction homogeneous waveguide, and we construct a
localized mode existing there at high frequencies. The localized modes are introduced via
the Green’s functions for the corresponding uniform systems. We construct such functions
and, in particular, present asymptotic expressions of the band gap anisotropic Green’s
function for the two-dimensional square lattice. The emphasis is made on the notion of the
depth of band gap and evaluation of the rate of localization of the vibration modes. Detailed
analysis of the extremal localization is conducted. In particular, this concerns an algorithm
of a ‘neutral’ perturbation where the total mass of a complex central cell is not changed

Keywords: waves in lattice structures; localized defect modes; Green’s functions

1. Introduction

The localized defect modes occur naturally in photonic crystal structures, as
described by Poulton et al. (2003). Although the ‘localized Green’s functions’ can
be represented in the series form for a continuum system involving a doubly
periodic array of circular inclusions, the analytical analysis of the solution is not
feasible in this case and the numerical treatment is required for evaluation of the
defect states. The aim of the present work is to develop a fully analytical
framework for analysis of localized vibrations within certain classes of periodic
structures. The periodic structures considered in this paper are simpler than
those of Poulton et al. (2003); the band gap Green’s functions are obtained in the
simple analytical form. This leads to evaluation of the depth of a band gap and to
solution of problems of optimal design for defect modes of extremal localization.

The classical topic of research on Wawves in Lattices is well described in the
monographs (Brillouin 1953; Maradudin et al. 1963). The substantial analysis of
lattices with defects and applications in the solid-state physics are discussed in the
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papers (Maradudin 1965; Mead 1973, 1996; Mead & Parthan 1979; Mead & Yaman
1991). Defect vibration modes in two-component chains were described in Bacon
et al. (1962). The defect modes in the context of the theory of scattering of waves in
solids were considered by Callaway (1964). Surface tension and surface modes in
lattice structures are studied in Gazis & Wallis (1964). Certain types of lattice
Green’s functions in diatomic lattices were constructed by Morita & Horiguchi
(1972). The recent developments in theoretical and experimental physics on the
design of photonic crystal fibres have generated a substantial interest to the
photonic (or phononic) band gap materials (John 1987; Yablonovitch 1987, 1993).
Although most of the technological applications involve models of acoustics,
electromagnetism or elasticity in continuous periodic structures, some of photonic
crystal models based on ‘mass-spring’ lattices were also presented in Jensen (2003),
Martinsson & Movchan (2003), Cai et al. (2005). Steady-state problems for free and
forced non-resonant waves in lattices and continuous periodic structures were also
considered in Langley (1996, 1997), Langley et al. (1997). Dynamic lattice Green’s
functions for frequencies within the pass bands were studied by Martin (2006).
The star-shaped localized solutions in lattices are discussed in Slepyan &
Ayzenberg-Stepanenko (submitted).

In the present paper, we address the issue of analytical representation and
analysis for localized vibration modes within some continuous (including non-
local elastic) and lattice structures. We also introduce the notion of the depth of
the band gap characterizing the rate of decay of exponentially localized vibration
modes. The structure of the paper is as follows.

Section 2 outlines general settings for the localized vibration modes within
continuous or discrete structures. Section 3 addresses the issue of band gaps and
hence localized vibration modes within continuous systems, including beams and
rods on elastic foundations as well as non-local interaction elastic string.
Localized vibration modes within uniform lattice structures are studied in §4,
which includes explicit asymptotic representations for lattice Green’s functions
and estimates of the rate of decay of a general localized vibration mode. Section 5
deals with a complex lattice structure possessing band gaps for a certain range of
frequencies. By introducing a mass perturbation within the central cell of the
structure, we create a localized vibration mode, whose frequency and the rate of
decay are related via a closed-form analytical representation. We determine the
optimal frequency corresponding to the fastest decay of the localized vibration
mode, and show the situations when such a localized mode can be created via a
mass perturbation which does not change the overall mass of the central cell.
Finally, in §6, some concluding remarks are given.

