SOLITARY WAVES IN FLEXIBLE, ARBITRARY ELASTIC HELIX

By Leonid Slepyan,' Viacheslav Krylov,” and Philip Rosenau®

ABSTRACT: The traveling solitary wave was recently discovered to be a very stable object existing in an
inextensible, flexible helical fiber. In the present work, a flexible helical fiber with an arbitrary stress-strain
relation is considered, and a general, analytical, steady-state solution of the 3D nonlinear vector equation is
found. This solution describes a new class of spatial motion of an elastic string, which is shown to be a waveguide
for subsonic solitary waves. The results confirm that the known solution for an inextensible fiber is a low-
velocity or low-energy asymptote of the solution presented here. Another type of asymptotic solution derived
here corresponds to a high-energy wave. In this case, when the amplitude of the wave increases, the wave speed
and energy tend to infinity, and the effective wavelength tends to zero.

INTRODUCTION AND BACKGROUND

An elastic, flexible fiber of mass density p per unit length
is considered whose equation of motion is

R .
[F(A) X] =pR; A=|R| M

Here, F is a nonnegative tensile force and R is the position
vector [see, for example, Weinberger (1965)]. The primes and
dots appearing in this equation denote derivatives with respect
to the coordinate along the fiber S and time ¢, respectively.
Lagrange’s variables are used, so the modulus |R’| is the
stretch of the string. The function F(A) is assumed to be in-
vertible. In particular, a positive constant, cx, is assumed to
exist such that

dF

T pck )
This is the only restriction on the elasticity law of the fiber.
Also, this inequality signifies stability of the fiber under ex-
tension. Thus, a general, geometrically and physically nonlin-
ear, stable-under-extension fiber (or string) is considered.

The fibers treated here have no bending stiffness, so any
curve can be its natural state. However, the solitary-wave so-
lution derived in this paper corresponds to a helical natural
state (the helical shape of the fiber in front of the wave is
restored after the wave has passed, but axial and angular shifts
arise). Note that the model of the string that does not possess
bending stiffness is a long-wave approximation for a flexible
rod (cable, pipe, etc.).

It may be noted that helical systems are relevant to a wide
variety of fields in which coiled structures are important, from
the modeling of macromolecules such as DNA [Austin et al.
(1997) and references therein] to deployable structures for sat-
ellite applications (Beletsky and Levin 1990; Penzo and Am-
mann 1996). Various mechanical models of helical cables,
ropes, etc., are considered in a comprehensive review by Car-
dou and Jolicoeur (1997). The dynamics of helical fiber is
related to the motion of vortex filament in fluids (Hasimoto
1971; Fukumoto and Miyazaki 1991) and to the textile yarn
manufacturing processes (Stump and Fraser 1996). Helical fi-
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bers are usable as reinforcements of composite materials (Ka-
gawa et al. 1982). Such a fiber (or a helical-fiber composite)
can also be used as an energy absorber under dynamic action
(Cherkaev and Slepyan 1995).

Eq. (1) describes the nonlinear coupling between axial and
transverse motions of the string, and only in the simplest case
of a constant tensile force, F = F,, is it satisfied by the well-
known Dalambert solution in the form R=R(s — vd) or R =
R(s + v?), under the condition |[R’| = const(F(|R’[) = Fy) in
which v = \/F,/p. Note that even in this simplest case the
problem remains nonlinear; the superposition principle is not
valid.

There is a large body of works devoted to the nonlinear
dynamics of elastic strings. Because the solution of (1) pre-
sents serious mathematical difficulties, various approximate
models were developed to take into account the coupling be-
tween the axial tension in the string and the transverse dis-
placements. Probably the first approximate model of such a
coupling was introduced by Kirchhoff (1883). Among other
models, note the approximation by Carrier (1945). The latter
was then studied analytically by Oplinger (1960) and Nara-
simha (1968) and numerically by Leissa and Saad (1994). For
an extended reference list and historical notes, see, for ex-
ample, Antman (1995). A different formulation of the equation
of string dynamics can be found in Antman (1980); group
properties of the equation were studied by Peters and Ames
(1990).

