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A generalized formulation of a boundary integral equations method is presented for
analysis of forced vibrations of a composite elastic structure immersed in compressible
inviscid fluid. The structure is supposed to consist of parts which are membranes, plates,
spherical, conical or cylindrical shells. Both the interaction between the acoustic medium
and the composite structure as a whole, and the interactions between the parts of the
structure, are described by boundary integral equations. These boundary integral equations
are assembled in a two-level system. The first level boundary integral equations govern the
dynamics of the above-mentioned ‘‘simple’’ parts of the structure. They contain unknown
boundary displacements and forces, contact acoustic pressure and driving loads. The
kernels of these equations are Green functions of ‘‘simple’’ unbounded structures vibrating
in vacuo. These functions have explicit analytical forms. The boundary integral equation
of the second level governs the interaction between the fluid and the structure as a whole.
The classical boundary integral equation related to the contact acoustic pressure is modified
by substitution of Somigliana-type formulae for normal displacments on each part of the
structure. As a result the second level equation constitutes the connection between the
contact acoustic pressure, driving loads and the boundary displacements and forces on the
edges of the simple parts of the structure. The kernels of this boundary integral equation
are convolutions of Green functions of simple unbounded structures and unbounded fluid.
The validity of the method proposed is demonstrated for several simple test problems
analyzed earlier by other authors. The aim of this part of the paper is to outline and
evaluate the numerical procedure. A detailed analysis of the equations of vibrations of a
composite thin-walled structure in an acoustic medium is presented in Part 2 of this paper.
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1. INTRODUCTION

Consider an arbitrary thin-walled structure, in contact with an ideal compressible fluid.
A velocity potential 8 satisfies the Helmholtz equation in the fluid:

928+(v/c)28=0. (1)

The dependence of all functions herein upon time is taken in the form exp(−ivt) and this
multiplier is henceforth omitted, v is the circular frequency of the oscillations and c is the
speed of sound in the fluid (a list of notation is given in Appendix B).

The acoustic pressure p is related to 8 by

p=irv8. (2)

Here r is the ambient density of the fluid (assumed to be uniform and at rest apart from
the acoustic disturbances).
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The vibrations of the structure are governed by the differential equations

[L]{w}= {q}+ dj3p. (3)

{w} is the displacements vector, the component of {w} that is normal to the surface of
the thin-walled structure is denoted by w3, and [L] is a tensor differential operator defined
by the mathematical model chosen to describe the vibrations of the structure. The positive
direction of the displacement w3 corresponds to that of the outward unit normal to the
fluid domain. {q} is a vector of external driving loads applied to the structure. These
driving loads are considered to be given and they are generated by some external sources
of excitation of the vibrations. dj3 is the Kronecker symbol. The coupling term enters only
the third equation for the vibrations of the structure (that which corresponds to the normal
displacement w3).

Inasmuch as an inviscid acoustic fluid medium is considered, only the displacement
components w3 appears in the condition on the ‘‘wet’’ surface of the structure:

18/1n+ = u=−ivw3. (4)

u is the normal velocity of a point on a surface of the structure as well as the normal
velocity of the corresponding particle of fluid; n+ is distance along the outward unit normal
to the fluid domain at the surface.

Exact analytical solutions for coupled problems of acousto- and hydroelasticity defined
by equations (1)–(4) have been presented in references [1–6] for unbounded membranes,
plates, cylindrical shells and full spherical shells. These model problems give physical
insight into the interaction between an acoustic medium and an elastic body. Exact
solutions are not available for problems of vibrations of composite thin-walled structures,
but various numerical procedures may be selected for assessing the acoustic response of
the structure. The most common approach consists of replacing problem (1)–(4) by its
finite element (F.E.) approximation, with the conditions (4) satisfied at the interfacial nodes
of the meshes for the fluid and for the structure [7–9]. To consider an unbounded acoustic
medium, semi-infinite elements are used [7, 8] which satisfy the Sommerfeld conditions. In
this formulation the system of linear algebraic equations contains all unknown amplitudes
of the displacements over the surface of the structure and the amplitudes of the acoustic
pressure in the fluid. This system has a high order and special attention has to be paid
to the storage and handling of this information.

An alternative approach—a combination of finite elements for the structure and
boundary elements for the acoustic medium—has appeared to be more efficient [10–12].
The boundary integral equation related to the acoustic pressure is replaced by a system

of linear algebraic equations which connects the values of the acoustic pressure at the nodes
of the boundary elements mesh with the normal velocities at the same points. Substitution
of the solution for this system into the F.E. approximation of equation (3) gives the
traditional F.E. relationship between the amplitudes of the displacements and the driving
loads. The matrix of rigidity for the ‘‘dry’’ structure is then supplemented by the so-called
added mass matrix, which is obtained by the inversion of the previously mentioned system
of linear algebraic equations for the acoustic pressure. The valuable advantage of this
method for numerical analysis is that it permits one to utilize all the well-known F.E.
packages (NASTRAN, ANSYS, COSMOS, etc.) to solve the structural–acoustic coupling
problem.