2. Some general considerations

Consider an infinite, uniform (continuous or discrete), scalar, linear, single
dispersion branch system whose homogeneous Fourier-transformed equation is

[L(k) — Q]u" (k) = 0, (2.1)

where Q= w? is the frequency squared and the oscillating multiplier exp(iwt) is
omitted. Note that for real k, L(k)>0 for any stable system (possibly L(0)=0
that reflects a free rigid displacement).
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Assume there exists a stop band in Q: Q<Q_ or 2>, where no sinusoidal
wave exist, that is, equation (2.1) has no non-trivial solution for real k. This
implies

Lk)y>Q_ or L(k)<Q,, (2.2)
respectively.

Consider the Green’s function for frequencies within these stop bands, for
=0, that is, the corresponding inverse transform, u(0)= U, of

1
F
k)=————. 2.3

It follows that
U>0 (Q<Q.); U<o0, Qu'<-1 (@>,). (2.4)

Now consider the same system without the external force but with a changed
mass at the origin. Denoting the additional mass by M and using (2.1) we obtain

MQU
F
k)=——1—.
M= =g
The above equation and (2.3) imply that for a given Q<Q_ there exists a

localized waveform coincident with the Green’s function, provided the additional
mass is equal to

(2.5)

M= (2.6)

1
QU
and the relations (2.4) yield

M>0 (<)), M<0 (>Q,). (2.7)

Thus, in the latter case, the mass increment appears to be negative. However, if
this case concerns a discrete lattice (where the particle mass is taken as the mass
unit) the total central mass, 1+ M, appears to be positive. Indeed, referring to
(2.4) we find that (n is the dimension of the system)

1 4 F
QU ) J_ﬂ Qu' (k)dk< —1, (2.8)
and hence M>—1.

These simple considerations are applicable to multiple vibration branch
systems, at least for frequency regions adjacent to the band gap boundaries.
Indeed, the frequency corresponding to any of the edges of the band gap is the
resonant frequency and the displacement of a particle, where the Green’s
function force is applied, is infinitely large. Hence, in the corresponding
neighbourhood, the displacement is large enough to support a localized mode
due to the admissible variation of the mass, as stated in (2.6).

The examples considered in the sequel also show that the localized modes can
be obtained within the entire band gap frequency interval via an admissible local
perturbation of the waveguide.

3. Continuous systems

In this section, we discuss several examples of waveguides supporting localized
vibration modes.

Proc. R. Soc. A (2007)
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(a) A beam on an elastic foundation

From the equation

Du'(z) + (x—0Q)u(z) =0 (D, g are constants), (3.1)
it follows that there is the lower bound for the sinusoidal wave frequency
Q_=x/o. (3.2)
The Green’s function for 0 < Q< Q_ is
1 — o\ V4
u(z) = oo l(cos dz +sin dal), A= <" e > L (33)

Thus, the localized mode exists for Q < x/g if a concentrated mass is attached to
the beam. The mass—{requency relation is

1
M = —5V8(x—ow”)** D', (3.4)
0w

(b) A bending plate on an elastic foundation

From the equation
DA*u(z, y) + (x—0Q)u(z, y) = 0, (3.5)
it follows that there is the same lower bound as above for the sinusoidal wave
frequency (3.2). The corresponding Green’s function for the origin, z=y=0, is
1
VD=8
Thus, the corresponding concentrated mass is

M = 8V D(x—0Q) (3.7)

0Q ’

u(0,0) = (3.6)

(¢) A string made of a non-local interaction material

In the dispersion relation for a classical homogeneous material, Q— o as
k— £ oo; that is, there is no upper bound of the sinusoidal wave frequency.
However, such a bound and hence a semi-infinite band gap can exist in the case of
a non-local interaction material. We show this by a simplest example of a string.
To this end, in the relation for the internal stress

o = EBu/(z) = E§'(z) * u(z) = Eé(z) * u'(z), (3.8)

we replace the derivative of the delta function by a regular ‘pre-delta’ function;
for this, we use the function

bal@) =57 (3u(2) = 6(a) as o ),
o (3.9)
oL(z) = — 7e_“‘x|sign z (0l (z)— &'(z) as a— ).
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In terms of the Fourier transform,

2 2.
F_ o« , F a‘ik
[04(2)]" = PREE [0a(2)]" =— PREE (3.10)
and instead of the Fourier transform of the oscillating string classical equation
[Ev/(2)]" + 0Qu(z) =0, (3.11)
for the constant modulus F and density @, we obtain a new equation of the form
Eo’k?