There are a few works that present exact solutions of (1)
for special conditions. Keller (1959) found an exact solution
of (1) for cases in which the tension is assumed to be a linear
function of a stretch F = gA. It was shown that only in this
case can the string perform purely transverse motion. Lee and
Ames (1973) have described a class of exact solutions under
the assumption of a specific connection between the transverse
velocity and the inclination of the string. In this case, the equa-
tion for the tension is independent of all the other variables.
The drawing and whirling of a string were described by Ant-
man and Reeken (1987). Eq. (1) was considered by Rosenau
and Rubin (1986), where the specific cases of time-indepen-
dent and coordinate-independent tensions were studied. The
possibility of launching periodical waves in the plane coiled
string (i.e., for a helix with a zero pitch) was noted by Rosenau
(1987). Kinematical conditions of steady motion of a string
were recently formulated by Nordenholz and O’Reilly (1995).

The first exact, nonlinear solution describing a wave in a
helical fiber (assumed to be inextensible) is presented in Sle-
pyan et al. (1995a), with some numerical results given in Sle-
pyan et al. (1995b). It was shown that a solitary wave can
propagate along the helical fiber as a very stable object. The
complete description of various types of periodic and solitary
waves for a more general case of a helix rotating around its
axis was derived by Krylov et al. (1998). An extraordinary
nonstationary binary wave that arises in a helical thread under



axial dynamic tension was described in Krylov and Slepyan
(1997).

In the present paper, it is shown that extensibility does not
prevent the existence of a solitary wave. However, it does
bound the wave velocity; only subsonic solitary waves can
exist. The results confirm that the solution for an inextensible
fiber is a low-velocity or low-energy asymptote of the solution
presented here.

SOLUTION

Let us note that a general relation between the force and the
position vector follows immediately from (1), as its projection
onto the tangent line yields

A(F)F' = pR-R’ 3)

This relation is valid for a fiber of arbitrary shape. It is shown
below that in the case of a steady-state solitary wave in a helix,
(3) can be reduced to a relation between the force and radius
of the deformed helix.

Consider a helix of an initial radius R,, and let 'y denote the
initial angle between the fiber and the axis of the helix, x.
Using the same representation of the steady-state wave as in
Slepyan et al. (1995a), one notes that, to an observer moving
along the helical fiber with a speed v and an associated angular
velocity about the x-axis, v sin y/R, (with an orthogonal triad
natural to the helix), the initial geometry appears invariant;
hence, a solitary wave is expected to exist as a steady-state
solution in a coordinate system attached to the moving ob-
server.

Letting R(S, 1) be represented as the sum of the longitudinal
vector, R,(S, ), and a vector R(S, ) perpendicular to the x-
axis, the following nondimensional quantities are introduced:

P=RJ/Ry; r=R,/Ry; s=S/R,; f=Flpv*, v=vt/IR, @)
and vectors p and r are expressed as follows:
p(s, &) =[scosy + u@®lk,; A=siny; E=s5s—1 (5q)

Q = A(g)ei)\l = B(g)eikr (B = Aeikﬁ)
(5b)

r(s, §) = ReQdk, + ImQOk;

where x is the axis coordinate; y and z are the orthogonal
coordinates in the normal plane; k,, k,, and k, are the unit
vectors; and u(£) is the axial displacement.

In the case A = 1, representation (5) describes an unmoving
helix, whereas the case A = A(§) corresponds to a wave prop-
agating along the helical fiber. A generalization of the problem
for a rotating helix was considered for both an inextensible
helix (Krylov et al. 1998) and an extensible helix (Krylov and
Rosenau 1996). Note that the present paper was completed
before the paper by Krylov and Rosenau (1996) and is referred
to therein.

For the conversions below, it is convenient to use the com-
plex representation, {2, of vector r(s, £) defined by (5). Note
that the scalar product of two coplanar vectors can be ex-
pressed in terms of their complex representations, {1, and Q,,
as Re(£2,{),) as follows immediately from (5).

For v > 0, the conditions at infinity in front of the wave are
imposed to correspond to the initial shape of the unmoving
helix, i.e.

u,u' A, f) >0, A>1 (§—> +o,7=0) 6)

Here and below, primes and dots denote derivatives with re-
spect to the nondimensional coordinate s and time T, respec-
tively.