Another numerical approach to analyzing structural–acoustic coupling problems is a
combination of the boundary integral equation method for the fluid and a modal analysis
of vibrations for the structure [13–17]. Natural modes of vibrations of a ‘‘dry’’ structure
provide an orthonormal basis which entirely describes the dynamic properties of the
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structure. This numerical procedure is very convenient and efficient when the natural
modes of vibrations are simple (for example, hinged plates and shells). An efficient
technique is described in reference [13] for analysis of vibrations of composite thin-walled
shells of revolution. The pivotal condensation method is used to obtain the natural modes
of vibrations for the whole structure. Then unknown displacements and the acoustic
pressure on the surface of the structure are expanded into modal series. The Bubnov–
Galerkin orthogonalization procedure results in a system of linear algebraic equations
relating the amplitudes of the vibrations to the acoustic pressure for each mode.

It should be noted that all the numerical techniques mentioned are based on the same
idea; to formulate two conjoint systems of linear algebraic equations (the first one related
to the acoustic pressure at the nodes of a mesh on the surface of a structure and the second
one related to displacements at the same nodes) and then to invert the matrix. These
formulations may be used for analysis of vibrations for structures of complex geometries,
but they yield little physical insight into the process of structural–acoustic interaction.

One more way in which to analyze structural–acoustic coupling problems is the Green
functions method. The basic idea of this approach is to use Green functions of the structure
to express the normal displacement w3 in terms of the driving loads and acoustic pressure.
Then there are two ways in which to assess the acoustic response of the structure. The first
one is described in references [18–20]. It is based on the use of Green functions constructed
for fluid-loaded unbounded structures. This numerical procedure has been used to analyze
the problem of vibrations of a plate [18] and of a cylindrical shell of finite length in an
infinitely long rigid baffle [19, 20]. The Green functions are constructed by the Fourier
transform method. An alternative approach provides that Green functions constructed for
a ‘‘dry’’ structure of finite length are incorporated into the numerical analysis. In reference
[21], the finite element method is used to construct the Green function for the plane
structure considered; in reference [22] the Green function for static loading is used in
formulation of the boundary integral equations for the structure. Boundary integral
equations are formulated for both the acoustic medium and the elastic structure, and this
system of equations is solved in a manner which is typical of F.E.–B.E. coupling.

A further development of numerical methods in structural–acoustic coupling problems
is a formulation of the problem for composite thin-walled structures in a way which gives
room for detailed asymptotic analysis of each particular problem. This aim may be
achieved by the use of the advanced formation of the B.I.E. method suggested and
developed in references [23, 24]. The basic idea of this method is the consistent use of
boundary integral equations to describe both the interaction of the acoustic medium with
the structure and the interactions of elementary parts of the structure with each other.

2. A SYSTEM OF BOUNDARY INTEGRAL EQUATIONS

The thin-walled structure considered consists of N parts. Surfaces corresponding to each
of them are denoted S(n), (n=1, 2, . . . , N), respectively. Let each element of a composite
structure be a section of an unbounded plate, cylindrical or spherical shell. Only M
(MEN) parts of the composite structure are in contact with the acoustic medium. A
harmonic driving load is arbitrarily distributed along the surface of the whole structure.

The boundary integral equation of motion of an acoustic medium is well-known [25, 26]:

(1−C)p(X)+gS

[F0(X, Y)p(Y)− irvG(=X−Y=)u(Y)] dSy =0. (5)

Here X and Y are, respectively, the radius–vectors of the observation point and the source,
S is the boundary of the acoustic medium, u is the normal velocity of the acoustic medium
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on the surface S (positive values correspond to the outward normal for the fluid domain),
4pC is the spatial angle unoccupied by the medium (if a tangential plane exists at the point
X, then C=1/2).

The function G(=X−Y=) is the fundamental solution of the inhomogeneous Helmholtz
equation corresponding to a point source in an unbounded acoustic medium;
irvG(=X−Y=) is the acoustic pressure generated by this source. The function G depends
only upon the distance between an observation point and a source point =X−Y=; F0(X, Y)
is the normal derivative of G(=X−Y=) on S at the point Y: i.e.,

F0(X, Y)= 1G(=X−Y=)/1n+,

where n+ is distance along the unit outward normal to the fluid domain. This function may
also be represented as

F0(X, Y)= lF(=X−Y=),

F(=X−Y=)=dG(=X−Y=)/d(=X−Y=), l= n+(Y−X)/=X−Y=.

Here F(=X−Y=) is a function depending only upon the distance =X−Y=, and l is the scalar
product of the two unit vectors n+ and (Y−X)/=X−Y=.

Let the motions of each nth simple part of the thin-walled structure be described by
equation (3):

s
K

a=1

L(n)
ja wa (X)= q(n)

j (X)+ dj3p(X)H(X), X $ S(n), n=1, 2, . . . , N, j=1, 2, . . . , K.

(6)

If this part of the structure is in contact with an acoustic medium, then the acoustic
pressure should be taken into account: H(X)=0, nqM; H(X)=1 and nEM. w(n)

a are
the components of the generalized displacements vector on the nth part of the thin-walled
structure, incorporated in the differential equations of the vibrations. The number of these
components K is determined by the mathematical model chosen. For instance, when a
Mindlin–Timoshenko shell model is used, there are five components of this vector. The
first three of them are the tangential (w1 and w2) and normal (w3) displacements, and the
other two components are the angles of rotation in the tangential directions w4 and w5.
If the Novozhilov–Goldenveizer theory of thin shells is used, then there are only three
components of {w}; w1, w2 and w3. If a plate without shear deformation and rotary inertia
is considered (Kirchhoff–Love theory) then there is the only one component of the vector;
the normal displacement w3. Relevant differential operators are well-known [2, 27] and
therefore are not presented here.

