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Abstract

For square and triangular lattices we have found a new line-localized primitive waveform (LPW) existing at a resonant

frequency. In two-dimensional (2D) case, the LPW represents a line of oscillating particles, while the lattice outside this

line remains at rest. We show that: (a) A single LPW does not conduct energy; however, a band consisting of two or more

neighboring LPWs is a conductor with the phase-shift-dependent energy flux velocity. (b) Any canonical sinusoidal wave

consists of LPWs. In turn, the LPW can be represented by a superposition of the sinusoidal waves (these two types of

waves are connected by the discrete Fourier transform). (c) There are two (three) LPW orientations for the square

(triangular) lattice, and this is why the sinusoidal-wave group velocity orientation is piecewise constant at this frequency; it

coincides with the nearest LPW orientation. (d) LPW can also exist at a lower frequency being localized at the lattice

halfplane boundary. Further, for 3D lattices plane-localized waveforms are found to exist in a frequency region. Finally,

for the point harmonic excitation of 2D lattices we show that starlike waves develop with the rays in the LPW directions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decades escalating activity may be observed in the field of Waves in lattices or, more general,
Waves in structured media. This rather old topic [1,2] has been developed in application to various structures.
For example, one-dimensional (1D) periodic systems of roads [3] and periodically supported structures, a plate
[4] and a beam [5], were considered. A comprehensive review of works where various other systems were
considered can be found in Ref. [6]. The topic has got the second wind beginning from the late 1980s when
artificial ‘‘crystals’’ where revealed as the band-gap materials allowing to control the propagation of waves of
different nature: electronic and electromagnetic waves (electronic and photonic crystals [7–9]) and waves of
sound and vibration (phononic crystals [10]). The number of publications related to this topic is growing
exponentially [9,11].

Phononic crystals as two- (2D) and three-dimensional (3D) periodic structures of diverse materials and
geometry were considered in many works. For example, metal–metal [12] and water–mercury [13,14] com-
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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posites, honeycomb lattice [15], water with air bubbles [16,17], a polyethylene matrix with tungsten inclusions
[18], an elastic body with voids [19], plastic–metal structures [20], different lattice structures [21–23]. In Ref.
[24], a comparative analysis of the dispersion relations was carried out for the Cosserat continuum models and
the corresponding discrete lattices. In addition to the translation of masses, the formulation in this paper also
accounts their rotation. The similarity with the corresponding results in the present work indicates that the
addition of the rotational inertia does not seem to affect the directional characteristics of the transversal LPW
waves.

Also note that lattice models are used in fracture (analytical works in this field were summarized in Ref.
[25]), mainly, with the aim to find the crack-speed-dependent dissipation and to establish connections between
the far-field (macrolevel) and local (microlevel) energy release rates.

In the band gap materials, there exist resonant frequencies, such that there is no steady-state solution
corresponding to an external non-selfequilibrated excitation. In the 1D case, resonant frequencies usually
demarcate the pass and stop bands, and the group velocity do=dk ¼ 0 at this frequency. In this case, the
energy flows from a source not as a wave but, roughly speaking, as heat (more precisely, the corresponding law
depends on the order of the first non-zero derivative dno=dkn at this point [26]).

In 2D/3D cases, a resonant point can also exist in the interior of pass bands. In particular, it corresponds to
the X-point in the Brillouin diagram for the lower branch of the dispersion curves (see e.g. Figs. 1 and 2 in Ref.
[12]). Note that this branch for a continuous structured material is similar to the corresponding dispersion
curves for the discrete square lattice considered in this paper (the diagram for the lattice is shown in Fig. 1).
Such resonant points in 2D case also differ by the fact that the group velocity is at zero only for some special
wave orientations. In the following, we will consider the lattice waves just for this resonant frequency.
Excitation of continuous periodic structures and lattices at non-resonant frequencies are considered in many
works: e.g. in Ref. [5] (periodically supported beam), [27–29] (2D lattices), [30] (bubbly liquids), [31–33] (elastic
structures of diverse types), [34,35] (railway track structures).

