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Solitary Waves in an Inextensible, Flexible, Helicoidal Fiber

Leonid Slepyan, Viacheslav Krylov, and Raymond Parnes

Department of Solid Mechanics, Materials and Structures, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
(Received 31 August 1994)

The exact solution to the nonlinear vector equations governing an inextensible, flexible, helicoidal

fiber yields a one-parameter set of solitary waves.

Analytical expressions are found for the

displacements, internal force, axial and angular momenta, and energy. This solution represents an
interesting example of three-dimensional solitary waves propagating in a system devoid of potential

energy.
PACS numbers: 62.30.+d, 03.40.Kf

Nonlinear waves in flexible wavy fibers are due to
the interaction of longitudinal and transverse oscillations.
Such a process has been considered to describe plane [1]
and spatial [2—-4] motions of a one-dimensional atomic
chain (a mass-spring system). Elastic extensional waves
in strings were considered in [5-7]. Bending waves
were examined in [8,9] for elastic beams and wires
under a constant, uniformly distributed tension force.
The propagation of solitary waves due to interaction of
quantum and mechanical effects was described in [10,11]
for the alpha helix as a model of a molecular system.

In the present work, as the simplest system of this kind,
we consider a helix consisting of an inextensible fiber
with no bending stiffness. Such a system devoid of strain
energy is, in its simplicity, comparable to an ideal gas
of rigid particles. The helix model is of particular in-
terest since, irrespective of initial helix geometry or am-
plitude of displacements, a complete and general analyt-
ical solution of the nonlinear vector equations governing
the dynamics of the fiber is obtained. The solution re-
veals the existence of three-dimensional solitary waves
which possess axial and angular momenta. For a helix
of long lead, when the angular momentum is negligible,
the shape of the distribution of the force coincides asymp-
totically with that of solitons governed by the well-known
Korteweg—de Vries (KdV) equation.

It may be noted that helicoidal systems are relevant
to a wide variety of fields in which coiled structures are
important, from the modeling of macromolecules such as
DNA to video or audio tapes, storage spool dynamics,
and deployable structures for satellite applications [12].
Three-dimensional spatial chaos obtained by numerical
simulations in [12] resembles a soliton gas of the waves
described below. Moreover, such a system can be used
as an energy absorber under dynamic extension [13].
Note that the deployable systems may also serve as
demonstrations of the solitary waves.

We consider an inextensible, flexible fiber of mass
density p per unit length whose equation of motion and
extensibility condition are, respectively,

[F(S,)OR'(S, 1)) = pR(S, 1), (1a)
IRl =1. (1b)
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Here, F is a non-negative tension force, and R is the
position vector. Primes and dots appearing above denote
derivatives with respect to the coordinate along the fiber,
S, and time, ¢, respectively.

Our goal is to find a steady-state solution to these
equations for a solitary wave in the helix. However,
first, the trivial case which corresponds to a fiber
of arbitrary shape under a constant tension force, F,
deserves to be mentioned. In this case the D’Alembert
solution, R = R(S — ct), ¢ = =/F/p, where R is
an arbitrary vector function which satisfies the equality
(1b), is valid. Since the particle velocity dR /¢ and
the tangent vector —cdZR /S coincide, this solution
corresponds to a flow of the fiber material along the
trajectory defined by the given geometry of the arbitrary
fiber, and thus, for this trivial case, the geometry of the
fiber remains constant.

We now consider a helix of initial radius Ry and let y
denote the initial angle between the fiber and the axis of
the helix, x. We note that to an observer moving along the
helicoidal fiber with a speed v, and the associated angular
velocity about the x axis, v siny/Ry (with an orthogonal
triad natural to the helix), the initial geometry appears
invariant; hence a solitary wave is expected to exist as
a steady-state solution in a coordinate system attached to
the moving observer.

Letting R(S,7) be represented as the sum of the
longitudinal vector, R,(S,), and a vector R(S,?) lying
in the cross section of the helix, we introduce the
nondimensional quantities

r. = R,/Ry, r = R/Ry, s = S/Ry
[ =F/pv? T = vt/Ry, 2
and express the vectors r, and r as follows:
r.(s,&) = [scosy + u(&)lk., r(s, §) = A(§€)e™,
A = sinvy, E=s— 1, 3)

where A(¢) and u(¢) are arbitrary functions. For v > 0,
the conditions at infinity are expected to correspond to the
initial shape of the helix, i.e.,

(u,u’, A", f) — 0, A—1 (& = +o,7=0). 4)
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Here and below, primes and dots denote derivatives with
respect to the nondimensional coordinate, s, and time, 7,
respectively.

Note that the vector r(s,¢) is defined in a complex
variable plane which coincides with the cross section of
the helix. Substitution in Eq. (1a) then leads to

[(cosy + u)f] = u", (5a2)
1= £’ — f'r' — Ar —2iar’ = 0. (5b)

Equation (5a) yields immediately an expression for u’,
namely,

f cosy
o= L T
W= (©)
which satisfies the condition at infinity, Eq. (4). Using
the inextensibility condition (1b), we now write
N2 — 1 el 2 — 1 cos’y
> =1-— [P =1 a-77 (7
Multiplying Eq. (5b) by ¥/, the real part leads to
(1 = OUPY = 2f1F P = 2°(*) = 0. (8)

As will be shown below, the fiber crosses the axis of
the helix at the point of maximum tension force; we define
this point to be ¢ = 0. Furthermore, we find it convenient
to define r = |r| for ¢ = 0and r = —|r| for & = 0.