Equation (6), defined for each elementary part of the structure, should be supplemented
by conditions of continuity of the generalized displacements and equilibrium of the
generalized forces on the edges for neighboring parts of the structure. It should be noted
that for any Kirchhoff–Love type theory of thin-walled structures the full number K� of
components of the generalized displacements vector on an edge equals K+1. In this
formulation the additional component is an angle of rotation, defined as the derivative of
the normal displacement by the co-ordinate normal to the edge: 1w3/1nr (nr is the distance
along the unit outward normal to the contour G in the plane tangential to S(n) at the point
Y). A vector of generalized forces on the edge of the nth part of the structure has the same
number of components. The most general formulation of these conditions (when the
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interaction of the nth and the lth parts of the structure is considered) has the following
form:

s
K�n

a=1

m(n)
aj w(n)

a + s
K�n

a=1

5(n)
aj Q(n)

a = s
K�l

b=1

m(l)
bj w(l)

b + s
K�l

b=1

5(l)
bj Q(l)

b ,

j=1, 2, . . . , max (K�n , K�l ). (7)

Here K�n and K�l are the numbers of components of the vectors of the generalized forces
and displacements on the interfacial edge for the nth and the lth parts of the structure,
respectively; m(n)

aj , 5(n)
aj , m(l)

bj and 5(l)
bj are some numerical coefficients. If the coefficients m(n)

aj

and m(l)
bj are equal to zero, then one has some equilibrium conditions. If 5(n)

aj and 5(l)
bj are

equal to zero, then equation (7) gives the conditions of continuity for the displacements.
The number of conditions (7) for each particular case of conjunction (Goldenvejzer–
Novozhilov shell – Mindlin plate, Mindlin plate – Kirchhoff plate, etc.) should be equal to
the maximum number of components of the generalized displacements vectors for the nth
and the lth parts of the structure.

The substitution of equation (4) into equation (5) permits one to reformulate the latter
as

(1−C)p(X)+gS

[lF(=X−Y=)p(Y)− rv2G(=X−Y=)w3(Y)] dSz =0. (8)

This integral equation contains two unknown functions; the amplitudes of the contact
acoustic pressure p and of the normal displacement w3. It should be emphasized that in
equation (8) both the fundamental solution G and its derivative F depend only upon the
distance between a point of observation and a source point.

To obtain the integral equation with the sole unknown function p the displacement w3

should be expressed in terms of the driving load {q} and the contact acoustic pressure p.
This operation may be done in a way suggested in reference [23], by using an integral
representation of w3 in terms of the Green function of the whole structure:

w3(X)=gS

s
K

a=1

qa (Z)W0
3a (X, Z) dSz +gS

H(Z)p(Z)W0
33(X, Z) dSz . (9)

W0
3a is the Green function of the whole structure.
For any composite structure the Green function W0

3a (X, Z) depends upon two vectorial
variables (the co-ordinates of a point of observation and a source separately) and these
functions cannot be represented in a closed analytical form. In fact, to obtain them it is
necessary to use some kind of numerical procedure. Then there are no advantages in the
use of Green functions rather than just the simple F.E. procedure, because the latter may
be incorporated directly into the numerical solution.

If a structure consists of fragments of ‘‘homogeneous’’ surfaces, plates, spheres or
cylindrical shells, then an efficient numerical procedure may be used. This is based on the
fact that the dynamics of these parts and their interaction may also be described by
boundary integral equations. The kernels of the latter (Green functions of unbounded
shells) may be represented in an analytical form and depend upon only one argument: the
distance between an observation point and a source point.

The integral in the left side of equation (8) consists of the sum of integrals over the
mentioned areas:

(1−C)p(X)+ s
M

n=1 gS (n)

[lF(=X−Y=)p(Y)− rv2G(=X−Y=)w(n)
3 (Y)] dS(n)

y =0. (10)
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Each function w(n)
3 is defined by the Somigliana-type formula (which may be easily derived

from the reciprocity theorem)

w(n)
3 (Y)=gG(n)

s
K�n

a=1

[W(n)
3a (Y−Zr )Q(n)

a (Zr )− s
3

b=1

Q(n)
3ba (Y−Zr )nb (Zr )w(n)

a (Zr )] dG(n)
z

+gS (n) $ s
Kn

a=1

q(n)
a (Z)W(n)

3a (Y−Z)+ p(Z)W(n)
33 (Y−Z)H(Z)] dS(n)

z ,

n=1, 2, . . . , N. (11)

Here w(n)
a (Zr ) and Q(n)(Zr ) are the generalized displacements and forces on a contour G(n);

W(n)
3a (Y−Z) is the Green function of the relevant unbounded structure; Q(n)

3ba (Y−Z) is the
tensor of forces corresponding to the fundamental solution W(n)

3a (Y−Z); nb (Zr ) is the unit
outward normal to the domain S(n) at the contour G(n) in the plane tangential to S(n) at
the point Zr .