In the present work, 2D square and triangular lattices are considered at the resonant frequency. The paper is
mainly aimed to show, for these and some other lattices, the existence of localized primitive waveforms
(LPWs), and to discuss some consequences. The LPW is a ‘selfequilibrated’ standing wave strictly localized on
a line of a certain orientation (there are two orientations of the LPW lines for the square lattice and three for
the triangular lattice). While a single LPW line cannot conduct energy, a band consisting of two or more
activated LPW lines is a conductor. Any sinusoidal wave, and hence any wave at this frequency, can be
represented as a set of the LPWs, and it bears evidence of the features of the LPW. In particular, the
sinusoidal-wave group velocity orientation coincides with the LPW orientation nearest to the wave prop-
agation direction, and this is why it is piece-wise constant at this frequency. In this paper, analytical and
numerical results are presented regarding the formation of starlike waves with the rays in LPW directions.
These results illustrate the key role of the LPWs in the features of a general wave field. Note that the non-
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Fig. 2. The square lattice.
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resonant steady-state response of periodic structures to the action of 5ab local harmonic and impulsive
sources with the wave beaming phenomenon was studied, in particular, in the above-discussed papers [27–32].
2. The LPW

Consider transversal oscillations of a 2D square lattice presented in Fig. 2. In mechanical terms, this
structure represents a plane net of massless strings with point masses at the knots. The bond stiffness, m, the
lattice point mass, M, and the cell size, a, are assumed to be natural units. In these terms, the long wave speed
c ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
¼ 1 and the time unit is a=c ¼

ffiffiffiffiffiffiffiffiffiffiffi
M=m

p
. In the linear approximation, the homogeneous dynamic

equations are

€Um;nðtÞ þ 4Um;nðtÞ �Umþ1;nðtÞ �Um�1;nðtÞ �Um;nþ1ðtÞ �Um;n�1ðtÞ ¼ 0. (1)

Below, along with the integer numbers m; n and p (the latter is used for a 3D lattice) we use continuous
coordinates x; y and z, respectively. It is common knowledge that there exists an elementary solution as a
sinusoidal wave

Um;n ¼ um;nðoÞeiot; um;nðoÞ ¼ exp½�iðkxmþ kynÞ�; �poðkx; kyÞpp, (2)

with the dispersion relation

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2 cos kx � 2 cos ky

p
. (3)

In these relations, o is the frequency and kx; ky are components of the wave vector k. The latter defines phase
velocity of the wave as v ¼ o=k2

ðkx; kyÞ, while the group velocity of the wave is defined as
vg ¼ ðqo=qkx; qo=qkyÞ. A general solution to Eq. (1) can be represented by superposition of these waves.

The dispersion relation (3) defines, in particular, two resonant frequencies o ¼ o1 ¼ 2 ðky ¼ �p� kxÞ and
o ¼ o2 ¼

ffiffiffi
8
p
ðkx ¼ ky ¼ pÞ, where there is no steady-state solution in the case of a non-selfequilibrated

harmonic excitation of the lattice. Below we consider the case o ¼ 2 as the most interesting: the phenomena
discussed in this paper appear only at this frequency. It follows from Eq. (3) that in this case the equifrequency
contour is the square perimeter, Fig. 3(a). It should be noted that equifrequency contours were considered, e.g.
in Refs. [24,27,36] for different frequencies; however, the resonant-frequency contour was missed (see e.g. Fig.
8 in Ref. [27]).
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The first purpose of this paper is to note that in the case o ¼ 2 there exists another, ‘most primitive’ solution
of Eq. (1),

Um;n ¼Lþ0 e
iot; Lþ0 ¼ ð�1Þ

ndm;n ½dm;n ¼ 1 ðm ¼ nÞ; dm;n ¼ 0 ðmanÞ�, (4)

representing antiphase oscillations of neighboring masses placed along a single right-inclined diagonal, m ¼ n,
with the other particles quiescent. Due to the symmetry and uniformity of the lattice such a LPW can also be
associated with the left-inclined diagonal, um;n ¼L�0 ¼ ð�1Þ

nd�m;n, and also with any other diagonal line
L�n ¼ ð�1Þ

nd�m;n�n, where n is any integer. The LPWs associated with different lines can be superimposed. In
particular, any sinusoidal wave at this frequency can be represented by superposition of LPWs. Namely, the
LPW and the sinusoidal wave are connected by the discrete Fourier transform

um;nð2Þ ¼ S�ðkÞ ¼ ð�1Þne�ikðm�nÞ ¼
X1
n¼�1

L�n e
�ikn ðk ¼ kxÞ,

L�n ¼
1

2p

Z p

�p
S�ðkÞe�ikndk. ð5Þ

The existence of the preferential directions associated with the LPW places the key role in the lattice
properties at the resonant frequency.

3. Energy flux

For the sinusoidal wave the group velocity vector is oriented as the external normal to the above-mentioned
equifrequency contour (Fig. 3(a)). So the group velocity direction is independent of the wave orientation
within each quadrant in the x; y-plane, and it coincides with the LPW orientation nearest to the wave vector. It
also follows from Eq. (5) that for o ¼ 2 the modulus, jvgj, is

vg ¼

ffiffiffi
2
p

2
sin

p
1þ j tan aj

, (6)

where a is the angle between the x-axis and the wave vector: tan a ¼ ky=kx. So the group velocity is zero at
those and only at those four points where its direction changes. In spite of the fact that the group velocity is
non-zero almost everywhere, the resonance (in the above sense) does exist, although the oscillation amplitudes
grow very slowly (see below).