Substituting expression (7) into Eq. (8) one obtains
f! = —A%(r?)’/2. This and condition (4) yield the relation

/\2

f=7(1—r2)- )
Substituting Eq. (9) back into Eq. (5b) and rearranging

leads to

/\2

r’ — 7[(1 - Ar') — A’r = 2iar' = 0. (10)
In solving this 2D vector equation, we choose to repre-
sent the vector r by means of the complex representation
r=re'’ (11)

In particular, we note that in the initial geometry, ¢ is
given by the linear relation ¢ = sA. Substituting Eq. (11)
into Eq. (10), separating the real and imaginary parts, we
obtain

[1 -La- rZ)}[r" — (@] + A R

+ 2A¢'r =0, (12a)
2
[1 - ’\7 a1 - r2)j|(¢”r +2¢'r) + AP’
—2Ar" =0. (12b)

Note that these equations are satisfied by the initial
shape of the helix (r = 1,¢' = A). However, as we
now show, these equations also lead to a solitary wave
solution. To this end we first consider Eq. (12b) which is
linear and of first order in = ¢’. Taking into account
the initial helix shape as mentioned above, Eq. (12b)
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possesses a solution

U=¢' = /\[1 - ’\72(1 - rz)r. (13)

Substitution of this last result in Eq. (12a) yields a
second-order equation with respect to r, namely,

2 -2
P+ Azr[l - )‘7(1 - r2):|
-1
+ Ar[(r')? — 1][1 - %2(1 - rz)j} =0. (14

Upon setting ¢ = r’ and letting L(r) = ¢*> — 1, we
obtain
dL 2A%r
<y L
dr 11— (/20 - )

2A%r
T - wpa- e Y
whose solution under the condition L(*1) = —1 is

L(r) =[A*(1 = r») = 11[1 = (A?/2)(1 = )] (16)

Note that using Eq. (16), we obtain from Eq. (6) and upon
integrating Eq. (13),

u = (r — 1)cosy, (17a)

¢ =Ar — 1 +5). (17b)

We observe that L # —1if A > 0 and |r| < 1. At the
point where r = 0, the derivative ¢ = r’ has the nonzero
value

L A2
1 — A2/2
thus indicating that the fiber crosses the x axis.
Using Eq. (16), we obtain, after simple integration,

a relation between the coordinate ¢ = s — 7 and the
deformed helix radius, namely,

(r=0)), (18)

r

nl-i-r
1 —r

1 — A’r = 2% (19)

v>0 -0.
FIG. 1.

Phase portrait.
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FIG. 2. Helix radius [Eq. (19)].

From this latter expression, it follows that
lrl ~ 1 = 2e7M0FED (] — o) (20)

that is, the propagating disturbance decays exponentially
as |&] — oo

Thus we conclude that the solution (19) corresponds to
a solitary wave. It is of interest to note that the shape
of the wave depends on the helix angle only and the
“effective” wavelength decreases as vy increases.

Finally, we present expressions for the linear and
angular momenta p and H, respectively, as well as for the
energy, T, of the solitary wave as functions of the helix
properties, Ry, y, and p, and the solitary wave parameter,
v. It is worth noting that for a given helix, v is the sole
parameter governing the propagation of the solitary wave.
From Eq. (17a), it is evident that & = —u’ = —r'cosvy.
Then, using Eq. (2) one obtains

p= pvRof udsk, = —2pvRgcosyk,, (21a)

oo

. 2 .
H = puRgf r2¢ dsk, = Y puRZsinyk,. (21b)

Noting from Eq. (17b) that gb = —Ar’ and using the
representation, Eq. (11),

. . . 2 .
T = %Ro @2+ P+ r2¢pds = gpszo sin’y .
(22)
Note that as y — 0 the angular momentum of the wave

becomes negligible compared to the linear momentum. In
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FIG. 3. Internal force [Eq. (9)].

FIG. 4. Comparison of initial (black curve) and deformed
(gray curve) shape of the helix.

this case, expression (19) yields the asymptotic solution
2

, o~ tanh%f, (23a)

)‘2 5 )\2

f 2 sech ( > §>.
The shape of the distribution of the force, Eq. (23b)
coincides with that of the soliton governed by the KdV
equation. However, the effective lengths of these two
waves are not the same: In our case, the length depends
on the helix angle, y, while for the case of the KdV
equation, it depends on the soliton velocity, v.

We present here some numerical results. In Fig. 1, the
phase portrait is shown in (r, r) space for several values of
v. Results shown in Figs. 2 and 3 are given for y = 7 /6.
The variation of the helix radius with £, based on the
relation (19), is shown in Fig. 2. Using the calculated
values of r, the force f, evaluated from Eq. (9), is shown
as a function of ¢ = s — 7 in Fig. 3.

A numerical simulation, using a finite discrete system
of masses connected by massless inextensible rigid links,
was performed to obtain a transient wave response. (A
comparison with theoretical results showed the numerical
calculations to be highly accurate.) Results of these

(23b)

FIG. 5. Solitary wave formation in the helix under a suddenly
applied force.
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calculations are presented in Figs. 4 and 5. The shape
of the deformed helix with respect to its initial shape is
shown in Fig. 4; we note that the disturbance is limited
effectively to a finite region of the helix. The spatial
distribution of the force with time is presented in Fig. 5
where we observe that the wave travels as a solitary wave.
Results have also been obtained for waves traveling in
opposite directions. It was observed that after collision,
the waves continue to travel in their respective directions
but with a phase shift as is characteristic of solitary wave
collisions.
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