The substitution of equation (11) into equation (10) gives the main integral equation for
the interaction of the composite structure with the acoustic medium in the following form:

(1−C)p(X)+ s
M

n=1 6gS (n)

[lF(=X−Y=)− rv2F(n)
33 (X, Y)]p(Y) dS(n)

y

−rv2 gG(n)

s
K�n

a=1

[Q(n)
a (Zr )F(n)

3a (X, Zr )+w(n)
a (Zr ) s

3

b=1

C(n)
3ba (X, Zr )nb (Zr )] dG(n)

z

= rv2 s
M

n=1 gS (n)

s
Kn

a=1

q(n)
a (Y)F(n)

3a (X, Y) dS(n)
y ,

F(n)
3a (X, Y)=gS (n)

G(=X−Z=)W(n)
3a (Y−Z) dS(n)

z ,

C(n)
3ab (X, Yr )=gS (n)

G(=X−Z=)Q(n)
3ba (Z−Yr ) dS(n)

z . (12)

The values for the boundary forces and displacements may be found from equation (11)
by letting Y be a point on the contour G(n):

w(n)
j (Yr )=gG(n)

s
K�n

a=1

[Q(n)
a (Zr )W(n)

aj (Y−Zr )− s
3

b=1

Q(n)
jab (Yr −Zr )nb (Zr )w(n)

a (Zr )] dG(n)
z

+gS (n) $ s
Kn

a=1

q(n)
a (Z)W(n)

aj (Yr −Z)+ p(Z)W(n)
3j (Yr −Z)H(Z)] dS(n)

z ,

j=1, 2, . . . , Kn +1. (13)

The system of boundary equations (11), (12) is supplemented by the boundary conditions
(7) (conditions on interfacial regions).

It is well-known in acoustics that special attention in the analysis of a radiation field
should be paid to the interfacial regions of a composite structure [19, 25]. The forces and
displacements at these interfacial regions are the unknown functions in the two-level
formulation, and their influence upon the contact acoustic pressure may be easily
evaluated.

In the framework of the boundary integral equations method for structural–acoustic
coupling problems one may use either the system of two equations (8) and (9), or the
two-level system of equations (12), (13) and (7) . Despite the increase in the number of
equations, the two-level formulation brings a significant reduction in the computing time
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required, because the kernels of equation (12)—convolutions of Green functions of the
acoustic medium and the parts of the structure—have simple asymptotic expansions in
some ranges of the parameters and therefore may be evaluated analytically. This permits
one to elaborate some simplified models of interaction and to estimate their validity.

The two-level system of boundary integral equations formulated above is based on the
use of fundamental solutions (Green functions) for each isolated component of the
‘‘acoustic medium – complex thin-walled structure’’ system. It is essential to compile a
catalog of the fundamental solutions. The fundamental solutions used in analyses of
particular test problems considered in section 3 are presented in Appendix A.

3. TEST PROBLEMS

The problem of the most interest in many technical applications in that of the vibrations
of a cylindrical shell in an unbounded acoustic medium. The shell is of finite length, and
it has plane end caps and, possibly, several intermediate plane bulkheads. The cyclo-
symmetric formulation of the problem is possible when an arbitrary driving load can be
expanded into a series of functions of an angular co-ordinate, and thus each circumferen-
tial mode of vibration of a thin-walled structure in an acoustic medium can be analyzed
separately. Several test problems have been analyzed to check the validity and the efficiency
of the numerical procedure based on the two-level B.I.E. method formulated in section 2.
This choice of test problems is aimed at validating the general numerical procedure part
by part. Then the numerical procedure may be applied to analyze vibrations of the
particular composite thin-walled structure mentioned above. The data for this structure
are presented in Part 2 of this paper, in which details of the numerical analysis for this
structure are presented.

3.1.        ( )
Vibrations of a circular ring (an infinitely long cylindrical shell) of radius R and thickness

h immersed in an unbounded acoustic medium were analyzed first. The driving load was
a sinusoidal one with m circumferential waves: q(u)= qm cos mu. In this particular case
there are simple analytical formulae for the amplitude of the radial displacement [2, 4, 6]:

w3 = qm (1− n2)E−1h−1$60m
R2 +

h2m3

12R41
2

>0V2 −
m2

R217+
h2m4

12R4 +
1
R2

−V201+
rRa

r0h 1%
−1

cos mu. (14)

Here

a=$m−
vR
c

H(1)
m−10vR

c 1>H(1)
m 0vR

c 1%
−1

,

E and r0 are the Young’s modulus and the density of the material, respectively, and H(1)
k

is a Hankel function of the first kind of order k. A similar expression exists for the
circumferential displacement.

The numerical analysis was performed for a full ring with the boundary conditions at
the points u=0 and u=2p corresponding to uniform attachment. Vibrations of a steel
shell in a water were considered with c/c0 =0·307 and r/r0 =0·128.

The two-level system of boundary equations for this particular case consisted of six
equations of the first level (three equations (13) for each edge u=0 and u=2p) and
equation (12) of the second level. Fundamental solutions for the shell were taken in the
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form (A9); for an unbounded acoustic medium the fundamental solution was taken in the
form (A2). Then, after the boundary conditions were utilized, there were six algebraic
unknowns representing displacements and forces of the edges u=0 and u=2p and the
unknown function p—a contact acoustic pressure.