Based on the representations given in (5), the components
of the acceleration vector can now be expressed as follows:

p=p" F=r"— 2iAr — Nr @
This allows extension of the fiber to be expressed in terms of
the deformed helix radius. In fact, substitution in (3) leads to
1 % /
O —-(AY =——(@¢Y; =] Adf (®)
2 2 A

where r*> = |r|*. Eq. (8) and condition (6) yield the relation
with A = 1 at infinity, where r? = 1

2

—o-Lla-pn=Lag-,
Uf)=®-SW =-D=0~r) ©)

As follows from (2) for the range 0 < v* < ci:

af

an >1 (10)
and hence, the derivative of U is positive
auv(f) _ _dA
af —A(l df>>0 A=1 an

At the same time, local sound velocity in the fiber

- JYdE_ |df
““Vpaa~ " Var 12

It can now be seen that condition (10) means that v < ¢. Thus,
in the case of a subsonic wave, the derivative, dU/df, is pos-
itive; hence, there is a one-to-one correspondence between the
force and the radius of the deformed helix [see (9)].

Let us represent relation (9) in the form

4
dA

Inequality (10) allows us to make the estimation

A 2
f=%(A2‘l)_J’ A-D dA+b2—(1—r2) 13)
1

)\2
fsA—1+3-<A (14
Furthermore, under condition (10), U = 0; hence
rr=1 (15)

In the particular case of inextensibility when A = 1 and ®
= f, (9) yields

AZ
f=50-r) (16)
2
In the case of linear extensibility when
2
A=1+M?f; <I>=f+M7fz (M=£) an

the nondimensional internal force is

M1 — 1)
-7 !

Note that (16) follows from (18) as a limit of M — 0. In an
inextensible helix, the wave velocity is unbounded. If exten-
sibility is taken into account, the wave velocity is bounded.
The upper bound is independent of the helix parameter \ in
the case of the linear extensibility, and it depends on A for a
nonlinear elastic law. Consider, for example, the constitutive
relation F = F\/A — 1. Then

f=M‘2[ 1+ (18)

A-—1 1 F, v?
=——— P=f+ -’ 3, cz=—-2——; =9-—
f ® 4 3 4 2pVA -1 @ Fo
(19)

and the condition v* < ¢? leads to the inequality
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It now follows from (11) that
A2+ 4A —5 - 3N2<0; A =VI9+32-2 (21)

Let us return to the general case. For a given A, the internal
force f, and therefore the stretch A, depend on r? only, and
the ratio f/A can be denoted as a function of r?

% =G(r?); G—0 when ro1 (> (22)

This function is defined by a given elastic law, A(F), and the
derived equation, (9). It can be seen from (14) that G < 1.
Substitution of (7) in (1) [see (22)] leads to

[Gw' + cosy)) =u” 23)
and
(Gr'Y =r" — 2inr’ — Nr (24)
From (23) and (6), one now has
, _Geosy
=T-G 25)

In solving the 2D vector equation, (24), let us represent the
vector r by means of complex representation, (5), with

O =re' (26)

where r(£) and (&, s) are real functions.

As shown below, the fiber crosses the axis of the helix at
the point of maximum tensile force; we define this point to be
¢ = 0. Furthermore, we find it convenient to define r = |r| for
£ =0and r = —|r| for £ = 0. In particular, we note that in
the initial geometry, ¢ is given by the linear relation ¢ = s\,
and under condition (6)

r-o1l, ¢~r((—> +x 27

Substituting representation (26) into (24), multiplying by
¢~'* and separating the real and imaginary parts, one obtains

dG
a1-Grd"+2 [(1 - Gy - ey r’r'] &' =2Ar  (28)

and
[(A-6r1r-3a- G)r(t1>’)2 + 2Ard’ — ANr=0 (29)

Eqs. (28) and (29) are satisfied by the initial shape of the
helix (r = 1, &' = \). However, as we now show, these equa-
tions also lead to a solitary wave solution, just for inextensible
strings, as was shown by Slepyan et al. (1995a). To this end,
we first consider (28), which is linear and of the first order in
r = ¢’. Under the condition at infinity, ¢’ = \, (28) possesses
a solution

A
1-G

=4’ = (30$)
Substitution of this last result into (29) yields a second-order
equation with respect to r

NrG

[aA-a6y7+ T—G- 0 @31)

Multiplying this equation by (1 — G)r' and integrating the
resulting expression, one obtains
2

N2
= oor

1
fG(rz)er (=0 when r=1) (32)
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It can be seen that the derivative r’ is nonnegative at the point
r=0(r>0if§>0)

1 V2
0y = — N
PO = 5 5o ( J; G(a) da) >0 (33)

The phase portrait associated with (31) is shown in Fig. 1. The
upper part corresponds to the wave propagating to the right
(this wave is considered here), and the bottom part corre-
sponds to the wave propagating to the left.