The dispersion relation for this non-local interaction string has the upper bound
Q=Q,=c’a’, where c=/F/q.

We now introduce the Green’s function for this string as the displacement
caused by the force term 6(z). For Q> Q. , it is

F(k:) E +a?
u =—
(0Q — Ea?)k? + 0a%Q
1 @’ —a o
= — ) — —ala| = Q> 202 .
uz) 0Q(1—c2a?/Q) [ (2) o ] <a \/1—02012/.9, e

(3.13)

From this generalized solution, it follows that the additional mass density
corresponding to the localized oscillations (3.13) is

020[2
M:—Q<1— Q>>—Q (2=0), M+p>0, (3.14)

while the localization exponent is given by A=a. The condition ¢+ M >0 is
satisfied if the external force term corresponding to the Green’s function, 6(z)
and hence the corresponding displacement (3.13) are replaced by

da) = 8(a) « H(b—lal) = H(b—lal),  u(r)—u(r)» H(b—|a)), i b

(3.15)

After such a regularization, with the admissible mass density change within the
region |z| < b, the displacement function becomes regular.

Note that the upper bound of the frequency and the corresponding localized
oscillation solution can also be introduced, in a similar way, for a beam made of a
non-local interaction material. In this case, we can choose the corresponding pre-
delta function whose Fourier transform is o*/(a* + &*).

4. Uniform discrete systems
Next, we address localization effects within lattices of simple structure.

Proc. R. Soc. A (2007)
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(a) A discrete chain on a discrete elastic foundation

We now use the following normalized variables: the particle mass, the bond
stiffness and the cell size are taken as the natural units; the stiffness of the elastic
foundation is denoted by x. The equation in terms of the discrete Fourier
transform is

[x + 2(1 —cos k) —QJu (k) = 1. (4.1)
There exist the upper and lower bounds for the sinusoidal wave frequency
Q,=4+x and Q_==x. (4.2)

For Q>4+ x,

-
w(m) = — 2 (@2 —a(@—x) —(@—x—2)", (43)
¢@l—m2—MQ—m)

. V(@—?—4(2 =)
M=oy =~ Q

Q>4+ ). (4.4)

Thus, the localized oscillations exist for Q>4+ » if one mass of the chain is
lighter than the others, 0 <1+ M <1.
For 0 < Q< x,

o= il
u(m) = x—Q+2—1/(x—Q)* +4(x—Q)
V(x=Q) +4(x—2) ( v > (4.5)
and
1L _ -9 D 0 <) (4.6)

" ou0) Q

Clearly, the latter gap does not exist for a free chain where x= 0.

(b) Localized Green’s function for the square lattice

Analysis of dynamic Green’s functions for square lattices for frequencies
within the pass band is given by Martin (2006). In this section, we address the
case when the frequency of vibrations is outside the admissible pass band and
hence when Green’s function is exponentially localized.

Using the discrete Fourier transform from the equation for the square lattice,
we find

1

FF
k. q) =
w (ks q) 2(1—cos k) +2(1—cos q) —Q’

(4.7)
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and

u(m,n) =

ra —n2(1—cos k) +2(1—cos q)—Q

by
Successive integration leads to

1 J” cos qn dq

W (k,n) ==
’ 7 Jo 2(1—cos k) +2(1 —cos q) —Q

(_1)n+1

= (4 2 _ 1)\l
e Ve

Q
a=§—2—|—cosk, a>1 (€>8) and

(=) [ AT
u(m,n) = a—V a* —1)"cos km dk.
(m, n) Pl B _1( )

Consider some particular cases.

(i) Displacement at the origin m=n=0

From (4.10), we have

w(0,0) ~— ! (- ).

20/(Q/2—2)* —1

. J J explithm +aml gy g,

2715

(4.10)

(4.11)

An exact and the asymptotic dependencies on Q are presented in figure 1. When
0Q>8, the direct numerical computation shows that the asymptotic approxi-
mation (4.11) accurately represents the exact result (4.10). The graph of (0, 0)

versus w is shown in figure 1.