Several ranges of excitation were analyzed. The numerical solution was obtained by
piecewise constant approximation of the acoustic pressure in equations (12) and (13). Then
a system of linear algebraic equations (SLAE) was to be solved. Special attention was paid
to the convergence analysis. In all the cases considered the differences between the values
for p obtained via equation (14) and by numerical analysis did not exceed 3% if the number
of elements on the ring NE satisfied the inequality

NE q 8pRl−1, (15)

where l is the length of the leaky wave (the one corresponding to the pure imaginary root
of a characteristic polynomial) existing in the isolated structure. The same estimation was
obtained earlier in reference [25].

In Figure 1 some results are presented for a ring with h/R=0·01 and qR(1− n2)/Eh=1.
Figure 1(a) corresponds to vibrations at the dimensionless frequency vR/c=1·1; while
Figure 1(b) corresponds to vibrations at the dimensionless frequency vR/c=11. The
amplitudes of radial (w3) and circumferential (w2) displacements are presented versus the
number of circumferential waves of the driving load. Points marked by circles correspond
to the exact formula (14); points marked by crosses correspond to the numerical solution.

One more test was performed for the same problem when the driving load considered
was a point (i.e., line) radial force applied at the section u= p. The distribution of the
contact acoustic pressure was compared with the one obtained in reference [21] by another

Figure 1. Amplitudes of displacements versus the number of circumferential waves. ×, Numerical solution;
W, exact solution (14). The curves on Figure 1(a) are plotted for vR/c=1·1; the curves on Figure 1(b) are plotted
for vR/c=11. The curves 1 and 2 represent the real parts for amplitudes of the radial (w3) and tangential (w2)
displacements; the curves 3 and 4 on Figure 1(b) represent their imaginary parts.
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numerical procedure. In reference [21], the concentrated force was simulated by the
expression

q(u)= qa [1− (u/u0)2], −u0 Q uQ u0, u0 = p/100,

for a dimensionless frequency of vR/c=15.
The distribution of the acoustic pressure appeared to be almost sinusoidal, with

amplitudes slightly varying from one wave to another. The average value for the amplitude
of the acoustic pressure was p/q0 =0·15. The number of circumferential waves (m=36)
obtained in the numerical analysis performed by the B.I.E. method when NE =150 (150
elements around along the circumference of the ring) coincided with that obtained in
reference [21].

3.2.            

A pure acoustical problem was analyzed: an evaluation of the contact acoustic pressure
and the global impedance of a cylindrical shell of finite length l when the velocities on the
surface of the shell are uniformly distributed. Detailed results for this problem were
obtained in reference [28] and repeated in reference [24]. As in references [28] and [29] the
velocities of the plane end caps were put to zero and the ones in the lateral surface of the
cylinder were u0. Then the boundary integral equation has the following form:

1
2 p(x, r)+g

1

0

F(x, r, 0, h)p(0, h)h dh+g
l

0

F(x, 1, j, 1)p(j, 1) dj

+g
1

0

F(x, r, l, h)p(l, h)h dh+irv g
l

0

u0G(x, 1, j, 1) dj=0. (16)

Here G(x, r, j, h) is the Green function (A3) for m=0; (x, r) and (j, h) are the
co-ordinates of an observation point and a source, respectively. The global impedance is
determined by the formula [25, 28]:

Z=
1

rc=u0=2 g
l

0

p(j)ū0(j) dj, (17)

where ū0 is the complex conjugate of the function u0.
This test problem validated the efficiency of the numerical solution of the integral

equation of the second level (12). Some values for the global impedance were obtained for
l=6 when NE =48 (NE is the number of ring elements along the axis of the shell). These
values are presented in Table 1.

3.3.          

One more test problem readily available in the literature is that of vibrations with m
circumferential waves (cyclosymmetric vibrations) of a plate in an acoustic medium. In

T 1

Global impedance of a cylindrical shell of finite length

vR/c [28, 29] B.I.E.M.

0·2 0·104–0·3061 0·108–0·3121
0·4 0·331–0·4681 0·336–0·4741
0·6 0·517–0·4391 0·525–0·4481
1·0 0·712–0·3301 0·723–0·3391
1·5 0·802–0·2691 0·817–0·2811
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particular, in reference [30] the analysis of the vibrations of a thin circular plate in an
infinite rigid baffle has been performed.

The two-level system of boundary integral equations consisted of the equation of the
second level (12) and two equations (13) of the first level:

h$−Mp (h)
1W(p)(r, h)

1h
+Qp (h)W(p)(r, h)%bh=R

+g
R

0

[q(h)+ p(h)]W(p)(r, h)h dh= rw3(r)

+ h[−M0
p (h, r)w'3 (h)+Q0

p (h, r)w3(h)]=h=R , (18a)

h$−Mp (h)
12W(p)(r, h)

1h 1r
+Qp (h)

1W(p)(r, h)
1r %bh=R

+g
R

0

[q(h)+ p(h)]
1W(p)(r, h)

1r
h dh

=w3(r)+ rw'3 (r)+ h$−1M0
p (r, h)
1r

w'3 (h)+
1Q0

p (r, h)
1r

w3(h)%bh=R

. (18b)

Here

Mp (h)=−D$d2w3(h)
dh2 +

n

h

dw3(h)
dh

−
nm2

h2 w3(h)%,
Qp (h)=D$d3w3(h)

dh3 −
1
h

d2w3(h)
dh2 +

1+m2(2− n)
h2

dw3(h)
dh

−
m2(3− n)

h3 w3(h)%.
M0

p and Q0
p are represented similarly to Mp and Qp via W(p)(r, h).