Now consider a single LPW. Since there is no diagonal bond here, while the nearest particles connected with
diagonal ones are at rest, there is no energy flux in this ‘wave’. However, the energy flux becomes non-zero if
two neighboring ‘insulators’ are activated with a phase displacement, say, um;n ¼Lþ0 þ eifLþ1 . In this latter
case, there exists a step curve comprising of the bonds connecting the oscillating particles; this step curve is a
‘conductor’. A direct analysis evidences that the energy flux and the energy flux velocity are the same as those
in such a step curve in the sinusoidal wave with the wave direction angle a ¼ arctan½ðp� fÞ=f�. This is an
expected result, and it is still valid in the case of three- or more diagonal-line band activated. Indeed,
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expanding the activated band we construct the sinusoidal wave SþðkÞ. Clearly, the energy flux is directed along
such a band, and this is a structure-based explanation of the diagonal group velocity orientation.

4. Some other structures

The existence of the LPW follows directly from the lattice structure. Indeed, consider the right inclined
diagonal and a neighboring particle, say, m;mþ 1 or mþ 1;m (Fig. 4). It is connected with the diagonal
particles, m;m and mþ 1;mþ 1. Since the diagonal particles are involved in antiphase oscillations, their
actions on a near-diagonal particle are selfequilibrated. The particles outside the diagonal can thus be at rest.
So the existence of the LPW is a consequence of a certain symmetry of the lattice structure.

4.1. Triangular lattice

These geometrical considerations are also applicable to a triangular lattice with the particles at

x ¼ mþ n=2; y ¼
ffiffiffi
3
p

n=2 ðm; n ¼ 0;�1; . . .Þ. (7)

In this case, there exist LPWs associated with each of the three bond lines. It can be seen that, in spite of the
direct connection of the oscillating particles, a single LPW does not conduct energy as in the case of the square
lattice.

The non-dimensional homogeneous dynamic equation for the transversal motion of this lattice is

€Um;n ¼ Umþ1;n þUm�1;n þUm;nþ1 þUm;n�1 þUm�1;nþ1 þUmþ1;n�1 � 6Um;n. (8)

It defines the dispersion relation as

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 4 cosðk=2Þ½cosðk=2Þ þ cosð

ffiffiffi
3
p

p=2Þ�

q
. (9)

It follows that the LPW resonant frequency o ¼
ffiffiffi
8
p

, while the kx � ky plot is a regular hexagon perimeter
(Fig. 3(b)). The group velocity is

vg ¼
1ffiffiffi
8
p cos

ffiffiffi
3
p

p
2

tan a
� �

; b ¼ 0 ð�p=6oa ¼ arctan ky=kxop=6Þ. (10)
m

n

Fig. 4. The three-particle-width band. Particles involved in antiphase oscillations (white circles with �) and immobile particles (black

circles).
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So, just as for the square lattice, the group velocity is directed as the nearest LPW orientation, and at the
vertices, where it changes the direction, vg ¼ 0.
4.2. Cubic lattice

In scalar oscillations of a cubic lattice, there exists a plane LPW. We assume that the cubic lattice obeys the
discrete analogue of the 3D wave equation, similar to Eq. (1) but with respect to the scalar function (say, the
displacement along z-coordinate) of three discrete coordinates. It follows that for any kz ð�ppkzppÞ, at the
frequency o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2 cos kz

p
, there exists a waveform localized at a diagonal plane n ¼ n�m

um;n;p ¼ ð�1Þ
ne�ikzpd�m;n�n. (11)

Note that the plane LPW also exists in a 3D lattice where the 2D triangular lattice planes are connected just as
the planes in the cubic lattice.
4.3. Material-bond lattice

It follows from the symmetry considerations that the LPW can also exist in such a lattice with non-zero
bond density. (A non-zero-bond-density lattice as a network of strings without concentrated masses was
considered, in particular, in Ref. [21], where vibrations of the strings, with no associated nodal displacements
were mentioned. Fracture of a material-bond lattice was studied in Ref. [37].)
4.4. Bounded lattice

The LPW exists not only in infinite lattices or lattice strips. It also can exist in a finite structure with proper
boundaries. For instance, if the boundaries, where the nodes are fixed, coincide with the left-inclined diagonals
of a square lattice, they bound alternating longer and shorter right-inclined diagonals; each of the latter
diagonals can support a finite LPW. The LPW can also exist in a closed properly structured ring. In particular,
this ring can be made by means of a pure bend of an LPW-oriented lattice strip. In the latter case, the inner
localized oscillations cannot be detected from the outside at all.
5. Transient problem