(ii) An asymptote for the bond-line rays

For m=0, n— o, we take into account the fact that asymptotically the main
contribution corresponds to the integration in a small vicinity of k=1. So we

represent

cos k~—1+ (1/2)(m—k)?,

R U [ R

(0, 1) ~ (=" (C_\/Cg—_l)w% E—s exp [_ LW] dk,

2Vt —1 2Vt —1

Proc. R. Soc. A (2007)
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radian frequency @
32 3.4 3;6 3i8 4i0 4.2 4.4

—-0.05

—-0.10 1

u(0,0)

—-0.15 1

—-0.20 1

—-0.25 -

Figure 1. The value u(0, 0) at the origin versus the radian frequency w. (1) The exact result and (2)
the asymptotic one (4.11).

for a small positive e. Then

1 (" —k)? 2V —11 [ _> 2 _1
_[ exp[_w]de c—_J e dr =[S (4.16)
T Jr—e 2vVer —1 |TL| ™ Jo 27r|n|

and,

(_1)n+1 In) 1
w(0,n) ~——te—(c—Vi—1) — (n— »). 4.17
O~ e ) T e e

The result is illustrated in figure 2. Owing to the symmetry, the same asymptote
(with the change n to m) is valid for u(m, 0).

(iii) The asymptote for the diagonal rays m= +n

For this case, it is useful to transform the integration domain A; in (4.8) by
adding four triangles to form a larger square, domain A, with vertices on the k, ¢
lines. Owing to 2w periodicity of the integrand, the integration over the latter
domain, whose area is twice as much as the A; area, results in 2u(m, n).
Substituting

k=z+y, q=z—vy, (4.18)

and taking into account that the A, area on the (z, y) plane is equal to the A;
area, we get for m=n

1 (™[ 2
u(m,m) =—— J J bl dz dy. (4.19)

7w Jo Jo Q—4+4coszcosy

In the integral with respect to z, only small neighbourhoods of y=0 and y=1 are
important for large m, and these neighbourhoods give equal leading
contributions. So we can use one of the representations cos y ~ 1 —%yQ(y—> 0)

Proc. R. Soc. A (2007)
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In(u(0,n))

—801

Figure 2. Asymptotic approximation of In(u(0,n)) versus n for different values of w.

or cos y ~—1+ 1 (m—y*)(y— ). Thus, we find that

2 (1 (7 cos 2mzx
u(m, m) ~—— — 5 dz|dy
mJo |7 Jo Q—4+4(1—y*/2)cos

® 2 2{m| 2
1 2J (\/1—1; —1) oyt

VoI—80 T Jo b Q-1
(4.20)

2/m)| 2|m|
2|m
<\/1—b2—1> R , o

~ exp| — |, b=
b Q—4
0 \/1—-8
(4.21)
As a result,
(m, m) = (4.2
u(m, m) ~— .
VTV Q2 —8Q
In terms of the distance r from the origin, this relation looks as
-1\ o)
1 1—b;—1 2(1—1b5
u(m, m) ~— - 4.23
(m, m) VTV Q> —8Q bo r (4.23)

Proc. R. Soc. A (2007)
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Note that this result is valid for the lattice diagonal nods only, that is for integer
m=n= /]"/\/5 — 00,

(iv) Localization exponent

The functions

don =c—VeE—1=0/2—-3—/(Q/2—3)* —1,
V2
vizh=t =<Q/4—1— (9/4—1)2—1>ﬁ,

A =
mm b()

(4.24)

can be considered as the localization measures. The logarithmic derivative of the
displacement with respect to the distance from the origin is asymptotically equal
to A, and hence 1 is said to be the localization exponent. The quantities Ay, and
Amm are plotted as functions of the frequency in figure 3. Their ratio is also
presented. The results show that the localization increases as the frequency
grows, and the oscillations are characterized by a more strong localization in the
diagonal rays rather than in the bond-line rays. Numerical computations lead to
the conclusion that these rays correspond to maximal and minimal localizations,
respectively.

(¢) Ezponential waves. Complex dispersion relation

The dispersion equation for plane waves in the lattice has the form
Q =4—2cos k,—2cos k,. (4.25)

When o > /8 this equation does not have real solutions, and we use the following
substitution: k, = m+iq,, k, = 7+ iq, Hence,

Q =4+ 2cosh g, + 2 cosh ¢,. (4.26)
We seek the exponential wave, oriented in the n-direction (g, = 0), in the form
ug(n) = exp(imn— q,n). (4.27)

Hence, equation (4.26) implies

exp(—g,) = Ay, =c— V- 1L (4.28)

Hence, according to (4.13) and (4.17), the logarithmic derivative of the
asymptote (4.17) of the lattice Green’s function differs from that of the
exponential wave only by a slow term —(1/2)ln n.