Equation (18b) is related to the angle of rotation in the radial direction. This equation
is obtained by the differentiation of equation (18a) in respect to the co-ordinate of an
observation point.

The boundary conditions were those of a plate with the edge clamped:

w3(R)=w'3 (R)=0. (19)

The main unknowns here are the acoustic pressure p and the amplitudes of the bending
moment Mp (R) and shear force Qp (R) on the circular edge of the plate. The Green
function for the plate was taken in the form (A5), and the fundamental solution for the
unbounded acoustic medium in the form (A3). The numerical analysis of forced vibrations
excited by a driving load

q(r, u)= q0 cos u (20)

was performed with NE =25 and h=0·01. In Figure 2 the dependence of the amplitudes
of the displacement at the point (r=0·5, u=0) upon the frequency parameter vR/c is
presented. It is seen that the phase shift of the real part of the displacement occurs at
vR/c=0·0753 (see curve Re w in Figure 2). At this frequency there is also the maximum
of the imaginary part of the amplitude of the displacement (see curve Im w in Figure 2).
It can easily be shown that there is maximum energy flux from the vibrating plate at this
frequency and therefore this is a case of resonance. The same dimensionless resonance
frequency was obtained in reference [30] by another numerical procedure. In reference [30]
the resonance frequency was v=190 rad/s. The radius of the plate was R=0·6 m and
the speed of sound in the acoustic medium was c=1500 m/s. The density ratio was
r/r0 =0·128 and the ratio of the speeds of sound was c/c0 =0·307. Thus the dimensionless
resonance frequency was vR/c=0·076.

3.4. -         

The next test problem is that of beam-type vibrations of a circular cylindrical shell of
finite length l in an unbounded acoustic medium (the number of circumferential waves of
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Figure 2. The real (Re w) and imaginary (Im w) parts of the amplitudes of the displacements for a circular
plate in an unbounded acoustic medium versus the dimensionless frequency of excitation vR/c.

the vibrational mode considered is one; m=1). This problem, under various assumptions,
has been analyzed by many authors; in particular, see reference [31]). In this paper, the
vibrations were considered under the assumption that the influence of the end caps is
negligibly small and it is possible to ignore the interaction of the acoustic medium and the
structure on these surfaces. This assumption may be easily introduced into a numerical
solution: in fact, the area for integration in equation (12) becomes simply the lateral surface
of the cylindrical shell. Boundary conditions of simply supported edges on both ends of
the cylindrical shell were taken as in reference (31). There were then eight boundary
equations of the first level (four equations (13) for each edge of the shell):

wk (x)= s
3

j=1 g
l

0

[qj (j)+dj3p(j)]Wkj (x, j) dj+ s
4

a=1

[Qa (j)Wka (X, j)−Q0
ka (X, j)wa (j)]=j= l

j=0,

k=1, 2, 3, 4, w4(x)0w'3 (x), x=0, x= l (21)

(the generalized forces Qa (j) and Q0
ka (x, j) are represented by formulae (A7)), and one

equation of the second level. The latter was obtained by inserting equation (21) for k=3
into equation (12). In this system the Green functions for the cylindrical shell have the form
(A8) and the fundamental solution of the Helmholtz equation is of the form (A3).

One more assumption introduced in reference [31] was that it is possible to discard all
the tangential displacements for the beam-type vibrations and to describe the vibrations
of the shell by the single equation for the normal displacement w3. In reference [31] a
discretization procedure was used and all the derivatives in the equation of the beam
vibrations were replaced by their finite difference approximations. The driving load was

q(x, u)= sin (npx/l) cos u. (22)

The numerical results were obtained, in particular, for the following values of the
parameters: n=1, R/l=0·04 and

rR2/r0A0 =0·414. (23)

A0 is the area of the cross-section of the beam.
The calculations by the B.I.E. method were performed for the ratios of the speeds of

sound and the densities in the acoustic medium and in the structure material of c/c0 =0·307
and r/r0 =0·128. Then, for the equality (23) to hold, the ratio of the shell thickness to
its radius was taken as h/R=0·494. The number of boundary elements was NE =100, and



. .   . . 206

the collocation points for equation (12) were taken in the middle of each element. The
whole SLAE then contained 108 equations.

In Figure 3 numerical results obtained by the B.I.E. method (curve 1) are compared with
the ones obtained by the finite difference method [31] (curve 2). Curve 3 is also taken from
reference [31], but this curve represents the amplitudes of the beam displacement versus
the forcing frequency obtained in reference [32] for a model of a beam in an infinitely long
rigid baffle. The frequency parameter is V1 =vl/c0. The agreement of the results obtained
by these three approaches appears to be good.