We now consider inhomogeneous equations (1) for the case where a single external force P0;0 ¼ PðtÞ ¼

QðtÞe2it is applied at t ¼ 0 to the particle m ¼ n ¼ 0. The Laplace transform on t and the discrete Fourier
transforms on m with parameters s and k, respectively, lead to

uLF
n ðs� io; kÞ ¼

QLðs� ioÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 1
p ðZ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 1

p
Þ
jnj; Z ¼ 2þ

s2

2
� cos k. (12)

For o ¼ 2 we change s ¼ 2iþ s0. In our case, asymptotes (or limiting values) of um;nðtÞ ðt!1Þ are defined by
asymptotes of uL

m;nðs
0Þ for s0 ! þ0. With this in mind we can put s0 ¼ þ0 everywhere except the denominator

in Eq. (12). As a result

uL
m;nðs

0Þ� �
iQ

s0
ð�1Þn

2p

Z p

0

expðikjnjÞ cos kmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2k þ 4is0 cos k

p dk. (13)

It follows that for mþ n even
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uL
0;0ðsÞ� �

iQ

2p
lnð4=s0Þ

s0
; u0;0ðtÞ� �

iQ

2p
½lnð4tÞ þ g�,

um;mðtÞ � �iQ
ð�1Þm

2p
ln

4t

jmj
þ g� 2

� �
ðma0Þ,

um;nðtÞ � �iQ
ð�1Þn

2p
ln

16t

jm2 � n2j
þ g� 4

� �
ðmanÞ, ð14Þ

where g � 0:577 is the Euler constant. For mþ n odd we find that

lim
t!1

um;nðtÞ ¼
Q

4
ð�1Þn; n ¼ maxðjmj; jnjÞ. (15)

Let us fix a value of the amplitude, that is, fix the argument of logarithm in Eq. (14). It can be seen that this
level of oscillations propagates along the diagonal, n ¼ m, with a constant speed, while it spreads along a bond
line as it were obey a parabolic equation: m�const

ffiffi
t
p
ðn ¼ 0Þ; n� const

ffiffi
t
p
ðm ¼ 0Þ: This is in agreement with

the above-discussed conclusions concerning the group velocity.
It follows that for the kinematic excitation, that is, for u0;0 ¼ u0;0ðtÞ ¼ HðtÞ

QðtÞ�

Z 1
0

2pi expð�xtÞdx

xðln2ðx=4Þ þ p2Þ
! 0. (16)

For mþ n even

um;m � ð�1Þ
m 1þ

iQðtÞ

2p
ðln jmj þ 2Þ

� �
ðt!1; ma0Þ,

um;n � ð�1Þ
n 1þ

iQðtÞ

2p
1

4
ln jm2 � n2j þ 4

� �� �
ðt!1; manÞ, ð17Þ

while for mþ n odd the amplitudes tend to zero.
The final pattern is presented in Fig. 5. However, for any finite region, it may take a long time for this

limiting field to develop, since QðtÞ vanishes very slow: iQðtÞ� const= ln t ðt!1Þ.
Numerical simulations show that the kinematic excitation of the square and triangular lattices lead to the

star-wave dominant modes. In agreement with the analytical results, it appears that the ‘star waves’, Figs. 6
−2
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n

Fig. 5. The final state of the square lattice under the point kinematic excitation. Particles involved in antiphase oscillations (white circles

with �) and immobile particles (black circles).
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and 7, develop in accordance with the LPW orientations. The star wave contours are plotted in such a way
that the oscillation amplitudes in the outer area jum;njo0:1 (recall that u0;0 ¼ 1), while the inner area is minimal
(the star cannot be narrowed without violation of the inequality). The plots correspond to (dimensional) time
t ¼ 500

ffiffiffiffiffiffiffiffiffiffiffi
M=m

p
when the ray lengths are equal to 211a and 141a for the square and triangular lattices,

respectively. Recall that M ;m and a are the node mass, the bond stiffness and the bond length, respectively. In
addition to the star and the lattice geometry, the corresponding kx � ky contour is shown in each figure.

In conclusion, we note that the LPW can exist as the lattice surface waveform. Consider for example a
square lattice half-plane (or a lattice strip) bounded by a diagonal line. In this case, each boundary particle is
connected with only two others (see Fig. 4 assuming the right black particles removed). The single LPW still be
in existence, now at the boundary; however, at a lower frequency: o ¼

ffiffiffi
2
p

(any particle with two bonds now
represents an oscillator with the unit mass and the spring stiffness equal to 2). Similar conclusion is valid for
the triangular lattice with the boundary waveform frequency o ¼

ffiffiffi
6
p

.
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