A similar statement holds for the exponential waves for ¢,= g, and the
corresponding asymptote of the lattice Green’s function (4.23) for m=n.

It is of interest to note that the dispersion contour for w=2 is a square
(figure 4a) whose vertices belong to the coordinate axes. In other words, when w
is close to 2, the directions of the group velocity coincide with one of the diagonal
lines k, ==k, In contrast, for sufficiently large & (w> V/8) the corresponding

Proc. R. Soc. A (2007)
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1.0

0.8 )’mmM’On

0.61

0.4

0.2 Ao,

2"‘I’lﬂl
3.0 3.5 4.0 4.5 5.0
®

Figure 3. The quantities Ay, Ap, as well as their ratio A, Ao, are plotted as functions of w.

Figure 4. Dispersion contours: (a) the sinusoidal wave contour, w=2 and (b) the exponential wave
contour, w=06.

dispersion contour, in the (g, ¢,) plane, becomes close to a square whose sides are
aligned with the coordinate axes (figure 4b).

5. Discrete system of a complex structure

Consider a two-mass chain shown in figure 5. The homogeneous dynamic
equations are
myuy m = U, + U2 m—1 _2u1,m and Mol m = Ui m + U1, m+1 _2u2,m' (51)
For the wave
ikm ikm

Uy m = U10€ Uy m = U20€ (5-2)

)

Proc. R. Soc. A (2007)
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Figure 5. A two-mass chain.

the dispersion relation is as follows:

Q= m1+m2i\/<m1+m2)2_4sin2 k/2. (5.3)

mymy mymao mymy

Let m; be greater than my. The dispersion relation defines the finite band gap as

Q =—<2<—=Q,, (5.4)
my mo
and the infinite one as
2 2
Q>— 4+ —. (5.5)
my Mo

Now consider the Green’s matrix function for these band gaps based on the
equations

—ml.QuLm = U27m + u?,m—l _2'U/1’m + Plé(),m and

(5.6)
_mQQUQ,m = Urm + Uy, m+1 —2U2,m + P250,m-
The discrete Fourier transform leads to the solution
1 i
uf = 5 [Pi(meQ=2) + Py(L + "))
1 .
W = GEPam0=2) + Pi(1+e 7] and (5.7)
Q = (mQ—2)(myQ—2)—2(1 + cos k),
where Q<0 for the finite band gap and (>0 for the infinite one.
(a) Localized vibration modes within the finite band gap
The inverse Fourier transform gives
1 _
wpp = = = { - P1 (@ —2) + PyA™ 4 P,
\ @ —4Q
1
g == — = [ Po(mQ =2) + P + Py and gy
\/ Q5 —4Q

1,7 2 2

Proc. R. Soc. A (2007)
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where the localization exponent A<0 (|A| <1). In particular,

Py (myQ@—2)—(1/2)P, Q0+,/Qg—4QO)

NG ’
Pz(m19_2)_(1/2)P1<Q0+\/Q§_4Q0) (5.9)
Ug o = and )

\/ Q5 —4Q
2 2

Qy = (mQ—2)(myQ—2)<0 <—<Q<—),

Uy =

my mo

The same but homogeneous solution representing the localized oscillations can be
obtained from this system of equations if we put P, = M;Qu;, Py= MyQu,,
where M, 5 are the additional masses attached to the corresponding masses in the
cell m=0. We arrive at the condition of the existence of a non-trivial solution as

<\/ Q5 —4Qy— MlQ(m29—2)> (\/ Q:—4Q,— MQQ(le—Q))
M, Myw* 2 2 2
—1T20)<\/Q§—4Q0+Q0> =0 <E<Q<E>'

In particular, the above equation implies that when M;=0

1 /mQQ—2 2 rQ—1—r
M =——, |2 2 /41— Q, =—
! e\l 2—m,0 @ Ql+nrV 1+r—2Q

X\/(l + r)2 +(rQ—-1-r)(1+r—Q),
(5.11)