The first resonance frequency obtained in the framework of thin shell theory is less than
those from references [31, 32] because the model of a shell with tangential displacements
taken into account is less rigid than a model of a beam when tangential displacements are
excluded. Even in this particular case of the very thick shell considered (in fact, the
thickness of the shell is above the upper limit of validity of shell theory) the effect of the
tangential displacements being taken into account is notable. With a decrease of h/R the
error introduced by the use of a beam model should grow rapidly.

3.5.           

   

The last test problem is that of the vibrations of a cylindrical shell in an infinite rigid
baffle. There are many papers dealing with the influence of stiffeners upon vibrations and
sound radiation from the shell, but in most of them are for high frequency excitation and
attention is focused on the directivity of the sound radiation. In a low frequency range
the vibrations of a shell may be adequately described by the structural–orthotropic shell
model. There are various formulations of the averaging procedure, but the comparison of
these techniques is beyond the scope of this paper. We used a technique presented in a
detailed form in reference [33] to analyze vibrations and sound radiation of the shell
considered in reference [34]. This shell is made of aluminium and submerged in water. The
radius of the shell is R=0·254 m, its thickness is h=0·008 m and length is l=2·54 m. The
stiffeners are rings having a rectangular cross-section 0·127 m high and 0·024 m wide. They
are uniformly distributed along the surface; the distance from each other is 0·127 m. The
boundary conditions are of clamped edges. A radial point force is located at the middle
section of a shell. This force has been expanded in a trigonometric series in the angular

Figure 3. Amplitudes of displacements at the middle cross-section of a cylindrical shell (w(l/2)) versus the
dimensionless frequency of excitation V1 =wl/c0. The solution by the B.I.E. method is curve 1; the solution
presented in reference ]31] is curve 2; the solution presented in reference [32] is curve 3.
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Figure 4. Pressure attenuation p (dB) versus frequency of excitation f (Hz). The solid line corresponds to
solution by the boundary integral equations method; the dashed line corresponds to the solution presented in
reference [34].

co-ordinate and each circumferential mode has been analyzed separately. The total
response of the structure was obtained as the sum of the partial responses. The average
pressure radiation [34] is shown in Figure 4. The solid line corresponds to the B.I.E.
solution while the dashed line represents the solution of reference [34]. The number of
boundary elements used is NE =100. The whole SLAE contained 108 equations for each
circumferential mode. The agreement of the results obtained by these two approaches
appears to be good.

4. CONCLUSIONS

A two-level system of boundary integral equations has been formulated for analysis of
vibrations of composite thin-walled structures in an acoustic medium. The solution
involves a combination of analytical and numerical methods. Several test problems have
been considered to validate the efficiency and accuracy of the method proposed. The
analysis of a two-level system of boundary integral equations for vibrations of a cylindrical
shell having end caps and four intermediate bulkheads is performed in Part 2 of this paper.
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APPENDIX A: A CATALOG OF FUNDAMENTAL SOLUTIONS

The kernel G(=X−Y=) of equation (8) is a fundamental solution of the Helmholtz
equation (3). In a general three-dimensional case it corresponds to the field of a unit
strength point source in an unbounded medium:

G(=X−Y=)= 1
4p

exp(ivA/c)
A

, A= =X−Y=, i=z−1. (A1)

When a two-dimensional problem is considered, the corresponding fundamental solution
of the Helmholtz equation is

G(=X−Y=)= i
4

H(1)
0 0vA

c 1, (A2)

where H(1)
0 is the zero order Hankel function of the first kind.

One more fundamental solution of equation (3) is required to analyze vibrations of
axisymmetrical thin-walled structures. It represents the potential of velocities induced by
a ring source of radius R0 in a three-dimensional unbounded acoustic medium. The
distribution of intensities of point sources on this sources is sinusoidal with m circumfer-
ential waves in respect to the angular co-ordinate. Then the fundamental solution of
equation (3) is

Gm (=X−Y=)= R0

4p g
2p

0

exp(ivA/c)
A

cos mu du, (A3)

X(x, r, u1), Y(j, R0, u2), A=z(x− j)2 +R2
0 + r2 −2R0r cos u, u= u1 − u2.

These are the fundamental solutions for the Helmholtz equation to be used in analysis of
a wide range of structural–acoustic coupling problems.

The fundamental solution (Green function) for the three-dimensional problem of
vibrations of a thin Kirchhoff plate under point loading is

W(p)(X, Y)=
1

8DpS2
p $Y0(SpA)+

2
p

K0(SpA)− iJ0(SpA)%, (A4)

A= =X−Y==zr2 +R2 −2rR cos u, S4
p = rphpv

2D−1
p .

Dp , rp and hp are the bending rigidity, density and thickness of the plate, respectively, Y0( ),
K0( ) and J0( ) are Bessel functions.