Thus, the radius of the deformed helix as a function of £ is
defined by the relation

r 2 1 -2
f {[1—:'-'0(’.—2)]2 f Ga) da} dr=§ (34
[} r?

The axial displacement, #, and the angle, ¢, can be ex-
pressed as follows [see (25) and (30)]:

G
u(§)=—j ——d§cos ;
., 1-G b

" G . .
4>(§)—‘fE 1—_—éd§sm'y+ssm-y as)

Note that, as follows from the derived relations, the varia-
bles r(§), u(§) — u(0), and 8(§) — 6(0) (8 = & — As) are
antisymmetrical, monotonically increasing functions, and the
internal force, f(€), is a symmetrical function that monoto-
nously decreases and tends to zero with an increasing |£|.

We now have to show that the wave is truly solitary and
that the integrals are convergent. With this in mind, we con-
sider the asymptotic expressions for the helix radius and the
tensile force. Taking into account that

f>0 €20 ®=0(fc) (*—>1) (36)

the following asymptotic expression of (9) is obtained:

\(1 — r?) (1 - 1) _
2 Y30 = oy C=lme G7)

Now, as follows from (34)

f~G

Mgl )
1—-r: ~c¢C — 38
4 exp ( V1 — v 38)

where C is a constant. Thus, the intensity of the wave de-
creases exponentially when |£| — oo, which is the required
result.

We now consider the case of linear extensibility in more
detail. In this case, the use of expressions (17) and (18) in (22)
and then in (34) leads to the following relation between the

FIG. 1. Phase Portrait
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radius of the helix and the coordinate & (recall that r = |r|&/
|€D):

R AFNA+n _2A _Mzm,,( ArM )

ada-nA-n M V1 — M?+ MA?

M\ - ),
1—-M

_ 2
V1 - M? 39)

Asymptotic representations (v — ¢ (v < ¢)] follow from (39)
and (18):

i A= 41+

v
[

r~tanh-—)‘2§-—- f~f (cosh—)‘zg—> ;
V1 - M?¥ ? 1 - M)’
A

LA e 40)

where f, = f at the peak of the wave (§ = r = 0). As a conse-
quence of (18), the asymptotic expression (40) for the force is
valid under the condition A*(1 — r*)/(1 — M?) >> 1. The strain
and kinetic energies of the wave are asymptotically the same,
and the total energy is
»? - . 2
W=92—Ro L, (M>*f* + @ + 7% + rgdds ~ \/21"0—_% 41)

Thus, with an increase in wave speed, the effective wavelength
tends to zero, and, at the same time, the energy of the wave
increases unboundedly. The ratio f/f; for N = 1/2 is presented
in Fig. 2 for several values of v/c. The dotted curve corre-
sponds to the asymptotic solution (40). The helical fiber de-
formed by the propagating solitary wave is shown in Fig. 3.

The derived results confirm that the solution for an inexten-
sible fiber, Slepyan et al. (1995a), is a low-velocity or low-
energy asymptote of the solution presented here.

In conclusion, let us consider whether a supersonic steady-
state wave can exist. In a general case, the local sound velocity
¢ = ¢(A), and if such a wave does exist, the inequality v > ¢
can be valid within a range of the stretch, A, < A < A,, where
A, = 1, A, = o, Within this range, as follows from relations
9-(12), dA/df > 0, dU/df < 0, and f'r' = 0. In the case A,
= 1, at any point within the interval 1 < A < A,, the tension
f>0,U<0,and hence, r > 1 (r=1 at s = +o where A =
1). However, this conflicts with expression (32), the right-hand
part of which becomes negative. In the other case, when A, >
1, the derivative r’ changes its sign when A crosses the point
A,. But this, again, is inconsistent with (32), because ' must
be continuous, as can be seen in (31). Thus, in the considered
system, supersonic steady-state waves cannot exist.
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