(5.10)

and when M;=0 we have

1 2— mg.Q
M, = VaA—
2T+ me—2 il

_ 1+r—0
e+ Vre—1—r

\/(1 +r)+(rQ—1—-r)(1+r—0Q). (512)

Here and below, the mass ratio is denoted by r=m;/my>1, and the
normalization is introduced in such a way that m; + my =2, so that the
corresponding homogeneous lattice is the same as in §4. In these terms

Qo =4<1i+r—1> <1Tfr—1>. (5.13)

The analytical formulae (5.11) and (5.12) suggest that a localized defect mode
can be initiated by a small variation of one of the masses in the central cell.
Namely, a localized mode will appear near the lower edge of the band gap, i.e.
Q—2m;'+0, when M,=0 and M, ~—C/m;Q@—2, with C being a positive
constant. We note that the localized mode near the lower edge of the band gap
cannot be created by a small variation of m, with M;=0. In figure 6, we present
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lattice contrast r

Figure 6. The frequency squared versus the lattice contrast for M>=0. (1) M; = —0.5, (2) M;=—0.7,
(3) My=—1, (4) the limit curve M; = —2r/(1+r), (5) the lower band gap boundary and (6) the upper
band gap boundary.

the frequencies of the localized modes as functions of the mass ratio in the
unperturbed biatomic lattice for the case when M, =0 and M; is negative. This
includes the curves corresponding to M;=—0.5, —0.7, —1, and the limit curve
M, =—2r/(1+ r). In the latter limit case m;+ M; =0. Thus, the region between
the limit curve and the lower edge of the band gap (2 =2/m; =1+ 1/r) can be
covered via alteration of the mass my while M;+m;>0 and M,=0. The band gap
boundaries are also shown in figure 6.

In contrast, to obtain a localized vibration at the frequency close to the upper
edge of the band gap, i.e. Q> 2my ! —0, it is sufficient to increase the smaller
mass My, so that My ~ C/2— myQ, C'> 0 while M; =0. The localized mode near
the upper edge of the band gap cannot be created by a small variation of m; while
M5=0. In figure 7, we show the frequencies of the localized modes as functions of
the mass ratio r=m;/my for the case when M;=0 and M is positive. The
diagram incorporates the curves corresponding to M>=0.5, 1, 2, 3. The band gap
region can be covered via increase of the mass my while M; =0. However, in order
to reach the lower bound of the band gap, one has to take the limit as my — 4.
Simultaneous finite variations of both masses m; and my thus allow to create a
localized mode over all the frequency range within the finite band gap.

(b) The band gap depth and the extremal localization

Within the bang gap, 2m; ! <Q <2m, ', the functions Ujm, j=1, 2 decay
exponentially as |m| increases, and the localization exponent is equal to A (see
equation (5.8)). When |A| reaches its minimum within the gap as Q= Q,, the
oscillation region becomes most localized. These values are

1 1 1 1

1 1
M’min=_<x=__>, Q*=—+—=1+—<7"+—> (514)
r r m; Mo 2 r
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Figure 7. The frequency squared versus the lattice contrast for M;=0. (1) My=0.5, (2) My=2,
(3) My=2, (4) M>=3, (5) the lower band gap boundary and (6) the upper band gap boundary.

2.0

S luoro =

10 05 0 05 10 15 2.

Figure 8. The perturbation mass M, versus M; for the case of extreme localization. Three cases of
the lattice contrast are shown: (1) r=1.2, (2), r=2 and (3) r=2.8.

Assuming the normalization m;+my=2, we choose the perturbation masses M,
and M, in such a way that the corresponding localized vibration has the extremal
localization, with the localization exponent A= —1/r. Figure 8 shows M, versus
M, for the case of extremal localization, for the lattices of different contrasts.
Three cases of the lattice contrast are presented (r=1.2, 2, 2.8). It is shown that
for a fixed perturbation mass M;, the second perturbation mass M, decreases for
a chain of a higher contrast. Figure 9 includes the graphs of the total
perturbation mass M Ms versus M, for the cases of the extremal localization
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Figure 9. The total perturbation mass M; + M, versus M; for the case of the extremal localization
for different lattice contrasts: (1) r=1.2, (2) r=2, (3) r=3 and (4) r=5.
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Figure 10. The case of the zero total mass perturbation (M;+ M;=0) corresponding to the
extremal localization. (1) The optimal contrast parameter r=m;+my versus the perturbation
mass M;. (2) The lower bound for the admissible values of the perturbation mass M;.