A Green function for the cyclosymmetric problem of vibrations of a Kirchhoff plate is
the response to its line lateral loading on a circle of radius R (the intensity of loading is
sinusoidal in respect to the angular co-ordinate u):

W(p)
m (r, R)=

1
8DpS2

p g
2p

0 $Y0(SpA)+
2
p

K0(SpA)− iJ0(SpA)% cos mu du. (A5)

If vibrations of a cylindrical shell in the mode with m circumferential waves are analyzed
and Goldenveizer–Novozhilov theory [27] is used, then the differential equations (3) have
the following dimensionless forms:

w01 −
1− n

2
m2w1 +V2w1 +

1+ n

2
mw'2 − nw'3 =

q1(1− n2)
Eh

, −
1+ n

2
mw'1 +

1− n

2
w02

−m2w2 +V2w2 −
2− n

12
h2mw03 +0m+

m3h2

12 1w3 =
q2(1− n2)

Eh
,
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−nw'1 +
(2− n)

12
h2mw02 −0m+

m3h2

12 1w2 +
h2

12
w23 −

h2

12
2m2w03

+01+
h2

12
m4 −V21w3 =

q3(1− n2)
Eh

. (A6)

Here V2 = (1− n2)rv2R2E−1 and ( )'=d( )/dx. A set of Green functions for an infinitely
long cylindrical shell in this case corresponds to four loadings at the section with axial
co-ordinate x=0, each of which is of unit strength in the longitudinal direction and
sinusoidal with m waves in the circumferential direction. The four loadings are as follows:

(i) longitudinal force,

Q0
11 =

Eh
1− n2 [(W11)'+ nmW12 + nW13]= 1

2 sign (j),

W12 =W13 =Q0
14 =0; (A7a)

(ii) circumferential force,

Q0
22 =

Eh
2(1+ n)

[−mW21 + (W22)']= 1
2 sign (j),

W21 =Q0
23 = (W23)'=0; (A7b)

(iii) shear force,

Q0
33 =

Eh3

12(1− n2)
[(W33)1+(1−2n)m2(W33)'+ (1−2n)m(W32)']= 1

2 sign (j),

W32 =Q0
32 = (W33)'=0; (A7c)

(iv) longitudinal bending moment,

Q0
44 =

Eh3

12(1− n2)
[−(W43)0+ nm2W43 +mW42]= 1

2 sign (j),

Q0
41 =W42 =W43 =0. (A7d)

The first index corresponds to the loading number; the second one is the number of the
component of the generalized displacements or generalized forces vector.

These sets of Green functions have the following form:

Wj1(x, j)= s
4

a=1

cjaaja exp Sa =x− j=,

Wj2(x, j)= s
4

a=1

cjabja exp Sa =x− j=,

Wj3(x, j)= s
4

a=1

cja exp Sa =x− j=, j=1, 2, 3, 4. (A8)

Sa are the roots of a characteristic equation (dispersion polynomial) such that Re Sa Q 0;
if Re Sa =0 then Im Sa q 0. aja , bja and cja are the coefficients of the normal waves defined
by the loading of the shell.

The subscript m and the superscript (c), indicating that a cylindrical shell is considered,
are omitted in expressions (A7) and (A8).

For a plane structural–acoustic coupling problem the fundamental solution for vi-
brations of a circular arc may be easily obtained from equation (A6) by omitting the terms
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containing the longitudinal displacement and the derivatives with respect to the axial
co-ordinate. Then the Green functions corresponding to (i) circumferential force, (ii) shear
force and (iii) circumferential bending moment have the same form as in equations (A8):

Wj2(u, c)= s
3

a=1

bjacja exp Sa =u−c=, Wj3(u, c)= s
3

a=1

cja exp Sa =u−c=. (A9)

u is the angular co-ordinate of an observation point and c is the angular co-ordinate of
a source.

If a structure of finite length is considered it is possible to retain only the real parts of
the Green functions for the parts of the structure, because the imaginary parts satisfy
homogeneous equations and enable the radiation conditions to be satisfied (the group
velocity of waves existing in the structure should be directed from a source to infinity).
In the case of a finite structure, the radiation conditions are not essential. This aspect of
the boundary integral equations method is discussed in detailed form in reference [24]. In
respect to the efficiency of the calculations it is more convenient to use real functions than
complex ones. If the effects of internal damping in the material of a structure are taken
into account then, of course, complex Green functions for the structure should be used.

APPENDIX B: LIST OF NOTATION

8 velocity potential
v circular frequency of oscillations
c speed of sound in the acoustic medium
r density of the acoustic medium
n+ outward unit normal to the fluid domain at the surface of a structure
{w} displacements vector
w3 component of {w} which is normal to the surface of the thin-walled structure; the

positive direction of w3 corresponds to that of the outward normal n+ to the fluid
domain

[L] tensor differential operator defined by the mathematical model chosen to describe
vibrations of the structure

{q} vector of external driving loads
u velocity of a point on a surface of the structure as well as a velocity of the corresponding

particle of the acoustic medium
X, Y radius-vectors of the observation point and source;
4p(1−C) solid angle occupied by the acoustic medium
S boundary of the acoustic medium
S(n) part of the boundary S
G fundamental solution of the Helmholtz equation
w(n)

a components of the generalized displacements vector on the nth part of a thin-walled
structure

Q(n)
a generalized forces on a contour G(n)

W(n)
ja Green function of unbounded shell corresponding to the nth part of the structure

W0
ja Green function of the whole structure

Q(n)
ja tensor of forces corresponding to the fundamental solution W(n)

ja

G(n) contour of nth part of the thin-walled structure;
nb unit outward normal to the domain S(n) at the contour G(n) in the tangential to S(n) at

the point Y
c0 speed of sound in the material of the shell
n Poisson ratio for the material of the shell
Dp bending rigidity of the plate
rp density of the plate
hp thickness of the plate