for lattices of different contrasts. The graphs are given for the cases when
(r=1.2,2,3,5). It appears that for a sufficiently high contrast (r>3),
the extremal localization can be achieved via a perturbation whose total mass
M, + M, is equal to zero. The special case of the zero total mass perturbation
(M;+ M;=0) is illustrated in figure 10. For the case of the extremal localization,
we show the lattice contrast parameter r=m;/m, as a function of the
perturbation mass M;. The curve on the left shows the lower boundary for the
admissible values of the perturbation mass M.
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(¢) The frequency exceeds the upper bound

For the two-mass chain, in addition to the above-considered band gap, no
sinusoidal wave exists if Q> Q, .. =2/m; +2/my=2+ r+ 1/r. For this case we
find from equation (5.7) that

1
B — o Q-9 palm 4 poalm=1
Uq — {[=Pi(my, ) + Po]A™ + Py 1,
\/ @ —46

1
Uy gy = e { [~ Py(my @ —2) + P A" + P A} and (5.15)

A/ Q% —40

1 2 2
0<2 =§<Q0—2—\/Q3—4Q0)> <1 <E+E<Q)'
In particular,
— P (my,Q—2) + (1/2)P2(Q0 \/ Qg_4Q0>

Ui = \/TQO
—Py(mQ—2) + (1/2)P1(Qo \/M) (5.16)
Ugy = ’

—4@
Qo = (MR —2)(myQ—2)>0 ( +—< Q>

Replacing P, = M;Qu;, Py= M,Qu, we derive a system of two linear
equations with respect to u; and us, which has a non-trivial solution if and
only if

<\ [QF—4Q, + MlQ(mQQ—2)> <\/ Q2 —4Q, + MQQ(le—2)>

M1M2w< 2 2 (1+7)?

2
a-E1a) ~0 (0> 2+ 2~

my mo r

>. (5.17)

From this it follows that, for any frequency in the infinite band gap, the localized
oscillation state can be achieved by an allowable variation of each mass, e.g.
m1—>m1+M1>0 (MQZO) or 7Tb2_)7712+M2>0 (M1=0)

1 'mQ—2
M==g\ gV @—1>—m (M, <0, M, =0) and
7 my@=2 o1 (M, <0, M, = 0)
— s — —m = .
270 mQ—2 0 ? 2o
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6. Concluding remarks

The localized vibration modes considered in this paper are described within the
general analytical framework. The motivation of the paper is twofold: first, we
discuss constructive ways to design band gap materials, both in the continuous
case and in the case of discrete lattice structures and; second, we develop
analytical descriptions of localized vibration modes within unbounded solids
or lattices.

Although some of the formulations may look fairly classical, the analysis has
generated new results not published elsewhere. For example, we have considered
a uniform continuous configuration (including a ‘non-local’ material), which
possesses a band gap for high frequencies; for this case, a high-frequency localized
vibration mode is constructed and analysed. Analytical description and closed-
form asymptotes have been derived for lattice Green’s functions characterizing
high-frequency vibrations within the lattice and hence possessing an exponential
decay at infinity.

The notions of the depth of band gaps and the localization exponents are
used for the band gap structures, which possess localized vibration modes. We
have presented the analysis of complex dispersion relations and ‘exponential
waves’.

Finally, we have addressed a class of problems of optimal design for
inhomogeneous lattice structures. By placing a frequency of the vibration
mode within the band gap, we show the way to choose the physical parameters of
the system to achieve the extremal localization. In particular, this can be
achieved by a perturbation of a central cell within an inhomogeneous periodic
lattice. It is also shown that a ‘neutral’ perturbation (which does not alter the
total mass of the central cell) may be introduced for a certain class of lattices in
such a way that the corresponding vibration mode is characterized by the
extremal localization.

This paper has been written during the academic visit of Prof. Slepyan to Liverpool University
supported by the research grant EP/D079489/1 from the UK Engineering and Physical Sciences
Research Council. The authors acknowledge stimulating discussions with Prof. R. C. McPhedran
following his lecture on defect modes in photonic crystal structures.
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